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Preface 

Origin of This Text 

This text has evolved from mathematics courses in the Master of Science in 
Computational Finance (MSCF) program at Carnegie Mellon University. The 
content of this book has been used successfully with students whose math
ematics background consists of calculus and calculus-based probability. The 
text gives precise statements of results , plausibility arguments, and even some 
proofs , but more importantly, intuitive explanations developed and refined 
through classroom experience with this material are provided. Exercises con
clude every chapter. Some of these extend the theory and others are drawn 
from practical problems in quantitative finance. 

The first three chapters of Volume I have been used in a half-semester 
course in the MSCF program. The full Volume I has been used in a full
semester course in the Carnegie Mellon Bachelor's program in Computational 
Finance. Volume II was developed to support three half-semester courses in 
the MSCF program. 

Dedication 

Since its inception in 1994, the Carnegie Mellon Master's program in Compu
tational Finance has graduated hundreds of students. These people, who have 
come from a variety of educational and professional backgrounds, have been 
a joy to teach. They have been eager to learn, asking questions that stimu
lated thinking, working hard to understand the material both theoretically 
and practically, and often requesting the inclusion of additional topics. Many 
came from the finance industry, and were gracious in sharing their knowledge 
in ways that enhanced the classroom experience for all . 

This text and my own store of knowledge have benefited greatly from 
interactions with the MSCF students, and I continue to learn from the MSCF 
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alumni . I take this opportunity to express gratitude to these students and 
former students by dedicating this work to them. 
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Introduction 

Background 

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990 
Nobel Prize in Economics, the Nobel Prize Committee brought to worldwide 
attention the fact that the previous forty years had seen the emergence of 
a new scientific discipline, the "theory of finance." This theory attempts to 
understand how financial markets work, how to make them more efficient , and 
how they should be regulated. It explains and enhances the important role 
these markets play in capital allocation and risk reduction to facilitate eco
nomic activity. Without losing its application to practical aspects of trading 
and regulation, the theory of finance has become increasingly mathematical, 
to the point that problems in finance are now driving research in mathematics . 

Harry Markowitz's 1952 Ph.D. thesis Portfolio Selection laid the ground
work for the mathematical theory of finance. Markowitz developed a notion 
of mean return and covariances for common stocks that allowed him to quan
tify the concept of "diversification" in a market. He showed how to compute 
the mean return and variance for a given portfolio and argued that investors 
should hold only those portfolios whose variance is minimal among all portfo
lios with a given mean return. Although the language of finance now involves 
stochastic (Ito) calculus, management of risk in a quantifiable manner is the 
underlying theme of the modern theory and practice of quantitative finance. 

In 1969, Robert Merton introduced stochastic calculus into the study of 
finance. Merton was motivated by the desire to understand how prices are 
set in financial markets, which is the classical economics question of "equi
librium," and in later papers he used the machinery of stochastic calculus to 
begin investigation of this issue. 

At the same time as Merton's work and with Merton's assistance, Fis
cher Black and Myron Scholes were developing their celebrated option pricing 
formula. This work won the 1997 Nobel Prize in Economics . It provided a 
satisfying solution to an important practical problem, that of finding a fair 
price for a European call option (i.e. , the right to buy one share of a given 
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stock at a specified price and time) . In the period 1979-1983, Harrison, Kreps , 
and Pliska used the general theory of continuous-time stochastic processes to 
put the Black-Scholes option-pricing formula on a solid theoretical basis, and, 
as a result , showed how to price numerous other "derivative" securities. 

Many of the theoretical developments in finance have found immediate 
application in financial markets . To understand how they are applied, we 
digress for a moment on the role of financial institutions. A principal function 
of a nation's financial institutions is to act as a risk-reducing intermediary 
among customers engaged in production. For example, the insurance industry 
pools premiums of many customers and must pay off only the few who actually 
incur losses. But risk arises in situations for which pooled-premium insurance 
is unavailable. For instance, as a hedge against higher fuel costs, an airline 
may want to buy a security whose value will rise if oil prices rise. But who 
wants to sell such a security? The role of a financial institution is to design 
such a security, determine a "fair" price for it, and sell it to airlines . The 
security thus sold is usually "derivative" (i .e. , its value is based on the value 
of other, identified securities) .  "Fair" in this context means that the financial 
institution earns just enough from selling the security to enable it to trade 
in other securities whose relation with oil prices is such that , if oil prices do 
indeed rise, the firm can pay off its increased obligation to the airlines. An 
"efficient" market is one in which risk-hedging securities are widely available 
at "fair" prices . 

The Black-Scholes option pricing formula provided, for the first time, a 
theoretical method of fairly pricing a risk-hedging security. If an investment 
bank offers a derivative security at a price that is higher than "fair," it may be 
underbid. If it offers the security at less than the "fair" price, it runs the risk of 
substantial loss. This makes the bank reluctant to offer many of the derivative 
securities that would contribute to market efficiency. In particular, the bank 
only wants to offer derivative securities whose "fair" price can be determined 
in advance. Furthermore, if the bank sells such a security, it must then address 
the hedging problem: how should it manage the risk associated with its new 
position? The mathematical theory growing out of the Black-Scholes option 
pricing formula provides solutions for both the pricing and hedging problems. 
It thus has enabled the creation of a host of specialized derivative securities. 
This theory is the subject of this text. 

Relationship between Volumes I and II 

Volume II treats the continuous-time theory of stochastic calculus within the 
context of finance applications . The presentation of this theory is the raison 
d'etre of this work. Volume II includes a self-contained treatment of the prob
ability theory needed for stochastic calculus , including Brownian motion and 
its properties . 
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Volume I presents many of the same finance applications, but within the 
simpler context of the discrete-time binomial model. It prepares the reader 
for Volume II by treating several fundamental concepts, including martin
gales, Markov processes, change of measure and risk-neutral pricing in this 
less technical setting. However, Volume II has a self-contained treatment of 
these topics , and strictly speaking, it is not necessary to read Volume I before 
reading Volume II. It is helpful in that the difficult concepts of Volume II are 
first seen in a simpler context in Volume I .  

In the Carnegie Mellon Master's program in Computational Finance, the 
course based on Volume I is a prerequisite for the courses based on Volume 
II. However, graduate students in computer science, finance, mathematics , 
physics and statistics frequently take the courses based on Volume II without 
first taking the course based on Volume I . 

The reader who begins with Volume II may use Volume I as a reference. As 
several concepts are presented in Volume II, reference is made to the analogous 
concepts in Volume I. The reader can at that point choose to read only Volume 
II or to refer to Volume I for a discussion of the concept at hand in a more 
transparent setting. 

Summary of Volume I 

Volume I presents the binomial asset pricing model. Although this model is 
interesting in its own right , and is often the paradigm of practice, here it is 
used primarily as a vehicle for introducing in a simple setting the concepts 
needed for the continuous-time theory of Volume II. 

Chapter 1, The Binomial No-Arbitrage Pricing Model, presents the no
arbitrage method of option pricing in a binomial model. The mathematics is 
simple, but the profound concept of risk-neutral pricing introduced here is 
not. Chapter 2 , Probability Theory on Coin Toss Space, formalizes the results 
of Chapter 1, using the notions of martingales and Markov processes. This 
chapter culminates with the risk-neutral pricing formula for European deriva
tive securities. The tools used to derive this formula are not really required for 
the derivation in the binomial model, but we need these concepts in Volume II 
and therefore develop them in the simpler discrete-time setting of Volume I . 
Chapter 3, State Prices, discusses the change of measure associated with risk
neutral pricing of European derivative securities, again as a warm-up exercise 
for change of measure in continuous-time models . An interesting application 
developed here is to solve the problem of optimal (in the sense of expected 
utility maximization) investment in a binomial model. The ideas of Chapters 
1 to 3 are essential to understanding the methodology of modern quantitative 
finance. They are developed again in Chapters 4 and 5 of Volume II .  

The remaining three chapters of Volume I treat more specialized con
cepts . Chapter 4, American Derivative Securities, considers derivative secu
rities whose owner can choose the exercise time. This topic is revisited in 
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a continuous-time context in Chapter 8 of Volume II . Chapter 5, Random 
Walk, explains the reflection principle for random walk. The analogous reflec
tion principle for Brownian motion plays a prominent role in the derivation of 
pricing formulas for exotic options in Chapter 7 of Volume II. Finally, Chap
ter 6, Interest-Rate-Dependent Assets, considers models with random interest 
rates, examining the difference between forward and futures prices and intro
ducing the concept of a forward measure. Forward and futures prices reappear 
at the end of Chapter 5 of Volume II. Forward measures for continuous-time 
models are developed in Chapter 9 of Volume II and used to create forward 
LIBOR models for interest rate movements in Chapter 10 of Volume II. 

Summary of Volume II 

Chapter 1 ,  General Probability Theory, and Chapter 2, Information and Con

ditioning, of Volume II lay the measure-theoretic foundation for probability 
theory required for a treatment of continuous-time models . Chapter 1 presents 
probability spaces , Lebesgue integrals , and change of measure. Independence, 
conditional expectations, and properties of conditional expectations are intro
duced in Chapter 2. These chapters are used extensively throughout the text , 
but some readers , especially those with exposure to probability theory, may 
choose to skip this material at the outset , referring to it as needed. 

Chapter 3, Brownian Motion, introduces Brownian motion and its proper
ties . The most important of these for stochastic calculus is quadratic variation, 
presented in Section 3.4. All of this material is needed in order to proceed, 
except Sections 3.6 and 3.7, which are used only in Chapter 7, Exotic Options 

and Chapter 8, Early Exercise. 
The core of Volume II is Chapter 4, Stochastic Calculus. Here the Ito 

integral is constructed and Ito's formula (called the It6-Doeblin formula in 
this text) is developed. Several consequences of the It6-Doeblin formula are 
worked out . One of these is the characterization of Brownian motion in terms 
of its quadratic variation (Levy's theorem) and another is the Black-Scholes 
equation for a European call price (called the Black-Scholes-Merton equation 
in this text) . The only material which the reader may omit is Section 4.7, 
Brownian Bridge. This topic is included because of its importance in Monte 
Carlo simulation, but it is not used elsewhere in the text . 

Chapter 5, Risk-Neutral Pricing, states and proves Girsanov's Theorem, 
which underlies change of measure. This permits a systematic treatment of 
risk-neutral pricing and the FUndamental Theorems of Asset Pricing (Section 
5.4) . Section 5 .5 ,  Dividend-Paying Stocks, is not used elsewhere in the text . 
Section 5.6, Forwards and Futures, appears later in Section 9.4 and in some 
exercises. 

Chapter 6, Connections with Partial Differential Equations, develops the 
connection between stochastic calculus and partial differential equations. This 
is used frequently in later chapters. 
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With the exceptions noted above, the material in Chapters 1--6 is fun
damental for quantitative finance is essential for reading the later chapters. 
After Chapter 6, the reader has choices. 

Chapter 7, Exotic Options, is not used in subsequent chapters, nor is Chap
ter 8, Early Exercise. Chapter 9, Change of Numeraire, plays an important 
role in Section 10.4, Forward LIBOR model, but is not otherwise used. Chapter 
10, Term Structure Models, and Chapter 11, Introduction to Jump Processes, 
are not used elsewhere in the text. 
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1 

General Probability Theory 

1 . 1  Infinite Probability Spaces 

An infinite probability space is used to model a situation in which a random 
experiment with infinitely many possible outcomes is conducted. For purposes 
of the following discussion, there are two such experiments to keep in mind: 
{i) choose a number from the unit interval [0 , 1 ) ,  and 
{ii) toss a coin infinitely many times. 

In each case, we need a sample space of possible outcomes. For {i) , our 
sample space will be simply the unit interval [0, 1] . A generic element of [0, 1] 
will be denoted by w, rather than the more natural choice x, because these 
elements are the possible outcomes of a random experiment. 

For case {ii) , we define 

il00 = the set of infinite sequences of H s and Ts. { 1 . 1 . 1) 

A generic element of il00 will be denoted w = w1w2 . . •  , where Wn indicates 
the result of the nth coin toss. 

The samples spaces listed above are not only infinite but are uncountably 
infinite (i .e. , it is not possible to list their elements in a sequence) . The first 
problem we face with an uncountably infinite sample space is that , for most 
interesting experiments, the probability of any particular outcome is zero. 
Consequently, we cannot determine the probability of a subset A of the sample 
space, a so-called event, by summing up the probabilities of the elements in 
A, as we did in equation (2.1.5) of Chapter 2 of Volume I. We must instead 
define the probabilities of events directly. But in infinite sample spaces there 
are infinitely many events . Even though we may understand well what random 
experiment we want to model, some of the events may have such complicated 
descriptions that it is not obvious what their probabilities should be. It would 
be hopeless to try to give a formula that determines the probability for every 
subset of an uncountably infinite sample space. We instead give a formula for 
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the probability of certain simple events and then appeal to the properties of 
probability measures to determine the probability of more complicated events. 
This prompts the following definitions, after which we describe the process of 
setting up the uniform probability measure on (0, 1) . 
Definition 1 .1 . 1 .  Let il be a nonempty set, and let .r be a collection of sub
sets of il. We say that .r is a u-algebra (called a u-field by some authors} 
provided that: 
(i} the empty set 0 belongs to .r, 
(ii} whenever a set A belongs to .r, its complement Ac also belongs to .r, and 
(iii} whenever a sequence of sets A1 , A2 , . . .  belongs to .r, their union U �=1An 

also belongs to .r. 
If we have a u-algebra of sets , then all the operations we might want to 

do to the sets will give us other sets in the u-algebra. If we have two sets A 
and B in a u-algebra, then by considering the sequence A, B, 0, 0, 0, . . .  , we 
can conclude from (i) and (iii) that A U  B must also be in the u-algebra. The 
same argument shows that if A1 , A2 , . . .  , AN are finitely many sets in a u
algebra, then their union must also be in the u-algebra. Finally, if A1 , A2 , . . .  
is a sequence of sets in a u-algebra, then because 

properties (ii) and (iii) applied to the right-hand side show that n�=1An is 
also in the u-algebra. Similarly, the intersection of a finite number of sets in 
a u-algebra results in a set in the u-algebra. Of course, if .r is a u-algebra, 
then the whole space n must be one of the sets in .r because n = 0c . 
Definition 1 . 1 .2. Let n be a nonempty set, and let .r be a u-algebra of sub
sets of n. A probability measure n» is a function that, to every set A E .r, 
assigns a number in (0, 1) ,  called the probability of A and written P(A) . We 
require: 
(i) P(il) = 1, and 
(ii} (countable additivity) whenever A1 , A2 , . . .  is a sequence of disjoint sets 

in .r, then 

P (Q
1 
An) = � P(An) · ( 1 . 1 .2) 

The triple (il, .r, P) is called a probability space . 
If n is a finite set and .r is the collection of all subsets of n, then .r is a 

u-algebra and Definition 1 . 1 .2 boils down to Definition 2 . 1 . 1  of Chapter 2 of 
Volume I. In the context of infinite probability spaces, we must take care that 
the definition of probability measure just given is consistent with our intuition. 
The countable additivity condition (ii) in Definition 1 . 1 .2 is designed to take 
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care of this. For example, we should be sure that JP(0) = 0. That follows from 
taking 

A1 = A2 = A3 = · · · = 0 
in (1 . 1 .2) , for then this equation becomes JP(0) = L::=11P(0) . The only number 
in (0, 1] that JP(0) could be is 

JP(0) = 0. ( 1 . 1 .3) 
We also still want (2. 1 .7) of Chapter 2 of Volume I to hold: if A and B are 
disjoint sets in :F, we want to have 

JP(A U B) = JP(A) + JP(B) .  ( 1 . 1 .4) 

Not only does Definition 1 . 1 .2(ii) guarantee this , it guarantees the finite ad
ditivity condition that if A1 , A2, ... , AN are finitely many disjoint sets in :F, 
then 

lP (Ql An) = t.JP(An) · ( 1 . 1 .5) 

To see this , apply ( 1 . 1 .2) with 

AN+
l = AN+2 = AN+3 = . . . = 0. 

In the special case that N = 2 and A1 = A, A2 = B, we get ( 1 . 1 .4) . From 
part (i) of Definition 1 . 1 .2 and ( 1 . 1 .4) with B = N, we get 

JP(Ac) = 1 -JP(A). ( 1 . 1 .6) 

In summary, from Definition 1 . 1 .2 , we conclude that a probability measure 
must satisfy ( 1 . 1 .3)-( 1 . 1 .6) . 

We now describe by example the process of construction of probability 
measures on uncountable sample spaces. We do this here for the spaces (0, 1] 
and fl00 with which we began this section. 
Example 1 . 1 . 3  (Uniform (Lebesgue} measure on [0, 1]). We construct a math
ematical model for choosing a number at random from the unit interval (0, 1] 
so that the probability is distributed uniformly over the interval . We define 
the probability of closed intervals [a, b] by the formula 

JP(a, b] = b - a, 0 � a � b � 1 ,  ( 1 . 1 .  7) 

(i.e. , the probability that the number chosen is between a and b is b - a) . 
(This particular probability measure on (0, 1] is called Lebesgue measure and 
in this text is sometimes denoted £. The Lebesgue measure of a subset of JR. 
is its "length." ) If b = a, then [a, b] is the set containing only the number a, 
and ( 1 . 1 . 7) says that the probability of this set is zero (i.e. , the probability is 
zero that the number we choose is exactly equal to a) . Because single points 
have zero probability, the probability of an open interval (a, b) is the same as 

the probability of the closed interval [a, b) ; we have 
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IP'( a, b) = b - a, 0 � a � b � 1 .  ( 1 . 1 .8) 

There are many other subsets of [0, 1] whose probability is determined by the 
formula ( 1 . 1 . 7) and the properties of probability measures. For example, the 
set [0, !J U [�, 1] is not an interval, but we know from ( 1 . 1 . 7) and ( 1 . 1 .4) that 
its probability is �-

It is natural to ask if there is some way to describe the collection of all 
sets whose probability is determined by formula ( 1 . 1 . 7) and the properties of 
probability measures. It turns out that this collection of sets is the a-algebra 
we get starting with the closed intervals and putting in everything else required 
in order to have a a-algebra. Since an open interval can be written as a union 
of a sequence of closed intervals, 

00 [ 1 1 ] (a, b) = l:J
I 

a + ;;, , b - ;;, , 

this a-algebra contains all open intervals . It must also contain the set [0, !J U 
[ �, 1 J , mentioned at the end of the preceding paragraph, and many other sets. 

The a-algebra obtained by beginning with closed intervals and adding 
everything else necessary in order to have a a-algebra is called the Borel a
algebra of subsets of [0 , 1] and is denoted B[O, 1] . The sets in this a-algebra 
are called Borel sets. These are the subsets of [0, 1] , the so-called events, 
whose probability is determined once we specify the probability of the closed 
intervals . Every subset of [0, 1] we encounter in this text is a Borel set , and this 
can be verified if desired by writing the set in terms of unions, intersections, 
and complements of sequences of closed intervals. I D 
Example 1 . 1 .4  (Infinite, independent coin-toss space) . We toss a coin infinitely 
many times and let floc of ( 1 . 1 . 1 )  denote the set of possible outcomes. We 
assume the probability of head on each toss is p > 0, the probability of tail is 
q = 1 - p > 0, and the different tosses are independent, a concept we define 
precisely in the next chapter. We want to construct a probability measure 
corresponding to this random experiment. 

We first define IP'(0) = 0 and IP'(fl) = 1. These 2(20) = 2 sets form a 
a-algebra, which we call :Fo : 

:Fo = {0, fl}. ( 1 . 1 .9) 

We next define IP' for the two sets 

AH = the set of all sequences beginning with H { w; WI = H} ,  
Ar = the set of all sequences beginning with T = { w ;  WI = T} , 

1 See Appendix A, Section A.l for the construction of the Cantor set, which gives 
some indication of how complicated sets in 8[0, 1] can be. 
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by setting IP'(AH) = p, IP'(Ar) = q. We have now defined IP' for 2(21 ) = 4 sets , 
and these four sets form a a-algebra; since Ali = Ar we do not need to add 
anything else in order to have a a-algebra. We call this a-algebra :Fi: 

:F1 = {0, !l, AH, Ar} . 

We next define IP' for the four sets 

by setting 

AH H = The set of all sequences beginning with H H 
= {w; w1 = H, w2 = H} ,  

AHr = The set o f  all sequences beginning with HT 
= {w; w1 = H, w2 = T} , 

ArH = The set of all sequences beginning with TH 
= {w; w1 = T, w2 = H} , 

Arr = The set of all sequences beginning with TT 
= {w; w1 = T, w2 = T} 

IP'(AHH) = p2 , IP'(AHr) = pq, IP'(ArH) = pq, IP'(Arr) = q2 • 

( 1 . 1 . 10) 

( 1 . 1 . 1 1 ) 

Because of ( 1 . 1 .6) , this determines the probability of the complements AIIH, 
AHT• ArH' Arr· Using ( 1 . 1 .5) ,  we see that the probabilities of the unions 
AHH U ArH, AHH U Arr, AHr U ArH, and AHr U Arr are also determined. 
We have already defined the probabilities of the two other pairwise unions 
AHH U AHr = AH and ArH U Arr = Ar. We have already noted that the 
probability of the triple unions is determined since these are complements of 
the sets in ( 1 . 1 . 1 1 ) ,  e.g. , 

AHH u AHr u ArH = Arr· 

At this point , we have determined the probability of 2(22 ) = 16 sets, and these 
sets form a a-algebra, which we call :F2 : 

;::2 = { 0, !l, AH, Ar, AHH, AHr, ArH, Arr, AIIH, AHr, ArH, Arr' } AHH U ArH, AHH U Arr, AHr U ArH, AHr U Arr · 
( 1 . 1 . 12) 

We next define the probability of every set that can be described in terms 
of the outcome of the first three coin tosses . Counting the sets we already 
have, this will give us 2(23) = 256 sets , and these will form a a-algebra, which 
we call :F3 . 

By continuing this process, we can define the probability of every set that 
can be described in terms of finitely many tosses. Once the probabilities of 
all these sets are specified, there are other sets, not describable in terms of 
finitely many coin tosses, whose probabilities are determined. For example, 



6 1 General Probability Theory 

the set containing only the single sequence H H H H . . . cannot be described 
in terms of finitely many coin tosses, but it is a subset of AH, AH H, AH H H, 
etc. Furthermore, 

and since these probabilities converge to zero, we must have 

IP'(Every toss results in head) = 0. 

Similarly, the single sequence HT HT HT . . .  , being the intersection of the sets 
AH, AHr, AHrH, etc. must have probability less than or equal to each of 

and hence must have probability zero. The same argument shows that every 
individual sequence in n>O has probability zero. 

We create a a-algebra, called :Fcx)) by putting in every set that can be 
described in terms of finitely many coin tosses and then adding all other sets 
required in order to have a a-algebra. It turns out that once we specify the 
probability of every set that can be described in terms of finitely many coin 
tosses, the probability of every set in :F00 is determined. There are sets in :F00 
whose probability, although determined, is not easily computed. For example, 
consider the set A of sequences w = w1w2 . . .  for which 

1. Hn(WI . . . Wn) 1 Im = - , n--too n 2 ( 1 . 1 . 13) 

where Hn(w1 . . .  wn) denotes the number of Hs in the first n tosses. In other 
words, A is the set of sequences of heads and tails for which the long-run 
average number of heads is � .  Because its description involves all the coin 
tosses, it was not defined directly at any stage of the process outlined above. 
On the other hand, it is in :F00 , and that means its probability is somehow 
determined by this process and the properties of probability measures. To see 
that A is in :F 00 , we fix positive integers m and n and define the set 

A - { . ,Hn(wl···wn)_�
, 

�
} n m - W, 2 :::; · ' n m 

This set is in :Fn , and once n and m are known, its probability is defined by 
the process outlined above. By the definition of limit , a coin-toss sequence 
w = w1w2 . . .  satisfies ( 1 . 1 . 13) if and only if for every positive integer m there 
exists a positive integer N such that for all n � N we have wE An,m· In other 
words, the set of w for which ( 1 . 1 . 13) holds is 

00 00 00 
A =  n U n An,m· 

m=l N=l n=N 
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The set A is in :F00 because it is described in terms of unions and intersections 
of sequences of sets that are in :F 00 • This does not immediately tell us how to 
compute IP'(A) , but it tells us that IP'(A) is somehow determined. As it turns 
out , the Strong Law of Large Numbers asserts that IP'(A) = 1 if p = ! and 
IP'(A) = 0 if p =I= ! · 

Every subset of il00 we shall encounter will be in :F00• Indeed, it is ex-
tremely difficult to produce a set not in :F00 , although such sets exist . 0 

The observation in Example 1 . 1 .4 that every individual sequence has prob
ability zero highlights a paradox in uncountable probability spaces. We would 
like to say that something that has probability zero cannot happen. In par
ticular, we would like to say that if we toss a coin infinitely many times, it 
cannot happen that we get a head on every toss (we are assuming here that 
the probability for head on each toss is p > 0 and q = 1 - p > 0) . It would 
be satisfying if events that have probability zero are sure not to happen and 
events that have probability one are sure to happen. In particular, we would 
like to say that we are sure to get at least one tail . However, because the 
sequence that is all heads is in our sample space, and is no less likely to hap
pen than any other particular sequence (every single sequence has probability 
zero) , mathematicians have created a terminology that equivocates. We say 
that we will get at least one tail almost surely. Whenever an event is said to be 
almost sure, we mean it has probability one, even though it may not include 
every possible outcome. The outcome or set of outcomes not included, taken 
all together, has probability zero. 

Definition 1.1.5. Let (il, :F, IP') be a probability space. If a set A E :F satisfies 
IP'(A) = 1 ,  we say that the event A occurs almost surely . 

1 .2 Random Variables and Distributions 

Definition 1 .2 .1 .  Let (il, :F, IP') be a probability space. A random variable is 
a real-valued function X defined on {l with the property that for every Borel 
subset B of JR., the subset of il given by 

{X E B} = {w E  il; X(w) E B} ( 1 .2 . 1 ) 

is in the a-algebm :F. (We sometimes also permit a mndom variable to take 
the values +oo and -oo.) 

To get the Borel subsets of JR., one begins with the closed intervals [a, b] C JR. 
and adds all other sets that are necessary in order to have a a-algebra. This 
means that unions of sequences of closed intervals are Borel sets. In particular, 
every open interval is a Borel set, because an open interval can be written 
as the union of a sequence of closed intervals . Furthermore, every open set 
(whether or not an interval) is a Borel set because every open set is the union 
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of a sequence of open intervals . Every closed set is a Borel set because it is 
the complement of an open set . We denote the collection of Borel subsets of lR 
by B(IR) and call it the Borel u-algebm ofR Every subset of lR we encounter 
in this text is in this a-algebra. 

A random variable X is a numerical quantity whose value is determined 
by the random experiment of choosing w E il. We shall be interested in the 
probability that X takes various values. It is often the case that the probability 
that X takes a particular value is zero, and hence we shall mostly talk about 
the probability that X takes a value in some set rather than the probability 
that X takes a particular value. In other words, we will want to speak of 
JP{X E B} . Definition 1 .2 . 1  requires that {X E B} be in :F for all BE B(IR), 
so that we are sure the probability of this set is defined. 
Example 1 . 2. 2  (Stock prices). Recall the independent, infinite coin-toss space 
( il00 , :F 00 , JP) of Example 1 . 1 .4. Let us define stock prices by the formulas 

and, in general, 

So (w) = 4 for all wE il00 , 

SI (w) = { 8 �f wi = H, 
2 If WI = T, { 16 if WI = W2 = H, 

S2 (w) = 4 if WI =/- w2 , 
1 if WI = W2 = T, 

S ( ) _ { 2Sn(w) if Wn+l = H, n+I w - I S ( ) " f  - T 2 n W 1 Wn+I - . 
All of these are random variables. They assign a numerical value to each pos
sible sequence of coin tosses . FUrthermore, we can compute the probabilities 
that these random variables take various values. For example, in the notation 
of Example 1 . 1 .4, 

0 

In the previous example, the random variables So , S1 ,  S2 , etc . ,  have dis
tributions. Indeed, So = 4 with probability one, so we can regard this random 
variable as putting a unit of mass on the number 4. On the other hand, 
JP{S2 = 16} = p2 , JP{S2 = 4} = 2pq, and JP{S2 = 1 } = q2 • We can think of 
the distribution of this random variable as three lumps of mass, one of size p2 
located at the number 16, another of size 2pq located at the number 4, and a 
third of size q2 located at the number 1 .  We need to allow for the possibility 
that the random variables we consider don't assign any lumps of mass but 
rather spread a unit of mass "continuously" over the real line. To do this, we 
should think of the distribution of a random variable as telling us how much 
mass is in a set rather than how much mass is at a point . In other words, the 
distribution of a random variable is itself a probability measure, but it is a 
measure on subsets of lR rather than subsets of il. 
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lP'{X E B} = p.x (B) 

Fig. 1 .2 .1 .  Distribution measure of X. 

Definition 1.2.3. Let X be a mndom variable on a probability space (il, .r, IP') . 
The distribution measure of X is the probability measure J.Lx that assigns to 
each Borel subset B of iR the mass J.Lx (B) = IP'{X E B} (see Figure 1 .2. 1}. 

In this definition, the set B could contain a single number. For example, 
if B = {4} , then in Example 1 .2 .2 we would have J.Ls2 (B) = 2pq. If B = 
[2, 5] , we still have J.Ls2 (B) = 2pq, because the only mass that S2 puts in the 
interval [2, 5] is the lump of mass placed at the number 4. Definition 1 .2 .3 
for the distribution measure of a random variable makes sense for discrete 
random variables as well as for random variables that spread a unit of mass 
"continuously" over the real line. 

Random variables have distributions, but distributions and random vari
ables are different concepts. Two different random variables can have the same 
distribution. A single random variable can have two different distributions. 
Consider the following example. 

Example 1 . 2.4 .  Let lP' be the uniform measure on [0, 1] described in Exam
ple 1 . 1 .3. Define X(w) = w and Y(w) = 1 - w for all w E [0, 1] . Then the 
distribution measure of X is uniform, i .e . , 

J.Lx [a, b] = IP'{w; a � X(w) � b} = IP'[a, b] = b - a, 0 � a �  b � 1 , 

by the definition of IP'. Although the random variable Y is different from the 
random variable X (if X takes the value l ,  Y takes the value �) , Y has the 
same distribution as X: 

J.Ly [a, b] = IP'{w; a  � Y(w) � b} = IP'{w; a � 1 - w � b} = IP'[1 - b, 1 - a] 
= (1 - a) - (1 - b) = b - a = J.Lx [a, b] , 0 � a �  b � 1 .  

Now suppose we define another probability measure P on [0, 1 ]  by specify
ing jb - 2 2 IP'[a, b] = a 2w dw = b - a , O � a � b � l . ( 1 .2 .2) 
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Equation ( 1 .2 .2) and the properties of probability measures determine JP(B ) 
for every Borel subset B of R Note that JP[O, 1) = 1 , so Jii> is in fact a prob
ability measure. Under Jii>, the random variable X no longer has the uniform 
distribution. Denoting the distribution measure of X under lP by iix , we have 

iix [a, b] = P{w; a � X(w) � b} = JP[a, b) = b2 - a2 , 0 � a �  b � 1 .  

Under Jii>, the distribution of  Y no longer agrees with the distribution of  X. 
We have 

jiy [a, b] = JP{w; a �  Y(w) � b} = JP{w; a �  1 - w � b} = JP[1 - b, 1 - a] 
= ( 1 - a)2 - (1 - b)2 , 0 � a � b � 1 .  0 

There are other ways to record the distribution of a random variable rather 
than specifying the distribution measure J.Lx . We can describe the distribution 
of a random variable in terms of its cumulative distribution function ( cdf) 

F(x) = lP{X � x}, x E R  ( 1 .2 .3) 
If we know the distribution measure J.Lx , then we know the cdf F because 
F(x) = J.Lx ( -oo, x] . On the other hand, if we know the cdf F, then we can 
compute J.Lx (x, y] = F(y) - F(x) for x < y. For a �  b, we have 

00 

[a, b] = n (a - � , b] ' 
n= l  

and so we can compute2 

J.Lx [a, b] = lim J.Lx (a - l. ,  b] = F(b) - lim F(a - 1. ) .  n-too n n-too n ( 1 .2.4) 
Once the distribution measure J.Lx [a, b] is known for every interval [a, b] C JR., it 
is determined for every Borel subset of R Therefore, in principle, knowing the 
cdf F for a random variable is the same as knowing its distribution measure 
/LX · 

In two special cases, the distribution of a random variable can be recorded 
in more detail. The first of these is when there is a density function f(x) ,  a 
nonnegative function defined for x E JR. such that 

J.Lx [a, b] = JP{a � X �  b} = 1b f(x) dx, -oo < a �  b < oo. (1 .2 .5) 

In particular, because the closed intervals [-n, n] have union JR., we must have3 

2 See Appendix A, Theorem A.l . 1 (ii) for more detail. 
3 See Appendix A, Theorem A.l . 1 (i) for more detail. 
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f�oo f(x) dx = limn-too f�n f(x) dx = limn-too IP'{ -n ::; X ::; n} 
= IP'{ X E lR} = IP'( !2) = 1 .  ( 1 .2 .6) 

(For purposes of this discussion, we are not considering random variables that 
can take the value ±oo. ) 

The second special case is that of a probability mass function, in which 
case there is either a finite sequence of numbers x1 ,  x2 , . . .  , x N or an infinite 
sequence x1 ,  x2 , . . .  such that with probability one the random variable X 
takes one of the values in the sequence. We then define Pi = IP'{X = xi }· Each 
Pi is nonnegative, and Li Pi = 1 .  The mass assigned to a Borel set B C lR by 
the distribution measure of X is 

JLx (B) = L Pi , B E  B(JR) . ( 1 . 2.7) 
{i ;x;EB} 

The distribution of some random variables can be described via a density, 
as in (1 .2 .5 ) .  For other random variables, the distribution must be described in 
terms of a probability mass function, as in ( 1 .2 .7) .  There are random variables 
whose distribution is given by a mixture of a density and a probability mass 
function, and there are random variables whose distribution has no lumps of 
mass but neither does it have a density.4 Random variables of this last type 
have applications in finance but only at a level more advanced than this part 
of the text . 
Example 1 .2. 5. (Another mndom variable uniformly distributed on {0, 1].} We 
construct a uniformly distributed random variable taking values in [0, 1] and 
defined on infinite coin-toss space !200• Suppose in the independent coin-toss 
space of Example 1 . 1 .4 that the probability for head on each toss is p = � . 
For n = 1 , 2, . . .  , we define 

( 1 .2 .8) 

We set 
X = f �: -n=l 

lfY1 = 0, which happens with probability � ' then 0 ::;  X ::;  � . lf Y1 = 1 , which 
also happens with probability � , then � ::; X ::; 1 .  If Y1 = 0 and Y2 = 0, which 
happens with probability .! , then 0 ::; X ::; � .  If Y1 = 0 and Y2 = 1 ,  which also 
happens with probability � ,  then � ::; X ::; � . This pattern continues; indeed 
for any interval [ 2';. , WJ c [0, 1] ,  the probability that the interval contains X 
is 2� . In terms of the distribution measure JLx of X, we write this fact as [ k  k + 1 ] 1 JLx � '  � = 2n whenever k and n are integers and 0 ::; k ::;  2n - 1 .  

4 S ee  Appendix A ,  Section A.3.  
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Taking unions of intervals of this form and using the finite additivity of 
probability measures, we see that whenever k, m, and n are integers and 
0 � k � m � 2n , we have [ k m ] m k /LX 2n ' 2n = 2n - 2n . 

From ( 1 .2.9) , one can show that 

/LX [a, b] = b - a, 0 � a � b � 1 ;  

in other words, the distribution measure of X i s  uniform on [0, 1) . 
Example 1 .2. 6  (Standard normal random variable}. Let 

1 � cp(x) = tn= e - 2 
y 27r 

( 1 .2 .9) 

be the standard normal density, and define the cumulative normal distribution 
function 

The function N(x) is strictly increasing, mapping JR. onto (0, 1 ) , and so has a 
strictly increasing inverse function N-1 (y) .  In other words, N(N- 1 (y) )  = y 
for all y E (0, 1 ) . Now let Y be a uniformly distributed random variable, 
defined on some probability space (.!?, F, IP') (two possibilities for (.!?, F, IP') 
and Y are presented in Examples 1 .2.4 and 1 .2 .5) , and set X = N-1 (Y) . 
Whenever -oo < a �  b < oo, we have 

fLx [a, b] = IP'{w E .!?; a � X(w) � b} 
= IP'{w E .!?; a �  N-1 (Y(w) )  � b} 
= IP'{w E .!?; N(a) � N(N- 1 (Y(w) ) )  � N(b) }  
= IP'{w E .!?; N(a) � Y(w) � N(b) }  
= N(b) - N(a) 

= 1b cp (x) dx. 

The measure /LX on JR. given by this formula is called the standard normal 
distnbution. Any random variable that has this distribution, regardless of the 
probability space ( .!t, F, IP') on which it is defined, is called a standard normal 
random variable. The method used here for generating a standard normal 
random variable from a uniformly distributed random variable is called the 
probability integral transform and is widely used in Monte Carlo simulation. 

Another way to construct a standard normal random variable is to take 
.!t = JR., F = B(IR.) , take IP' to be the probability measure on JR. that satisfies 
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IP'[a, b] = 1b cp(x) dx whenever - oo < a �  b < oo, 

and take X(w) = w for all w E JR.. D 
The second construction of a standard normal random variable in Example 

1.2.6 is economical, and this method can be used to construct a random vari
able with any desired distribution. However, it is not useful when we want to 
have multiple random variables, each with a specified distribution and with 
certain dependencies among the random variables. For such cases, we con
struct (or at least assume there exists) a single probability space (.a, .r, IP') on 
which all the random variables of interest are defined. This point of view may 
seem overly abstract at the outset, but in the end it pays off handsomely in 
conceptual simplicity. 

1.3 Expectations 

Let X be a random variable defined on a probability space (.a, .r, IP') . We would 
like to compute an "average value" of X, where we take the probabilities into 
account when doing the averaging. If .a is finite, we simply define this average 
value by 

lEX = L X(w)IP'(w) . 
wE n 

If .a is countably infinite, its elements can be listed in a sequence WI , w2 , w3 , . . .  , 
and we can define lEX as an infinite sum: 

00 

lEX = L X(wk)IP'(wk ) · 
k=I 

Difficulty arises, however, if .a is uncountably infinite. Uncountable sums can
not be defined. Instead, we must think in terms of integrals. 

To see how to go about this , we first review the Riemann integral. If f(x) is 
a continuous function defined for all x in the closed interval [a, b] , we define the 
Riemann integral J: f(x)dx as follows. First partition [a, b] into subintervals 
[xo , XI ] ,  [x1 , x2] ,  . . .  , [xn- I , Xn] ,  where a = xo < XI < · · · < Xn = b. We denote 
by II =  {xo , XI , . . .  , Xn } the set of partition points and by 

the length of the longest subinterval in the partition. For each subinterval 
[xk- I , xk] ,  we set Mk = maxxk_ 1 ::;x::;xk f(x) and mk = minxk_ 1 ::;x::;xk f(x) . 
The upper Riemann sum is 

n 
RSjj (f) = L Mk (Xk - Xk- I ) ,  

k= I 
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and the lower Riemann sum (see Figure 1 .3 . 1 )  is 
n 

RS]j (f) = L mk (xk - Xk-d · k=l 
As 1 111 1 1  converges to zero (i.e. , as we put in more and more partition points, 
and the subintervals in the partition become shorter and shorter) , the upper 
Riemann sum RSjj (!) and the lower Riemann sum RS]j (f) converge to the 
same limit , which we call J: f (x)dx. This is the Riemann integral. 

y 

y = f(x) 

X 
Fig. 1 .3 .1 .  Lower Riemann sum. 

The problem we have with imitating this procedure to define expectation is 
that the random variable X, unlike the function f in the previous paragraph, 
is a function of w E il, and {l is often not a subset of JR. In Figure 1 .3.2 
the "x-axis" is not the real numbers but some abstract space il. There is no 
natural way to partition the set {l as we partitioned [a, b] above. Therefore, we 
partition instead the y-axis in Figure 1 .3 .2 . To see how this goes, assume for 
the moment that 0 :::; X(w) < oo for every w E  il, and let 11 = {yo ,  Yl l Y2 , . . .  } ,  
where 0 = Yo < Y1 < Y2 < . . . .  For each subinterval [yk , Yk+l ] ,  we set 

We define the lower Lebesgue sum to be (see Figure 1 .3.2) 
00 

LS]j (X) = LYk lP(Ak ) · k=l 
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This lower sum converges as I III I I , the maximal distance between the Yk par
tition points, approaches zero, and we define this limit to be the Lebesgue 
integral In X(w) dlP(w) ,  or simply In X diP. The Lebesgue integral might be 
oo, because we have not made any assumptions about how large the values of 
X can be. 

We assumed a moment ago that 0 � X(w) < oo for every w E  il. If the 
set of w that violates this condition has zero probability, there is no effect on 
the integral we just defined. lf !P'{w; X(w) ;:::: 0} = 1 but IP'{w; X(w) = oo} > 0, 
then we define In X(w)dlP(w) = oo. 

y 

Ys - - - - - - - - - - - -

Y3 

Y2 

Yt 

Yo = 0 

Fig. 1 .3 .2 .  Lower Lebesgue sum. 

Finally, we need to consider random variables X that can take both pos
itive and negative values. For such a random variable, we define the positive 
and negative parts of X by 

x+ (w) = max{X(w) , O} ,  x- (w) = max{-X(w) , O} . ( 1 .3 . 1 )  

Both x+ and x- are nonnegative random variables, X = x+ - x- , and 
lX I  = x+ + x- . Both In x+ (w) dlP(w) and In x- (w) dlP(w) are defined by 
the procedure described above, and provided they are not both oo, we can 
define 

l X(w) dlP(w) = l x+ (w) dlP(w) - l  x- (w) dlP(w) .  ( 1 .3.2) 

�f In X+ (w) dlP(w) and In X- (w) dlP(w) are both finite, we say that X is 
tntegrable, and In X(w) dlP(w) is also finite. If In x+ (w) dlP(w) = 00 and 
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In X- (w) diP'(w) is finite, then In X(w) diP'(w) = oo. If In X+ (w) diP'(w) 
is finite and In x- (w) d!P'(w) = oo, then In X(w) d!P'(w) = -00. If both 
In X+ (w) diP'(w) = oo and In X- (w) diP'(w) = oo, then an "oo - oo" situa
tion arises in ( 1 .3.2) , and In X(w) d!P'(w) is not defined. 

The Lebesgue integral has the following basic properties. 
Theorem 1 .3 .1 .  Let X be a random variable on a probability space (il, .1', JP) . 
{i) If X takes only finitely many values Yo , Yt . Y2 , . . .  , Yn , then 

(ii} (Integrability) The random variable X is integrable if and only if 

fn iX (w) i d!P'(w) < oo. 

Now let Y be another random variable on (il, .1', 1P) . 
{iii} (Comparison) If X :S Y almost surely (i. e . , JP{X :S Y} = 1}, and if 

In X(w) d!P'(w) and In Y(w) d!P'(w) are defined, then 

l X(w) d!P'(w) :S l Y(w) d!P'(w) . 

In particular, if X = Y almost surely and one of the integrals is defined, 
then they are both defined and l X(w) d!P'(w) = l Y(w) d!P'(w) . 

{iv} (Linearity) If a and {3 are real constants and X and Y are integrable, or 
if a and {3 are nonnegative constants and X and Y are nonnegative, then l (aX(w) + {JY(w)) d!P'(w) = a l X(w) d!P'(w) + {Jl Y(w) d!P'(w) . 

PARTIAL PROOF:  For (i) , we consider only the case when X is almost surely 
nonnegative. If zero is not among the YkS, we may add Yo = 0 to the list and 
then relabel the YkS if necessary so that 0 = Yo < Y1 < Y2 < · · · < Yn · Using 
these as our partition points, we have Ak = {Yk :S X < Yk+ l } = {X = Yk } 
and the lower Lebesgue sum is 

n 
LSJ7 (X) = L YklP{X = Yk} · 

k=O 
If we put in more partition points, the lower Lebesgue sum does not change, 
and hence this is also the Lebesgue integral. 
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We next consider part (iii) . I f  X � Y almost surely, then x+ � y+ and 
x- � y- almost surely. Because x+ � y+ almost surely, for every partition 
II, the lower Lebesgue sums satisfy LS.U (X+ ) � LS.U (Y+ ) ,  so l x+ (w) dlP'(w) � l y+ (w) dlP'(w) . ( 1 .3.3) 

Because x- � y- almost surely, we also have l x- (w) dlP'(w) � l y- (w) dlP'(w) . ( 1 .3.4) 

Subtracting ( 1 .3.4) from ( 1 .3 .3) and recalling the definition ( 1 .3.2) , we obtain 
the comparison property (iii) . 

The linearity property (iv) requires a more detailed analysis of the con
struction of Lebesgue integrals. We do not provide that here. 

We can use the comparison property (iii) and the linearity property (iv) 
to prove (ii) as follows. Because lX I = x+ + x- , we have x+ � lX I and 
x- � lX I . If In IX(w) l dlP'(w) < oo, then the comparison property implies 
In X+ (w) dlP'(w) < oo and In X- (w) dlP'(w) < oo, and X is integrable by 
definition. On the other hand, if X is integrable, then In x+ (w) dlP'(w) < 00 
and In x- (w) dlP'(w) < oo. Adding these two quantities and using (iv) , we see 
that In IX(w) l dlP'(w) < oo. D 

Remark 1 . 3. 2. We often want to integrate a random variable X over a subset 
A of {l rather than over all of il. For this reason, we define 

i X(w) dlP'(w) = l HA (w)X(w) dlP'(w) for all A E F, 

Where HA is the indicator junction {random variable} given by 

n ( ) = { 1 if w E A, A w 0 if w ¢ A. 

If A and B are disjoint sets in F, then nA + nB = nAuB and the linearity 
property (iv) of Theorem 1 .3 . 1 implies that 

[ X(w) dlP'(w) = [ X(w) dlP'(w) + [ X(w) dlP'(w) . 
lAuB jA JB 

Definition 1 .3.3. Let X be a random variable on a probability space ( {l, F, IP) . 
The expectation (or expected value) of X is defined to be 

lEX = l X(w) dlP'(w) .  

This definition makes sense if X is integrable, i. e. ; if 
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lEIX I = In IX (w) i dlP(w) < oo 

or if X �  0 almost surely. In the latter case, lEX might be oo . 
We have thus managed to define lEX when X is a random variable on an 

abstract probability space (n, .r, P) .  We restate in terms of expected values 
the basic properties of Theorem 1 .3 . 1  and add an additional one. 

Theorem 1 .3.4. Let X be a random variable on a probability space (n, .r, P) .  
{i} If X takes only finitely many values xo ,  Xt . . . .  , Xn , then 

n 
lEX = L XkP{X = xk } . 

k=O 
In particular, if n is finite, then 

lEX = L X(w)P(w) . 
wen 

{ii} (Integrability) The random variable X is integrable if and only if 

JEIX I < oo. 
Now let Y be another random variable on (n, .r, P) .  
{iii} (Comparison) If X � Y almost surely and X and Y are integrable or 

almost surely nonnegative, then 

lEX � lEY. 

In particular, if X = Y almost surely and one of the random variables is 
integrable or almost surely nonnegative, then they are both integrable or 
almost surely nonnegative, respectively, and 

lEX = lEY. 

{iv) (Linearity) If a and {3 are real constants and X and Y  are integrable or 
if a and {3 are nonnegative constants and X and Y are nonnegative, then 

E( aX + {3Y) = alEX + {3JEY. 

(v) (Jensen's inequality) If r.p is a convex, real-valued function defined on 
JR., and if lEI X I < oo, then 

r.p(JEX) � JEr.p(X) .  

PROOF: The only new claim is Jensen's inequality, and the proof of that is 
the same as the proof given for Theorem 2.2 .5 of Chapter 2 of Volume I. D 
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Example 1 . 3. 5. Consider the infinite independent coin-toss space floc of Ex
ample 1 . 1 .4 with the probability measure IP' that corresponds to probability � 
for head on each toss . Let 

Yn (w) = { 1 �f Wn = H, 
0 If Wn = T. 

Even though the probability space floc is uncountable, this random variable 
takes only two values, and we can compute its expectation using Theorem 
1.3 .4(i) : 

1 lEYn = 1 · 1P'{Yn = 1 } + 0 · IP'{Yn = 0} = 2 " 
Example 1 . 3. 6. Let fl = [0, 1] , and let IP' be the Lebesgue measure on [0, 1] 
(see Example 1 . 1 .3) . Consider the random variable 

X(w) = { 1 �f w �s irr�tional, 
0 If w IS rational. 

Again the random variable takes only two values, and we can compute its 
expectation using Theorem 1 .3.4(i) : 

lEX = 1 · IP'{w E [0, 1] ; w is irrational} + 0 · IP'{w E [0, 1] ; w is rational} .  

There are only countably many rational numbers in [0, 1 ]  (i.e. , they can all 
be listed in a sequence XI > x2 , x3 , . . .  ) .  Each number in the sequence has 
probability zero, and because of the countable additivity property (ii) of 
Definition 1 . 1 .2, the whole sequence must have probability zero. Therefore, 
IP'{w E [0, 1] ; w  is rational} = 0. Since IP'[O, 1] = 1 , the probability of the set of 
irrational numbers in [0, 1] must be 1 .  We conclude that lEX = 1 .  

The idea behind this example is that i f  we choose a number from [0, 1] 
according to the uniform distribution, then with probability one the number 
chosen will be irrational. Therefore, the random variable X is almost surely 
equal to 1 , and hence its expected value equals 1 .  As a practical matter, 
of course, almost any algorithm we devise for generating a random number 
in [0, 1] will generate a rational number. The uniform distribution is often 
a reasonable idealization of the output of algorithms that generate random 
numbers in [0, 1] , but if we push the model too far it can depart from reality. 

If we had been working with Riemann rather than Lebesgue integrals, we 
would have gotten a different result . To make the notation more familiar, we 
write x rather than w and f(x) rather than X(w) , thus defining 

f(x) = { 1 �f x �s irr�tional, 
0 If X IS ratiOnal. ( 1 .3.5) 

We have just seen that the Lebesgue integral of this function over the interval 
[0, 1] is 1 .  
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To construct the Riemann integral, we choose partition points 0 = xo < 
x1 < x2 < · · · < Xn = 1 .  We define 

But each interval [xk_ 1 , xk ] contains both rational and irrational numbers, so 
Mk = 1 and mk = 0. Therefore, for this partition II =  {xo , xb . . .  , xn } ,  the 
upper Riemann sum is 1 , 

n n 
RS1J (!) = L Mk(Xk - Xk-1 ) = ,L:(xk - Xk- 1 ) = 1 , 

k=1 k=1 
whereas the lower Riemann sum is zero, 

n 
RS[j (f) = L mk(Xk - Xk- 1 ) = 0. 

k=1 
This happens no matter how small we take the subintervals in the partition. 
Since the upper Riemann sum is always 1 and the lower Riemann sum is 
always 0, the upper and lower Riemann sums do not converge to the same 
limit and the Riemann integral is not defined. For the Riemann integral, which 
discretizes the x-axis rather than the y-axis, this function is too discontinuous 
to handle. The Lebesgue integral, however, which discretizes the y-axis, sees 
this as a simple function taking only two values . 0 

We constructed the Lebesgue integral because we wanted to integrate over 
abstract probability spaces ( .n, F, lP') , but as Example 1 .3 .6 shows, after this 
construction we can take .n to be a subset of the real numbers and then 
compare Lebesgue and Riemann integrals. This example further shows that 
these two integrals can give different results. Fortunately, the behavior in 
Example 1 .3 .6 is the worst that can happen. To make this statement precise, 
we first extend the construction of the Lebesgue integral to all of IR, rather 
than just [0, 1] . 
Definition 1 .3 .  7. Let B(IR) be the u-algebm of Borel subsets of lR {i. e. , the 
smallest u-algebm containing all the closed intervals [a, b]J .5 The Lebesgue 
measure on IR, which we denote by C, assigns to each set B E B(IR) a number 
in [0, oo) or the value oo so that 
{i} C [a, b] = b - a whenever a :::; b, and 
{ii} if B1 , B2 , B3 , . . .  is a sequence of disjoint sets in B(IR) , then we have the 

countable additivity property 

5 This concept is discussed in more detail in Appendix A, Section A.2.  
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Definition 1 .3 .7 is similar to Definition 1 . 1 .2 , except that now some sets 
have measure greater than 1 .  The Lebesgue measure of every interval is its 
length, so that JR. and half-lines [a, oo) and ( -oo, b] have infinite Lebesgue 
measure, single points have Lebesgue measure zero, and the Lebesgue measure 
of the empty set is zero. Lebesgue measure has the finite additivity property 
(see ( 1 . 1 .5) ) 

whenever B1 , B2 , . . .  , BN are disjoint Borel subsets of R 
Now let f(x) be a real-valued function defined on JR.. For the following 

construction, we need to assume that for every Borel subset B of JR., the 
set {x; f(x) E B} is also a Borel subset of JR.. A function f with this prop
erty is said to be Borel measurable. Every continuous and piecewise contin
uous function is Borel measurable. Indeed, it is extremely difficult to find a 
function that is not Borel measurable. We wish to define the Lebesgue inte
gral fiR f(x) d.C.(x) of f over R To do this , we assume for the moment that 
0 � f(x) < oo for every x E R We choose a partition II =  {yo , Y� > y2 , . . .  } ,  
where 0 = Yo < Y1 < Y2 < . . . . For each subinterval [yk , Yk+ I ) , we define 

Because of the assumption that f is Borel measurable, even though these 
sets Bk can be quite complicated, they are Borel subsets of JR. and so their 
Lebesgue measures are defined. We define the lower Lebesgue sum 

00 

LS[i (f) = L Yk.C.(Bk ) .  
k= l 

As 1 1111 1  converges to zero, these lower Lebesgue sums will converge to a limit , 
which we define to be fiR f(x) d.C.(x) . It is possible that this integral gives the 
value oo. 

We assumed a moment ago that 0 � f(x) < oo for every x E R If the set 
of x where the condition is violated has zero Lebesgue measure, the integral 
of f is not affected. If .C.{x E JR.; f(x) < 0} = 0 and .C.{x E JR.; f(x) = oo} > 0, 
we define fiR f(x)d.C.(x) = oo. 

We next consider the possibility that f(x) takes both positive and negative 
values. In this case, we define 

j+ (x) = max{!(x) , O} , f- (x) = max{-f(x) , O} . 

Because J+ and f- are nonnegative, fiR J+ (x) d.C.(x) and fiR f- (x) d.C.(x) are 
defined by the procedure described above. We then define 

1 f(x) d.C.(x) = 1 J+ (x) d.C.(x) - 1  r (x) d.C.(x) , 
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provided this is not oo - oo . In the case where both IR J+ (x) d.C(x) and 
IR J- (x) d.C(x) are infinite, IR J(x) d.C(x) is not defined. If IR J+ (x) d.C(x) 
and IR f- ( x) d.C( x) are finite, we say that f is integmble. This is equivalent to 
the condition IIR 1/(x) l d.C(x) < oo. The Lebesgue integral just constructed has 
the comparison and linearity properties described in Theorem 1 .3. 1 .  Moreover, 
if f takes only finitely many values Yo, YI . Y2 , . . .  , Yn • then 

1 f(x) d.C(x) = t yk .C{x E IR; f(x) = Yk } , 
R k=O 

provided the computation of the right-hand side does not require that oo - oo 
be assigned a value. 

Finally, sometimes we have a function f(x) defined for every x E lR but 
want to compute its Lebesgue integral over only part of IR, say over some set 
B E  B(IR) . We do this by multiplying f(x) by the indicator function of B: 

li ( ) = { 1 if X E B, B X 0 if X � B.  

The product f(x)liB (x) agrees with f(x) when x E B and i s  zero when x � B. 
We define L f(x) d.C(x) = l liB (x)f(x) d.C(x) . 

The following theorem, whose proof is beyond the scope of this book, 
relates Riemann and Lebesgue integrals on JR. 
Theorem 1.3.8. (Comparison of Riemann and Lebesgue integrals) .  
Let f be a bounded function defined on IR ,  and let a < b be numbers. 

(i) The Riemann integml I: f(x)dx is defined (i. e . ,  the lower and upper Rie
mann sums converge to the same limit) if and only if the set of points x 
in [a , b] where f(x) is not continuous has Lebesgue measure zero. 

(ii} If the Riemann integml I: f(x)dx is defined, then f is Borel measumble 
(so the Lebesgue integml I[a,b) f(x) d.C(x) is also defined}, and the Rie
mann and Lebesgue integmls agree. 

A single point in lR has Lebesgue measure zero, and so any finite set of 
points has Lebesgue measure zero. Theorem 1.3 .8 guarantees that if we have a 
real-valued function f on lR that is continuous except at finitely many points, 
then there will be no difference between Riemann and Lebesgue integrals of 
this function. 

Definition 1 .3.9. If the set of numbers in lR that fail to have some property 
is a set with Lebesgue measure zero, we say that the property holds almost 
everywhere . 

Theorem 1.3.8(i) may be restated as: 
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The Riemann integral I: f(x)dx exists if and only if f(x) is almost 
everywhere continuous on [a, b] . 
Because the Riemann and Lebesgue integrals agree whenever the Riemann 

integral is defined, we shall use the more familiar notation I: f(x) dx to denote 
the Lebesgue integral rather than I[a ,b) f(x) d£(x) . If the set B over which we 
wish to integrate is not an interval, we shall write I8 f(x) dx. When we are 
developing theory, we shall understand I8 f(x) dx to be a Lebesgue integral; 
when we need to compute, we will use techniques learned in calculus for 
computing Riemann integrals. 

1.4 Convergence of Integrals 

There are several w.ays a sequence of random variables can converge. In this 
section, we consider the case of convergence almost surely, defined as follows. 

Definition 1 .4.1 .  Let XI , x2 , X3 , 0 0 0 be a sequence of random variables, all 
defined on the same probability space ( il, .1", IP') . Let X be another random 
variable defined on this space. We say that X I ,  X 2 , X 3 , . . . converges to X 
almost surely and write 

lim Xn = X  almost surely n-+oo 
if the set ofw E il for which the sequence of numbers XI (w) ,  X2 (w) ,  X3 (w) , . . .  
has limit X(w) is a set with probability one. Equivalently, the set ofw E il for 
which the sequence of numbers XI (w) , X2 (w) , X3 (w) , . . .  does not converge to 
X(w) is a set with probability zero. 

Example 1 .4 .2  {Strong Law of Large Numbers) . An intuitively appealing case 
of almost sure convergence is the Strong Law of Large Numbers. On the infi
nite independent coin-toss space .!200 , with the probability measure chosen to 
correspond to probability p = � of head on each toss, we define 

and 

Yk (w) = { 1 �f Wk = H, 
0 If Wk = T, 

k=I 
so that Hn is the number of heads obtained in the first n tosses. The Strong 
Law of Large Numbers is a theorem that asserts that 

Hn 1 lim - = - almost surely. n-+oo n 2 
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In other words , the ratio of the number of heads to the number of tosses 
approaches � almost surely. The "almost surely" in this assertion acknowl
edges the fact that there are sequences of tosses, such as the sequence of all 
heads, for which the ratio does not converge to � .  We shall ultimately see 
that there are in fact uncountably many such sequences. However, under our 
assumptions that the probability of head on each toss is � and the tosses are 
independent , the probability of all these sequences taken together is zero. 0 

Definition 1 .4.3. Let h , /2, fa, . . .  be a sequence of real-valued, Borel-measur
able functions defined on JR. Let f be another real-valued, Borel-measurable 
function defined on R We say that h , /2, fa, . . .  converges to f almost every
where and write 

lim f n = f almost everywhere n-+oo 
if the set of x E lR for which the sequence of numbers !I (x) , h(x) ,  fa(x) ,  . . .  
does not have limit f(x) is a set with Lebesgue measure zero. 

It is clear from these definitions that convergence almost surely and con
vergence almost everywhere are really the same concept in different notation. 
Example 1 .4 .4 .  Consider a sequence of normal densities, each with mean zero 
and the nth having variance � (see Figure 1 .4. 1 ) :  

I f  x -:/: 0, then limn-+oo fn (x) = 0, but 

lim fn (O) = lim fn = oo. n-+oo n-+oo V 2"; 
Therefore, the sequence /I , /2 ,  fa, . . .  converges everywhere to the function 

f* (x) = { O �f x -:/: 0, 
00 If X = 0, 

and converges almost everywhere to the identically zero function f(x) = 0 for 
all x E R The set of x where the convergence to f(x) does not take place 
contains only the number 0, and this set has zero Lebesgue measure. 0 

Often when random variables converge almost surely, their expected values 
converge to the expected value of the limiting random variable. Likewise, 
when functions converge almost everywhere, it is often the case that their 
Lebesgue integrals converge to the Lebesgue integral of the limiting function. 
This is not always the case, however. In Example 1 .4.4, we have a sequence 
of normal densities for which f�oo fn (x)dx = 1 for every n but the almost 
everywhere limit function f is identically zero. It would not help matters to 
use the everywhere limit function f* (x) because any two functions that differ 
only on a set of zero Lebesgue measure must have the same Lebesgue integral. 
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ho 

Fig. 1 .4.1 .  Almost everywhere convergence. 

Therefore, f�oo f* (x) dx = f�oo f(x) dx = 0. It cannot be otherwise because 
2f* (x) = f* (x) for every x E JR., and so 

2 /_: f* (x) dx = /_: 2f* (x) = /_: f* (x) dx. 

This equation implies that f�oo f* (x) dx = 0. It would also not help matters 
to replace the functions fn by the functions 

( ) _ { fn (x) if X =/- 0, 9n X - 0 if X = 0. 
The sequence 91 , 92 , . . . converges to 0 everywhere, whereas the integrals 
f�oo 9n (x) dx agree with the integrals f�oo fn (x) dx, and these converge to 
1, not 0. The inescapable conclusion is that in this example 

the left-hand side is 1 and the right-hand side is 0. 
Incidentally, matters are even worse with the Riemann integral, which is 

not defined for f* ; upper Riemann sums for f* are infinite, and lower Riemann 
sums are zero. 

To get the integrals of a sequence of functions to converge to the integral of 
the limiting function, we need to impose some condition. One condition that 
guarantees this is that all the functions are nonnegative and they converge to 
their limit from below. If we think of an integral as the area under a curve, the 
assumption is that as we go farther out in the sequence of functions, we keep 
adding area and never taking it away. If we do this, then the area under the 
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limiting function is the limit of the areas under the functions in the sequence. 
The precise statement of this result is given in the following theorem. 
Theorem 1 .4.5 (Monotone convergence) . Let X� , X2 , X a ,  . . . be a se
quence of mndom variables converging almost surely to another mndom vari
able X.  If 

0 $ XI $ X2 $ Xa $ . . .  almost surely, 
then 

lim IEXn = lEX. n-+oo 
Let /I , /2, fa,  . . . be a sequence of Borel-measumble functions on JR. converging 
almost everywhere to a function f . If 

0 $ /I $ /2 $ fa $ . . . almost everywhere, 

then 

n���-: fn (x) dx = I: f (x) dx . 
The following corollary to the Monotone Convergence Theorem extends 

Theorem 1 .3 .4(i) . 
Corollary 1 .4.6. Suppose the nonnegative mndom variable X takes countably 
many values xo , x� , x2 , . . . .  Then 

00 

lEX = �::::>kiP{ X =  Xk } ·  ( 1 .4. 1 )  
k=O 

PROOF: Let Ak = {X =  xk } , so that X can be written as 
00 

X =  L: xkliAk · 
k=O 

Define Xn = E�=O XkliAk . Then 0 $ X I $ x2 $ X a $ . . .  and limn-+oo Xn = 
X almost surely ( "surely," actually) . Theorem 1 .3 .4(i) implies that 

n 
IEXn = L XkiP{X = Xk } ·  

k=O 
Taking the limit on both sides as n ---+ oo and using the Monotone Convergence 
Theorem to justify the first equality below, we obtain 

n oo 
lEX = lim IEXn = lim "' XkiP{X = xk }  = "' XkiP{X = Xk } ·  0 n-+oo n-+oo L..... L..... k=O k=O 

Remark 1..4 . 7. If X can take negative as well as positive values, we can apply 
Corollary 1 .4.6 to x+ and x- separately and then subtract the resulting 
equations to again get formula ( 1 .4. 1 ) ,  provided the subtraction does not 
create an "oo - oo" situation. 
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Example 1 . 4 .8  (St. Petersburg paradox). On the infinite independent coin
toss space il00 with the probability of a head on each toss equal to ! , define 
a random variable X by 

2 if WI = H, 
4 if WI = T, W2 = H, 
8 if WI = W2 = T, W3 = H, 

X(w) = 

This defines X(w) for every sequence of coin tosses except the sequence that 
is all tails. For this sequence, we define X(TTT . . .  ) = oo. The probability 
that X = oo is then the probability of this sequence, which is zero. Therefore, 
X is finite almost surely. According to Corollary 1 .4.6, 

lEX = 2 · IP'{X = 2} + 4 · IP'{X = 4} + 8 · IP'{X = 8} + . . .  
1 1 1 = 2 · - + 4 · - + 8 · - +  2 4 8 . . .  

= 1 + 1 + 1 + . . . = oo. 
The point is that lEX can be infinite, even though X is finite almost surely. 
0 

The following theorem provides another common situation in which we are 
assured that the limit of the integrals of a sequence of functions is the integral 
of the limiting function. 
Theorem 1 .4.9 (Dominated convergence) .  Let XI , x2 , . . .  be a sequence 
of random variables converging almost surely to a random variable X.  If there 
is another random variable Y such that lEY < oo and IXn l :::; Y almost surely 
for every n, then 

lim EXn = EX . n-+oo 
Let /I , h , . . .  be a sequence of Borel-measurable functions on JR. converging 
almost everywhere to a function f .  If there is another function g such that 
f�oo g( x) dx < oo and I fn I :::; g almost everywhere for every n, then 

nl��/_: fn (x) dx = /_: f(x) dx. 

1 . 5 Computation of Expectations 

Let X be a random variable on some probability space (il, :F, IP') . We have 
defined the expectation of X to be the Lebesgue integral 
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lEX = l X (w) dlP'(w ) ,  

the idea being to  average the values of X(w) over fl, taking the probabilities 
into account. This level of abstraction is sometimes helpful. For example, the 
equality 

JE(X + Y) = lEX +  lEY 
follows directly from the linearity of integrals. By contrast, if we were to 
derive this fact using a joint density for X and Y, it would be a tedious, 
unenlightening computation. 

On the other hand, the abstract space fl is not a pleasant environment in 
which to actually compute integrals. For computations, we often need to rely 
on densities of the random variables under consideration, and we integrate 
these over the real numbers rather than over fl. In this section, we develop 
the relationship between integrals over fl and integrals over R 

Recall that the distribution measure of X is the probability measure J-Lx 
defined on JR. by 

J-Lx (B) = JP{X E B} for every Borel subset B of R ( 1 .5 . 1 )  

Because J-Lx is  a probability measure on JR., we can use i t  to integrate functions 
over JR.. We have the following fundamental theorem relating integrals over JR. 
to integrals over fl. 

Theorem 1 .5 .1 .  Let X be a mndom variable on a probability space (fl, F, JP) 
and let g be a Borel-measumble function on R. Then 

lEig(X) I = � lg(x) l dJ-Lx (x) , ( 1 .5 .2) 

and if this quantity is finite, then 

lEg(X) = � g(x) dJ-Lx (x) .  ( 1 .5.3) 

PROOF: The proof proceeds by several steps, which collectively are called the 
standard machine. 

Step 1. Indicator functions. Suppose the function g(x) = H8 (x) is the indicator 
of a Borel subset of R Since this function is nonnegative, ( 1 .5 .2) and ( 1 .5.3) 
reduce to the same equation, namely 

lEHB (X) = l HB (x) dJ-Lx (x) . ( 1 .5 .4) 

Since the random variable HB (X) takes only the two values one and zero, its 
expectation is 



1 .5  Computation of Expectations 29 

lEHB (X) = 1 · 1P'{X E B} + 0 · IP'{X fj. B} = IP'{X E B} . 

Similarly, the function HB (x) of the dummy (not random! ) variable x takes only 
the two values one and zero, so according to Theorem 1 .3 . 1 (i) with fl = IR, 
X =  nB , and IP' = J.Lx , its integral is 

l HB (x) dJ.Lx (x) = 1 · J.Lx {x; HB (x) = 1} + 0 · J.Lx {x; HB (x) = 0} = J.Lx (B) . 

In light of (1 . 5 . 1 ) ,  we have gotten the same result in both cases, and ( 1 .5.4) 
is proved. 

Step 2. Nonnegative simple functions. A simple function is a finite sum of 
indicator functions times constants. In this step, we assume that 

n 
g(x) = :�::>�knBk (x) , 

k= l 
where a1 , a2 , . . .  , an are nonnegative constants and B1 , B2 , . . .  , Bn are Borel 
subsets of R Because of linearity of integrals, 

lEg(X) = lEt akHBk (X) = t aklEHBk (X) = t ak 1 HBk (x) dJ.Lx (x) , 
k= I k=l k=I R 

where we have used ( 1 .5.4) in the last step. But the linearity of integrals also 
implies that 

and we conclude that 
lEg(X) = l g(x) dJ.Lx (x) 

when g is a nonnegative simple function. 

Step 3. Nonnegative Borel-measumble functions. Let g(x) be an arbitrary non
negative Borel-measurable function defined on IR. For each positive integer n, 
define the sets { k k + 1 } n Bk,n = x; 2n � g(x) < � , k = 0, 1 , 2, . . .  4 - 1 .  

For each fixed n ,  the sets Bo,n , B1 ,n , . . .  , B4n_ 1 ,n correspond to the partition 
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At the next stage n + 1 ,  the partition points include all those at stage n and 
new partition points at the midpoints between the old ones. Because of this 
fact, the simple functions 

satisfy 0 :::; g1 :::; g2 :::; • · • :::; g. Furthermore, these functions become 
more and more accurate approximations of g as n becomes larger; indeed, 
limn-+oo gn (x) = g(x) for every x E JR. From Step 2, we know that 

for every n. Letting n --+ oo and using the Monotone Convergence Theorem, 
Theorem 1 .4.5, on both sides of the equation, we obtain 

IEg(X) = lim IEgn (X) = lim [ gn (x) dJLx (x) = [ g(x) dJLx (x) . n-+oo n-+oo JR. JR. 
This proves (1 .5.3) when g is a nonnegative Borel-measurable function. 

Step 4. General Borel-measurable function. Let g(x) be a general Borel
measurable function, which can take both positive and negative values. The 
functions 

g+ (x) = max{g(x) , O} and g- (x) = max{-g(x) , O} 

are both nonnegative, and from Step 3 we have 

Adding these two equations, we obtain ( 1 .5 .2) .  If the quantity in ( 1 .5 .2) is 
finite, then 

JEg+ (x) = .J,. g+ (x) dJLx (x) < oo, 
IEg- (X) = JR. g- (x) dJLx (x) < oo, 

and we can subtract these two equations because this is not an oo - oo situ
ation. The result of this subtraction is ( 1 .5.3) . 0 

Theorem 1 .5 . 1  tells us that in order to compute the Lebesgue integral 
lEX = J: X(w) dlP(w) over the abstract space fl, it suffices to compute the 
integral JR g(x) dJLx (x) over the set of real numbers. This is still a Lebesgue 
integral, and the integrator is the distribution measure JLx rather than the 
Lebesgue measure. To actually perform a computation, we need to reduce 
this to something more familiar. Depending on the nature of the random 
variable X, the distribution measure /-LX on the right-hand side of ( 1 .5 .3) can 



1 . 5  Computation of Expectations 31 

have different forms. In the simplest case, X takes only finitely many values 
x0 , X I > x2 , . . .  , Xn , and then J-Lx places a mass of size Pk = IP'{X = xk } at each 
number Xk · In this case, formula ( 1 .5 .3) becomes 

The most common case for continuous-time models in finance is when 
X has a density. This means that there is a nonnegative, Borel-measurable 
function f defined on lR such that 

J-Lx (B) = l f(x) dx for every Borel subset B of R ( 1 .5 .5) 

This density allows us to compute the measure J-Lx of a set B by computing 
an integral over B.· In most cases, the density function f is bounded and 
continuous or almost everywhere continuous, so that the integral on the right
hand side of ( 1 .5 .5) can be computed as a Riemann integral. 

If X has a density, we can use this density to compute expectations, as 
shown by the following theorem. 

Theorem 1 .5.2.  Let X be a random variable on a probability space (n, .1", IP') , 
and let g be a Borel-measurable function on JR. Suppose that X has a density 
f {i. e . ,  f is a function satisfying {1 . 5. 5}}. Then 

lEig(X) I = /_: lg (x) lf(x) dx. (1 .5.6) 

If this quantity is finite, then 

lEg(X) = /_: g(x)f(x) dx. (1 .5 . 7) 

PROOF: The proof proceeds again by the standard machine. 

Step 1 . Indicator functions. If g(x) = HB (x) , then because g is nonnegative, 
equations (1 .5.6) and (1 .5 .7) are the same and reduce to 

lEHB (X) = l f(x) dx. 

The left-hand side is IP'{X E B} = J-Lx (B) , and (1 .5 .5) shows that the two 
sides are equal. 

Step 2. Simple functions. If g(x) = L::�=l akHBk (x) , then 
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Step 3. Nonnegative Borel-measurable functions. Just as in the proof of The
orem 1 .5 . 1 we construct a sequence of nonnegative simple functions 0 � 91 � 
g2 � • · • � g such that limn--+oo 9n (x) = g(x) for every x E R. We have already 
shown that 

lEgn (X) = /_: 9n (x)f(x) dx 

for every n. We let n -+ oo, using the Monotone Convergence Theorem, The
orem 1 .4.5, on both sides of the equation, to obtain ( 1 .5. 7) . 

Step 4 - General Borel-measurable functions. Let g be a general Borel-measur
able function, which can take positive and negative values. We have just 
proved that 

JEg+ (x) = /_: g+ (x)f(x) dx, lEg- (X) = /_: g- (x)f(x) dx. 

Adding these equations, we obtain (1 .5.6) . If the expression in (1 .5.6) is finite, 
we can also subtract these equations to obtain (1 .5 .7) . 0 

1 . 6  Change of Measure 

We pick up the thread of Section 3 .1 of Volume I, in which we used a positive 
random variable Z to change probability measures on a space fl. We need 
to do this when we change from the actual probability measure lP' to the 
risk-neutral probability measure lP in models of financial markets. When fl 
is uncountably infinite and IP'(w) = JP(w) = 0 for every w E fl, it no longer 
makes sense to write (3. 1 . 1 ) of Chapter 3 of Volume I , 

JP(w) Z(w) = IP'(w) , (1 .6 . 1 )  

because division by zero is  undefined. We could rewrite this equation as 

Z(w )IP'(w) = JP(w ) , ( 1 .6 .2) 
and now we have a meaningful equation, with both sides equal to zero, but the 
equation tells us nothing about the relationship among IP', JP, and Z. Because 
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IP'(w) = P(w) = 0, the value of Z(w) could be anything and (1 .6 .2) would still 
hold. 

However, ( 1 .6 .2) does capture the spirit of what we would like to accom
plish. To change from lP to iP, we need to reassign probabilities in {l using Z to 
tell us where in {l we should revise the probability upward (where Z > 1) and 
where we should revise the probability downward (where Z < 1 ) .  However, 
we should do this set-by-set , rather than w-by-w. The process is described by 
the following theorem. 
Theorem 1 .6. 1 .  Let (il, :F, IP) be a probability space and let Z be an almost 
surely nonnegative random variable with IEZ = 1 .  For A E :F, define 

P(A) = L Z(w) dlP(w) .  ( 1 .6.3) 

Then lP is a probability measure. Furthermore, if X is a nonnegative random 
variable, then 

EX = IE[X Z] . ( 1 .6.4) 
If Z is almost surely strictly positive, we also have 

( 1 .6.5) 

for every nonnegative random variable Y. 
The iE appearing in ( 1 .6.4) is expectation under the probability measure 

iP (i.e. , EX =  fn X(w) dlP(w) ) .  

Remark 1 . 6. 2. Suppose X is a random variable that can take both positive 
and negative values. We may apply ( 1 .6 .4) to its positive and negative parts 
x+ = max{X, O} and x- = max{-X, O} ,  and then subtract the resulting 
equations to see that ( 1 .6.4) holds for this X as well, provided the subtraction 
does not result in an oo - oo situation. The same remark applies to (1 .6.5) . 

PROOF OF THEOREM 1 . 6 . 1 :  According to Definition 1 . 1 .2 , to check that iP is 
a probability measure, we must verify that JP(il) = 1 and that iP is countably 
additive. We have by assumption 

JP(il) = l Z(w) dlP(w) = IEZ = 1 .  

For countable additivity, let A1 , A2 , • • •  be  a sequence of disjoint sets i n  :F, 
and define Bn = Uf:=1Ak , Boo = Uf=1Ak . Because 

and limn-+oo IIBn = II Boo , we may use the Monotone Convergence Theorem, 
Theorem 1 .4.5, to write 
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Jiii(Boo ) = { llBoo (w)Z(w) dlP'(w) = lim { llBn (w)Z(w) dlP'(w) . 
ln n�oo ln 

Putting these two equations together, we obtain the countable additivity prop
erty 

Jiii (Q1 Ak) = nl��� Jiii(Ak ) = �Jiii(Ak) · 

Now suppose X is a nonnegative random variable. If X is an indicator 
function X = nA ' then 

lEX =  Jiii(A) = l HA (w)Z(w) dlP'(w) = lE [HAZ] = lE [XZ] , 

which is ( 1 .6.4) . We finish the proof of ( 1 .6.4) using the standard machine 
developed in Theorem 1 .5 . 1 .  When Z > 0 almost surely, � is defined and we 
may replace X in ( 1 .6.4) by � to obtain ( 1 .6 .5) . 0 
Definition 1.6.3. Let fl be a nonemyty set and :F a a-algebra of subsets of 
fl. Two probability measures lP' and lP' on (fl, :F) are said to be equivalent if 
they agree which sets in :F have probability zero. 

Under the assumptions of Theorem 1 .6 . 1 ,  including the assumption that 
Z > 0 almost surely, lP' and Jiii are equivalent . Suppose A E :F is given and 
IP'(A) = 0. Then the random variable HAZ is lP' almost surely zero, which 
implies 

Jiii(A) = l llA (w)Z(w) dlP'(w) = 0. 

On the other hand, suppose B E  :F satisfies Jiii(B) = 0. Then �nB = 0 almost 
surely under Jiii, so iE [�nBJ = o. 
Equation (1 .6.5) implies IP'(B) = EHB = 0. This shows that lP' and Jiii agree 
which sets have probability zero. Because the sets with probability one are 
complements of the sets with prol?._ability zero, lP' and Jiii agree which sets have 
probability one as well. Because lP' and lP' are equivalent , we do not need to 
specify which measure we have in mind when we say an event occurs almost 
surely. 

In financial models , we will first set up a sample space [l, which one 
can regard as the set of possible scenarios for the future. We imagine this 
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set of possible scenarios has an actual probability measure JP>. However, for 
purposes of pricing derivative securities, we will use a risk-neutral measure JP. 
We will insist that these two measures are equivalent. They must agree on 
what is possible and what is impossible; they may disagree on how probable 
the possibilities are. This is the same situation we had in the binomial model; lP 
and JP assigned different probabilities to the stock price paths, but they agreed 
which stock price paths were possible. In the continuous-time model , after we 
have lP and JP, we shall determine prices of derivative securities that allow us to 
set up hedges that work with JP-probability one. These hedges then also work 
with JP>-probability one. Although we have used the risk-neutral probability to 
compute prices , we will have obtained hedges that work with probability one 
under the actual (and the risk-neutral) probability measure. 

It is common to refer to computations done under the actual measure 
as computations in the real world and computations done under the risk
neutral measure as computations in the risk-neutral world. This unfortunate 
terminology raises the question whether prices computed in the "risk-neutral 
world" are appropriate for the "real world" in which we live and have our 
profits and losses. Our answer to this question is that there is only one world 
in the models. There is a single sample space {l representing all possible future 
states of the financial markets, and there is a single set of asset prices, modeled 
by random variables (i.e. , functions of these future states of the market) .  We 
sometimes work in this world assuming that probabilities are given by an 
empirically estimated actual probability measure and sometimes assuming 
that they are given by risk-neutral probabilities , but we do not change our 
view of the world of possibilities. A hedge that works almost surely under one 
assumption of probabilities works almost surely under the other assumption 
as well, since the probability measures agree which events have probability 
one. 

The change of measure discussed in Section 3. 1 of Volume I is the spe
cial case of Theorem 1 .6 . 1 for finite probability spaces, and Example 3 . 1 .2  of 
Chapter 3 of Volume I provides a case with explicit formulas for JP>, JP, and Z 
when the expectations are sums. We give here two examples on uncountable 
probability spaces. 

Example 1 . 6.4 .  Recall Example 1 .2 .4 in which {l = [0 , 1] , lP is the uniform 
(i.e. , Lebesgue) measure, and 

JP[a, b] = 1b 2w dw = b2 - a2 , 0 :::; a :::; b :::; 1 .  ( 1 .2 .2) 

We may use the fact that JP>(dw) = dw to rewrite ( 1 .2 .2) as 

JP[a, b] = f 2w dlP(w) . J[a,b] ( 1 .2 .2) ' 

Because B[O, 1] is the a-algebra generated by the closed intervals (i.e. , begin 
with the closed intervals and put in all other sets necessary in order to have a 
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a-algebra) , the validity of ( 1 .2 .2)' for all closed intervals [a, b] C [0 , 1] implies 
its validity for all Borel subsets of [0, 1] : 

Jiii(B) = L 2w dlP'(w) for every Borel set B c R 

This is ( 1 .6.3) with Z(w) = 2w. 
Note that Z(w) = 2w is strictly positive almost surely (JP{O} = 0) ,  and 

fEz = 11 2w dw = 1 .  

According to  ( 1 .6.4) ,  for every nonnegative random variable X(w) , we have 
the equation 

11 X(w) dJiii(w) = 11 X(w) · 2w dw. 

This suggests the notation 

dJiii(w) = 2w dw = 2w dlP'(w) . ( 1 .6.6) 

0 
In general, when JP, JP, and Z are related as in Theorem 1 .6 . 1 , we may 

rewrite the two equations ( 1 .6.4) and ( 1 .6 .5) as 

L X(w) dJiii(w) = L X(w)Z(w) dlP'(w) , 
[ [ Y(w) -

ln Y(w) dlP'(w) = ln Z(w) dlP'(w) .  

A good way to  remember these equations is to  formally write Z(w) = :��� . 
Equation ( 1 .6.6) is a special case of this notation that captures the idea behind 
the nonsensical equation ( 1 .6 . 1 ) that Z is somehow a "ratio of probabilities." 
In Example 1 .6.4, Z(w) = 2w is in fact a ratio of densities , with the denomi
nator being the uniform density 1 for all w E [0 , 1] . 

Definition 1 .6.5. Let (n, .1', JP) be a probability space, let Jiii be another proba
bility measure on ( n, .1') that is equivalent to lP, and let Z be an almost surely 
positive random variable that relates lP and Jiii via {1 . 6. 3} . Then Z is called the 
Radon-Nikodym derivative of Jiii with respect to JP, and we write 

Example 1 .  6. 6 (Change of measure for a normal random variable). Let X be a 
standard normal random variable defined on some probability space (n, .1', JP) . 
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Two ways of constructing X and (!l, F, IP') were described in Example 1 .2 .6 . 
For purposes of this example, we do not need to know the details about 
the probability space ( !l, F, IP') , except we note that the set !l is necessarily 
uncountably infinite and IP'(w) = 0 for every w E !l. 

When we say X is a standard normal random variable, we mean that 

J.Lx (B) = IP'{X E B} = L cp(x) dx for every Borel subset B of JR., ( 1 .6 .7) 

where 1 .,2 
cp(x) = -- e - 2  V2rr 

is the standard normal density. If we take B = ( -oo, b] , this reduces to the 
more familiar condition 

IP'{X :::; b} = [boo cp(x)dx for every b E  JR.. (1 .6.8) 

In fact, ( 1 .6.8) is equivalent to the apparently stronger statement ( 1 .6 .7) . Note 
that lEX = 0 and variance Var(X) = lE(X - JEX)2 = 1 .  

Let () be a constant and define Y = X + (), so that under IP', the random 
variable Y is normal with lEY = () and variance Var(Y) = JE(Y - JEY)2 = 1 .  
Although i t  i s  not required by the formulas, we will assume () i s  posit2ve for 
the discussion below. We want to change to a new probability measure lP' on !l 
under which Y is a standard normal random variable. In other words , we want 
EY = 0 and Var(Y) = E(Y-EY)2 = 1 .  We want to do this not by subtracting 
() away from Y, but rather by assigning less probability to those w for which 
Y(w) is sufficiently positive and more probability to those w for which Y(w) 
is negative. We want to change the distribution of Y without changing the 
random variable Y. In finance, the change from the actual to the risk-neutral 
probability measure changes the distribution of asset prices without changing 
the asset prices themselves, and this example is a step in understanding that 
procedure. 

We first define the random variable 

Z(w) = exp { -OX (w) - �()2 } for all w E !l. 

This random variable has two important properties that allow it to serve as a 
Radon-Nikodym derivative for obtaining a probability measure lP equivalent 
to IP': 
(i) Z (w) > 0 for all w E  !l (Z > 0 almost surely would be good enough) , and 

(ii) lEZ = 1 .  
Property ( i )  i s  obvious because Z is defined as an exponential. Property (ii) 
follows from the integration 
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where we have made the change of dummy variable y = x + () in the last 
step. But k f�oo exp{ -�y2}dy ,  being the integral of the standard normal 
density, is equal to one. _ 

We use the random variable Z to create a new probability measure lP' by 
adjusting the probabilities of the events in !?. We do this by defining 

P(A) = L Z(w) d!P'(w) for all A E F. ( 1 .6 .9) 

The random variable Z has the property that if X(w) is positive, then 
Z(w) < 1 (we are still thinking of () as a positive constant) . This shows that 
fii> assigns less probability than lP' to sets on which X is positive, a ste12_ in the 
right direction of statistically recentering Y. We claim not only that lEY = 0 
but also that , under fii>, Y is a standard normal random variable. To see this , 
we compute 

P{Y :S b} = [ Z(w) d!P'(w) J{w;Y(w)�b} 

= l H{Y(w)�b}Z(w) d!P'(w) 

= l ll{x(w)9-9} exp { -OX(w) - �()2 } d!P'(w) . 

At this point , we have managed to write P{Y :S b} in terms of a function of 
the random variable X,  integrated with respect to the probability measure lP' 
under which X is standard normal. According to Theorem 1 .5 .2 , 

l ll{x (w)�b-9} exp { -OX(w) - �02 } d!P'(w) 

100 n -9x- 192 ( )d = -oo {x�b-9} e 2 cp X X 
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where we have made the change of dummy variable y = x + () in the last step. 
We conclude that - l ib 1 2 IP'{Y :::; b} = rr>= e- 'i y dy, 

v 2rr - oo  
which shows th�t Y i s  a standard normal random variable under the proba
bility measure IP'. 0 

Following Corollary 2.4.6 of Chapter 2 of Volume I, we discussed how 
the existence of a risk-neutral measure guarantees that a financial model is 
free of arbitrage, the so-called First Fundamental Theorem of Asset Pricing. 
The same argument applies in continuous-time models and in fact underlies 
the Heath-Jarrow-Morton no-arbitrage condition for term-structure models . 
Consequently, we are interested in the existence of risk-neutral measures. As 
discussed earlier in this section, these must be equivalent to the actual proba
bility measure. How can such probability measures iP arise? In Theorem 1 .6 . 1 , 
we began with the probability measure IP' and an almost surely po�tive ran
dom variable Z and constructed the equivalent probability mea�ure IP'. It turns 
out that this is the only way to obtain a probability measure IP' equivalent to 
IP'. The proof of the following profound theorem is beyond the scope of this 
text . 
Theorem 1.6. 7 (Radon-Nikodym) . Let IP' and iP be equivalent probabil
ity measures defined on (!?,:F) .  Then there exists an almost surely positive 
random variable Z such that JEZ = 1 and 

P(A) = l Z(w) dlP'(w) for every A E :F. 

1 . 7  Summary 

Probability theory begins with a probability space (!?, :F, IP') (Definition 1 . 1 . 2) .  
Here !? is the set of all possible outcomes of a random experiment , :F is the 
collection of subsets of n whose probability is defined, and IP' is a function 
mapping :F to [0, 1] . The two axioms of probability spaces are IP'(!?) = 1 and 
countable additivity: the probability of a union of disjoint sets is the sum of 
the probabilities of the individual sets. 

The collection of sets :F in the preceding paragraph is a a-algebra, which 
means that 0 belongs to :F, the complement of every set in :F is also in :F, and 
the union of any sequence of sets in :F is also in :F. The Borel a-algebra in R, 
denoted B(R), is the smallest a-algebra that contains all the closed interval 
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[a, b] in JR. Every set encountered in practice is a Borel set (i.e. , belongs to 
B(IR) ) . 

A random variable X is a mapping from J! to lR (Definition 1 .2 . 1) . By def
inition, it has the property that , for every B E B(IR) , the set {w E J!; X(w) E 
B} is in the a-algebra F. A random variable X together with the probability 
measure lP on J! determines a distribution on JR. This distribution is not the 
random variable. Different random variables can have the same distribution, 
and the same random variable can have different distributions. We describe 
the distribution as a measure J.Lx that assigns to each Borel subset B of lR the 
mass J.Lx (B) = JP{X E B} (Definition 1 .2.3) . If X has a density f(x) , then 
J.Lx (B) = J8 f(x) dx. If X is a discrete random variable, which means that it 
takes one of countably many values x1 , x2 , . . .  , then we define Pi =  JP{X = xi } 
and have J.Lx (B) = L:{i;x; EB} Pi ·  

The expectation of a random variable X is lEX = fn X(w) dlP(w) , where 
the right-hand side is a Lebesgue integral over fl. Lebesgue integrals are dis
cussed in Section 1 .3. They differ from Riemann integrals, which form approx
imating sums to the integral by partitioning the "x" (horizontal)-axis, because 
Lebesgue integrals form approximating sums to the integral by partitioning 
the "y" (vertical)-axis. Lebesgue integrals have the properties one would ex
pect (Theorem 1 .3.4) : 
Comparison. If X :::; Y almost surely, then lEX :::; lEY; 
Linearity. lE(aX + ,BY) = alEX + ,BlEY. 
In addition, if cp is a convex function, we have Jensen's inequality: cp(JEX) :::; 
JEep( X) .  

I f  the random variable X has a density f ( x) , then lEX = f�oo x f ( x )  dx and, 
more generally, lEg(X) = f�oo g(x)f(x) dx (Theorem 1 .5 .2) . If the random 
variable is discrete with Pi =  lP{X = xi } ,  then lEg(X) = L:i g(xi )Pi ·  

Suppose we have a sequence of random variables X� , X2 , X3 , . . .  converg
ing almost surely to a random variable X. It is not always true that 

lEX = lim lEXn. n-too ( 1 .7. 1 ) 
However, if 0 :::; X1 :::; X2 :::; X3 :::; . . .  almost surely, then ( 1 . 7. 1 )  holds 
(Monotone Convergence Theorem, Theorem 1 .4.5) . Alternatively, if there ex
ists a random variable Y such that lEY < oo and IXn l ::=; Y almost surely for 
every n, then again ( 1 .7. 1 ) holds (Dominated Convergence Theorem, Theorem 
1 .4.9) . 

We may start with a probability space (J!, F, JP) and change to a different 
measure Jiil. Our motivation for considering two measures is that in finance 
there is both an actual probability measure and a risk-neutral probability 
measure. If lP is a probability measure and Z is a nonnegative random variable 
satisfying lEZ = 1 ,  then Jiil defined by 

P(A) = l Z(w) dlP(w) for all A E F 
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is also a probability measure (Theorem 1 .6 . 1 ) .  If  Z is strictly positive almost 
,surely, the two measures are equivalent: they agree about which sets have 
probabili!,y zero. For a random variable X ,  we have the change-of-expectation 
formula JE[X) = lE[X Z] . If Z is strictly positive almost surely, there is a 
change-of-expectation formula in the other direction. Namely, if Y is a random 
variable, then lEY = i [ � J . 

1 .8 Notes 

Probability theory is usually learned in two stages. In the first stage, one 
learns that a discrete random variable has a probability mass function and 
a continuous random variable has a density. These can be used to compute 
expectations and variances, and even conditional expectations, which are dis
cussed in Chapter 2. Furthermore, one learns how transformations of contin
uous random variables change densities . A well-written book that contains all 
these things is DeGroot [48) . 

The second stage of probability theory, which is treated in this chapter, 
is measure-theoretic. In this stage, one views a random variable as a function 
from a sample space il to the set of real numbers JR. Certain subsets of il 
are called events, and the collection of all events forms a a-algebra :F. Each 
set A in :F has a probability IP'(A) . This point of view handles both discrete 
and continuous random variables within the same unifying framework. It is 
necessary to adopt this point of view in order to understand the change from 
the actual to the risk-neutral measure in finance. 

The measure-theoretic view of probability theory was begun by Kol
mogorov [104) .  A comprehensive book on measure-theoretic probability is 
Billingsley [10) .  A succinct book on measure-theoretic probability and mar
tingales is Williams [ 161) . A more detailed book is Chung [35) . All of these 
are at the level of a Ph.D. course in mathematics . 

1 .  9 Exercises 

Exercise 1 . 1 .  Using the properties of Definition 1 . 1 .2 for a probability mea
sure IP', show the following. 
(i) If A E :F, B E :F, and A c B, then IP'(A) � IP'(B) .  

(ii) If A E :F and { An };:o=l is a sequence of sets in :F with limn-too IP'(An ) = 0 
and A C An for every n, then IP'(A) = 0. (This property was used implicitly 
in Example 1 . 1 .4 when we argued that the sequence of all heads, and 
indeed any particular sequence, must have probability zero. ) 

Exercise 1 .2 .  The infinite coin-toss space il00 of Example 1 . 1 . 4  is uncount
ably infinite. In other words, we cannot list all its elements in a sequence. 
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To see that this is impossible, suppose there were such a sequential list of all 
elements of il00 : 

w(l ) = w�1 )w�1 )w�1 )w�1 ) • • •  , 
W(2) = w(2)w(2)w(2)w(2) 1 2 3 4 0 0 0 ' 

W(3) = w(3)w(3)w(3)w(3) 1 2 3 4 0 0 0 ' 

An element that does not appear in this list is the sequence whose first com
ponent is H if wP) is T and is T if w�1 ) is H, whose second component is H 
if w�2) is T and is T if w�2) is H, whose third component is H if w�3) is T and 
is T if w�3) is H, etc. Thus, the list does not include every element of il00• 

Now consider the set of sequences of coin tosses in which the outcome on 
each even-numbered toss matches the outcome of the toss preceding it, i.e. , 

(i) Show that A is uncountably infinite. 
(ii) Show that , when 0 < p < 1 ,  we have IP'(A) = 0. 
Uncountably infinite sets can have any probability between zero and one, 
including zero and one. The uncountability of the set does not help determine 
its probability. 

Exercise 1 .3. Consider the set function lP' defined for every subset of [0, 1) by 
the formula that IP'(A) = 0 if A is a finite set and IP'(A) = oo if A is an infinite 
set . Show that lP' satisfies ( 1 . 1 .3)-( 1 . 1 .5) , but lP' does not have the countable 
additivity property ( 1 . 1 .2 ) .  We see then that the finite additivity property 
( 1 . 1 .5) does not imply the countable additivity property ( 1 . 1 .2) . 

Exercise 1 .4. (i) Construct a standard normal random variable Z on the 
probability space (il00,  :F00 , IP') of Example 1 . 1 .4 under the assumption 
that the probability for head is p = � - (Hint : Consider Examples 1 .2 .5 
and 1 .2 .6 . )  

(ii) Define a sequence of random variables {Zn }�=1 on il00 such that 

lim Zn (w) = Z(w) for every w E  il00 n-+oo 

and, for each n, Zn depends only on the first n coin tosses. (This gives 
us a procedure for approximating a standard normal random variable by 
random variables generated by a finite number of coin tosses, a useful 
algorithm for Monte Carlo simulation. )  

Exercise 1 .5 .  When dealing with double Lebesgue integrals, just as with 
double Riemann integrals, the order of integration can be reversed. The only 
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assumption required is that the function being integrated be either nonnega
tive or integrable. Here is an application of this fact. 

Let X be a nonnegative random variable with cumulative distribution 
function F(x) = IP'{X � x} .  Show that 

lEX = 100 ( 1 - F(x)) dx 

by showing that 1100 H[o,X (w) ) (x) dx diP'(w) 

is equal to both lEX and Jt ( 1 - F(x)) dx. 

Exercise 1 .6. Let u be a fixed number in JR., and define the convex function 
rp(x) = eux for all x E R Let X be a normal random variable with mean 

1 

p, = lEX and standard deviation a = [IE( X - p,)2] 2 , i .e. , with density 

1 - ("-'2)2 f(x) = fiL. e 2.. • 
av 2rr 

(i) Verify that 

(ii) Verify that Jensen's inequality holds (as it must) : 
!Erp(X) � rp(IEX) .  

Exercise 1 .  7 .  For each positive integer n ,  define f n to  be the normal density 
with mean zero and variance n, i.e. , 

(i) What is the function f(x) = limn-+oo fn (x)? 
(ii) What is limn-+oo f�oo fn (x) dx? 
(iii) Note that 

nl�� /_: fn (x) dx # /_: f(x) dx. 

Explain why this does not violate the Monotone Convergence Theorem, 
Theorem 1 .4.5. 

Exercise 1.8 (Moment-generating function) . Let X be a nonnegative 
random variable, and assume that 

rp(t) = lEetX 
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is finite for every t E R Assume further that IE [X etX] < oo for every t E 
JR.. The purpose of this exercise is to show that cp' ( t) = IE [X etX] and, in 
particular, cp' ( 0) = lEX. 

We recall the definition of derivative: 

cp' (t) = lim cp(t) - cp(s) = lim IEetX - lEesX = lim IE 
[ etX - esX ] . s-tt t - S s-tt t - S s-tt t - S 

The limit above is taken over a continuous variable s , but we can choose a 
sequence of numbers {sn }�=l converging to t and compute [ etX _ esnX ] lim IE , Bn-tt t - Sn 

where now we are taking a limit of the expectations of the sequence of random 
variables 

etX _ esnX 
Yn = ----t - Sn 

If this limit turns out to be the same, regardless of how we choose the 
sequence {sn }�=l that converges to t , then this limit is also the same as 
lims-tt lE [ e'�==·x ] and is cp' (t) . 

The Mean Value Theorem from calculus states that if f(t) is a differen
tiable function, then for any two numbers s and t , there is a number () between 
s and t such that 

f(t) - f(s) = f'(O) (t - s) .  
If  we fix w E {l and define f(t )  = etX(w) , then this becomes 

etX(w) _ esX(w) = (t _ s)X(w)e8(w)X(w) , ( 1 .9. 1 )  

where O(w) i s  a number depending on w (i .e. , a random variable lying between 
t and s ) .  
(i) Use the Dominated Convergence Theorem (Theorem 1 .4.9) and equation 

( 1 .9. 1 )  to show that 

lim IEYn = IE [ lim Yn] = IE (X etx] . n-too n-too 

This establishes the desired formula cp' (t) = IE  [Xetx] . 

( 1 .9.2) 

(ii) Suppose the random variable X can take both positive and negative values 
and IEetx < oo and E [ !X ! etX] < oo for every t E R Show that once again 
cp' ( t) = E (X etx] . (Hint: Use the notation ( 1 .3 . 1 )  to write X = x+ -x- . )  

Exercise 1.9. Suppose X is a random variable on some probability space 
(il, .1', IP') ,  A is a set in .1', and for every Borel subset B of JR., we have 

i l!B (X(w) ) diP'(w) = IP'(A) · IP'{X E B} .  ( 1 .9 .3) 



Then we say that X is independent of the event A. 
Show that if X is independent of an event A, then 

i g(X(w)) dlP'(w) = JP>(A) · lEg(X) 

for every nonnegative, Borel-measurable function g. 
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Exercise 1 . 10. Let JP> be the uniform (Lebesgue) measure on fl = [0, 1) . De
fine 

For A E B[O, 1) ,  define 

Z(w) = { 0 �f � ::; w < � '  
2 If 2 ::; w ::; l . 

JPi(A) = i Z(w) dlP'(w) . 

(i) Show that JPi is a probability measure. 
(ii) Show that if JP>(A) = 0, then JPi(A) = 0. We say that JP> is absolutely 

continuous with respect to JP>. 
(iii) Show t!_:at there is a set A for which JPi(A) = 0 but JP>(A) > 0. In other 

words, JP> and JP> are not equivalent . 

Exercise 1 .11 .  In Example 1 .6 .6 , we began with a standard normal random 
variable X under a measure JP>. According to Exercise 1 .6 , this random variable 
has the moment-generating function 

lEeuX = e!u2 for all u E R 
The moment-generating function of a random variable determines its distribu
tion. In particular, any random variable that has moment-generating function 
du2 must be standard normal. 

In Example 1 .6.6 , we also defined Y = X + 0, where 0 is a constant , we 
set Z = e-8X- !82 , and we defined JPi by the formula ( 1 .6.9) : 

JPi(A) = i Z(w) dlP'(w) for all A E :F. 

We showed by considering its cumulative distribution function that Y is a 
standard normal random variable under JPi. Give another proof that Y is stan
dard normal under JPi by verifying the moment-generating function formula 

Exercise 1 . 12. In Example 1 .6.6 , we began with a standard normal random 
variable X on a probability space (fl, F, JP>) and defined the random variable 
Y = X  + 0, where 0 is a constant. We also defined Z = e-8X- !82 and used Z 
as the Radon-Nikodym derivative to construct the probability measure JPi by 
the formula ( 1 .6.9) : 
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JP(A) = L Z(w) dP(w) for all A E :F. 

Under Jiii, the random variable Y was shown to be standard normal. 
We now have a standard normal random variable Y on the probability 

space (il, :F, JP) ,  and X is related to Y by X = Y - 6. By what we have 
just stated, with X replaced by Y and 6 replaced by -6, we could define 
z = e9Y- �92 and then use Z as a Radon-Nikodym derivative to construct a 
probability measure iP by the formula 

P(A) = L Z(w) dlP(w) for all A E :F, 

so that , under iP, the random variable X is standard normal. Show that Z = ! 
and iP = JP. 
Exercise 1 .13  (Change of measure for a normal random variable) .  A 
nonrigorous but informative derivation of the formula for the Radon-Nikodym 
derivative Z(w) in Example 1 .6 .6 is provided by this exercise. As in that 
example, let X be a standard normal random variable on some probability 
space ( n, :F, JP) , and let Y = X + 6. Our goal is to define a strictly positive 
random variable Z(w) so that when we set 

JP(A) = L Z(w) dP(w) for all A E :F, ( 1 .9.4) 

the random variable Y under lP is standard normal. If we fix w E n and choose 
a set A that contains w and is "small ," then ( 1 .9.4) gives 

JP(A) � Z(w)JP(A) , 

where the symbol � means "is approximately equal to." Dividing by JP(A) , 
we see that 

JP(A) -
JP(A) � Z(w) 

for "small" sets A containing w. We use this observation to identify Z(w) . 
With w fixed, let x = X(w) . For f > 0, we define B (x , f) = [x - � , x + �] 

to be the closed interval centered at x and having length f. Let y = x + 6 and 
B(y, f) = [y - � , y + �] . 
(i) Show that �JP{X E B (x , f )} � � exp { -X2iw)

} . 

(ii) In order for Y to be a standard normal random variable under JP, show 
that we must have 

1 - 1 { Y2 (w) } -JP{Y E B(y, f) }  � - exp - -- . f � 2 
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(iii) Show that {X E B(x, €) } and {Y E B(y, €) } are the same set , which we 
call A(w, €) . This set contains w and is "small" when € > 0 is small. 

(iv) Show that 
iP(A) { 1 2 } -- � exp -OX (w) - -0 W(A) 2 . 

The right-hand side is the value we obtained for Z(w) in Example 1 .6 .6 . 
Exercise 1 . 14 (Change of measure for an exponential random vari
able) . Let X be a nonnegative random variable defined on a probability space 
(fl, :F, P) with the exponential distribution, which is 

W{X :S a} =  1 - e->-a , a 2:: 0, 
where >. is a positive constant. Let A be another positive constant , and define 

Define W by 

Z - A - (X - .>.)X - �e . 

P(A) = i Z diP for all A E :F. 

(i) Show that iP(n) = 1 .  
(ii) Compute the cumulative distribution function 

P{X ::; a} for a 2:: 0 

for the random variable X under the probability measure W. 
Exercise 1 .15  (Provided by Alexander Ng) . Let X be a random variable 
on a probability space (n, :F, W) , and assume X has a density function f(x) 
that is positive for every x E JR. Let g be a strictly increasing, differentiable 
function satisfying 

lim g(y) = -oo, lim g(y) = oo, 
y-+ - oo y-+oo 

and define the random variable Y = g(X) .  
Let h(y) be an arbitrary nonnegative function satisfying f�oo h(y) dy = 1 .  

We want to change the probability measure so that h(y) i s  the density function 
for the random variable Y. To do this, we define 

h(g(X)) g' (X) 
z = f(X) . 

(i) Show that Z is nonnegative and lEZ = 1 .  
Now define iP by 

P(A) = i Z diP for all A E :F. 

(ii) Show that Y has density h under iP. 
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2 

Information and Conditioning 

2 . 1  Information and u-algebras 

The no-arbitrage theory of derivative security pricing is based on contingency 
plans. In order to price a derivative security, we determine the initial wealth 
we would need to set up a hedge of a short position in the derivative security. 
The hedge must specify what position we will take in the underlying security 
at each future time contingent on how the uncertainty between the present 
time and that future time is resolved. In order to make these contingency 
plans, we need a way to mathematically model the information on which our 
future decisions can be based. In the binomial model, that information was 
knowledge of the coin tosses between the initial time and the future time. For 
the continuous-time model, we need to develop somewhat more sophisticated 
machinery to capture this concept of information. 

We imagine as always that some random experiment is performed, and the 
outcome is a particular w in the set of all possible outcomes fl. We might then 
be given some information-not enough to know the precise value of w but 
enough to narrow down the possibilities. For example, the true w might be 
the result of three coin tosses, and we are told only the first one. Or perhaps 
we are told the stock price at time two without being told any of the coin 
tosses. In such a situation, although we do not know the true w precisely, we 
can make a list of sets that are sure to contain it and other sets that are sure 
not to contain it . These are the sets that are resolved by the information. 

Indeed, suppose fl is the set of eight possible outcomes of three coin tosses . 
If we are told the outcome of the first coin toss only, the sets 

AH = {HHH, HHT, HTH, HTT}, Ar = {THH, THT, TTH, TTT} 
(2. 1 . 1 )  

are resolved. For each of  these sets, once we are told the first coin toss, we 
know if the true w is a member. The empty set 0 and the whole space fl are 
always resolved, even without any information; the true w does not belong to 
0 and does belong to fl. The four sets that are resolved by the first coin toss 
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form the a-algebra 
:Fi = {0 , .!1, AH , AT} · 

We shall think of this a-algebra as containing the information learned by 
observing the first coin toss . More precisely, if instead of being told the first 
coin toss, we are told, for each set in :Fi ,  whether or not the true w belongs 
to the set , we know the outcome of the first coin toss and nothing more. 

If we are told the first two coin tosses, we obtain a finer resolution. In 
particular, the four sets 

AHH = {HHH, HHT} , AHT = {HTH, HTT}, 
ATH = {THH, THT}, ATT = {TTH, TTT} , (2. 1 .2) 

are resolved. Of course, the sets in :F1 are still resolved. Whenever a set is 
resolved, so is its complement, which means that Al:rH , Al:rT , ArH ' and ArT are resolved. Whenever two sets are resolved, so is their union, which means 
that AHH UATH ,  AHH U ATT, AHT U ATH ,  and AHT UATT are resolved. We 
have already noted that the two other pairwise unions, AH = AH H U AHT 
and AT = ATH U ATT , are resolved. The triple unions are also resolved, and 
these are the complements already mentioned, e.g. , 

In all , we have 16 resolved sets that together form a a-algebra we call :F2 ; i.e. , 

:F2 
_ { 0, .n, AH , AT, AHH , AHT, ATH ,  ATT , Al:rH , Al:rT, ArH ' ArT ' } - AHH U ATH ,  AHH U ATT , AHT U ATH ,  AHT U ATT 

· 
(2. 1 .3) 

We shall think of this a-algebra as containing the information learned by 
observing the first two coin tosses . 

If we are told all three coin tosses, we know the true w and every subset 
of .!1 is resolved. There are 256 subsets of .!1 and, taken all together, they 
constitute the a-algebra Fa :  

:Fa = The set of all subsets of .!1. 

If we are told nothing about the coin tosses, the only resolved sets are 0 
and .!1. We form the so-called trivial a-field :Fo with these two sets: 

:Fo = {0, .!1} . 

We have then four a-algebras, :Fo , :F1 , :F2 , and Fa ,  indexed by time. As 
time moves forward, we obtain finer resolution. In other words, if n < m, then 
:Fm contains every set in :Fn and even more. This means that :Fm contains 
more information than :Fn . The collection of a-algebras :Fo , :Fl l :F2 , :Fa is 
an example of a filtmtion. We give the continuous-time formulation of this 
situation in the following definition. 
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Definition 2 .1 . 1 .  Let [} be a nonempty set. Let T  be a fixed positive number, 
and assume that for each t E [0, T] there is a a-algebm :F(t) . Assume further 
that if s :::; t, then every set in :F(s) is also in :F(t) . Then we call the collection 
of a -algebms :F( t) , 0 :::; t :::; T, a filtration. 

A filtration tells us the information we will have at future times. More 
precisely, when we get to time t, we will know for each set in :F(t) whether 
the true w lies in that set . 
Example 2. 1 . 2. Suppose our sample space is [} = Co [O, T] , the set of continu
ous functions defined on [0, T] taking the value zero at time zero. Suppose one 
of these functions w is chosen at random and we get to observe it up to time 
t, where 0 :::; t :::; T. That is to say, we know the value of w(s) for 0 :::; s :::; t , 
but we do not know the value of w( s) for t < s :::; T. Certain subsets of [} are 
resolved. For example, the set { w E n; maxo�s::;t w( s) :::; 1} is resolved . We 
would put this in the a-algebra :F(t) . Other subsets of [} are not resolved by 
time t. For example, if t < T, the set {w E n; w(T) > 0} is not resolved by 
time t . Indeed, the sets that are resolved by time t are just those sets that 
can be described in terms of the path of w up to time t. 1 Every reasonable2 
subset of [} =  Co [O, T] is resolved by time T. By contrast, at time zero we see 
only the value of w(O) , which is equal to zero by the definition of n. We learn 
nothing about the outcome of the random experiment of choosing w by ob
serving this. The only sets resolved at time zero are 0 and [}, and consequently 
:F(o) = {0 ,  n} . o 

Example 2 . 1 .2 provides the simplest setting in which we may construct a 
Brownian motion. It remains only to assign probability to the sets in :F = 
:F(T) , and then the paths w E C0 [0, T] will be the paths of the Brownian 
motion. 

The discussion preceding Definition 2. 1 . 1  suggests that the a-algebras in 
a filtration can be built by taking unions and complements of certain funda
mental sets in the way F2 was constructed from the four sets AHH , AHr , 
ArH ,  and Arr· If this were the case, it would be enough to work with these 
so-called atoms (indivisible sets in the a-algebra) and not consider all the 
other sets. In uncountable sample spaces, however, there are sets that cannot 
be constructed as countable unions of atoms (and uncountable unions are for
bidden because we cannot add up probabilities of such unions) . For example, 
let us fix t E (0, T) in Example 2 . 1 .2 . Now choose a continuous function f(u) , 
defined only for 0 :::; u :::; t and satisfying f(O) = 0. The set of continuous 
functions w E  C0 [0, T] that agree with f on [0, t] and that are free to take any 
values on (t , T] form an atom in :Ft . In symbols, this atom is 
1 For technical reasons, we would not include in .F(t) sets such as {w E 

il; maxo�s::;t w(s) E B} if B is a subset of lR that is not Borel measurable. This 
technical issue can safely be ignored. 

2 Once again, there are pathological sets such as {w E n; w(T) E B},  where B is 
a subset of lR that is not Borel measurable. These are not included in .F(T) ,  but 
that shall not concern us. 
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{w E Co [O, T] ; w(u) = f (u) for all u E [0, t] } . 
Each time we choose a new function f (u) , defined for 0 � u � t, we get a new 
atom. However, there is no way to obtain the important set {w E il; w(t) > 0} 
by taking countable unions of these atoms. Moreover, it is usually the case 
that the atoms have zero probability. Consequently, in what follows we work 
with all the sets of :F(t) , especially those with positive probability, not with 
just the atoms. 

Besides observing the evolution of an economy over time, which is the idea 
behind Example 2. 1 .2 ,  there is a second way we might acquire information 
about the value of w. Let X be a random variable. We assume throughout 
that there is a "formula" for X, and we know this formula even before the 
random experiment is performed. Because we already know this formula, we 
are waiting only to learn the value of w to substitute into the formula so we 
can evaluate X(w) . But suppose that rather than being told the value of w 
we are told only the value of X(w) . This resolves certain sets. For example, 
if we know the value of X(w) , then we know if w is in the set {X � 1} (yes 
if X(w) � 1 and no if X(w) > 1 ) .  Indeed, every set of the form {X E B},  
where B i s  a subset of  IR, i s  resolved. Again, for technical reasons, we restrict 
attention to subsets B that are Borel measurable. 
Definition 2.1 .3. Let X be a random variable defined on a nonempty sample 
space il. The a-algebra generated by X, denoted a (X) , is the collection of all 
subsets of il of the form {X E B} ,3 where B ranges over the Borel subsets of 
JR. 
Example 2. 1 . 4 .  We return to the three-period model of Example 1 .2 . 1  of Chap
ter 1 .  In that model, il is the set of eight possible outcomes of three coin tosses, 
and 

S2 (HHH) = S2 (HHT) = 16, 
S2 (HTH) = S2 (HTT) = S2 (THH) = S2 (THT) = 4, 
S2 (TTH) = S2 (TTT) = 1. 

In Example 1 .2 .2 of Chapter 1 ,  we wrote 82 as a function of the first two coin 
tosses alone, but now we include the irrelevant third toss in the argument to 
get the full picture. If we take B to be the set containing the single number 16, 
then {S2 E B} = {HHH, HHT} = AHH , where we are using the notation 
of (2. 1 .2) .  It follows that AHH belongs to the a-algebra a(S2) .  Similarly, we 
can take B to contain the single number 4 and conclude that AHr U ArH 
belongs to a(S2) ,  and we can take B to contain the single number 1 to see 
that Arr belongs to a (S2) . Taking B = 0, we obtain 0. Taking B = IR, we 
obtain n. Taking B = [4, 16] ,  we obtain the set AHH u AHT u ArH · In short, 
as B ranges over the Borel subsets of IR, we will obtain the list of sets 
3 We recall that {X E B} is shorthand notation for the subset {w E !t; X (w) E B} 

of n. 
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and all unions and complements of these. This is the a-algebra a(82) . 
Every set in a(82) is in the a-algebra F2 of (2. 1 .3 ) ,  the information con

tained in the first two coin tosses. On the other hand, AHr and ArH appear 
separately in F2 and only their union appears in a(82 ) .  This is because seeing 
the first two coin tosses allows us to distinguish an initial head followed by 
a tail from an initial tail followed by a head, but knowing only the value of 
82 does not permit this. There is enough information in F2 to determine the 
value of 82 and even more. We say that 82 is F2-measumble. D 
Definition 2.1 .5 .  Let X be a mndom variable defined on a nonempty sample 
space n. Let g be a a-algebm of subsets of n. If every set in a( X) is also in 
g, we say that X is g-measurable . 

A random variable X is g-measurable if and only if the information in g 
is sufficient to determine the value of X. If X is g-measurable, then f(X) is 
also g-measurable for any Borel-measurable function f; if the information in 
g is sufficient to determine the value of X, it will also determine the value of 
f(X) . If X and Y are g-measurable, then f(X, Y) is g-measurable for any 
Borel-measurable function f(x, y) of two variables. In particular, X +  Y and 
XY are g-measurable. 

A portfolio position Ll(t) taken at time t must be F(t)-measurable (i.e. , 
must depend only on information available to the investor at time t) . We 
revisit a concept first encountered in Definition 2.4. 1 of Chapter 2 of Volume 
I. 
Definition 2.1 .6. Let [} be a nonempty sample space equipped with a filtm
tion F(t) , 0 :::; t :::; T. Let X(t) be a collection of mndom variables indexed by 
t E [0, T] . We say this collection of mndom variables is an adapted stochastic 
process if, for each t, the mndom variable X(t) is F(t) -measumble. 

In the continuous-time models of this text, asset prices , portfolio processes 
(i.e . , positions) , and wealth processes (i.e. , values of portfolio processes) will 
all be adapted to a filtration that we regard as a model of the flow of public 
information. 

2 . 2  Independence 

When a random variable is measurable with respect to a a-algebra g, the 
information contained in g is sufficient to determine the value of the random 
variable. The other extreme is when a random variable is independent of a 
u-algebra. In this case, the information contained in the a-algebra gives no 
clue about the value of the random variable. Independence is the subject of 
the present section. In the more common case, when we have a a-algebra g 
and a random variable X that is neither measurable with respect to g nor 
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independent of g, the information in g is not sufficient to evaluate X, but we 
can estimate X based on the information in g. We take up this case in the 
next section. 

In contrast to the concept of measurability, we need a probability mea
sure in order to talk about independence. Consequently, independence can be 
affected by changes of probability measure; measurability is not. 

Let (il, .1', JP) be a probability space. We say that two sets A and B in .1' 
are independent if 

JP(A n B) = JP(A) · lP(B) . 
For example, in il = { H H, HT, T H, TT} with 0 � p � 1 ,  q = 1 - p, and 

JP(HH) = p2 , JP(HT) = pq, JP(TH) = pq, JP(TT) = q2 , 
the sets 

A = {head on first toss} = { H H, HT} 
and 

B = {head on the second toss} = { H H, T H} 
are independent. Indeed, 

JP(A n B) = JP(HH) = p2 and JP(A)JP(B) = (p2 + pq) (p2 + pq) = p2 . 
Independence of sets A and B means that knowing that the outcome w of a 
random experiment is in A does not change our estimation of the probability 
that it is in B. If we know the first toss results in head, we still have probability 
p for a head on the second toss. 

In a similar way, we want to define independence of two random variables 
X and Y to mean that if w occurs and we know the value of X(w) (without 
actually knowing w) ,  then our estimation of the distribution of Y is the same 
as when we did not know the value of X(w) . The formal definitions are the 
following. 
Definition 2.2. 1 .  Let (il, .1', JP) be a probability space, and let g and 1i be 
sub-u-algebras of .1' {i. e. , the sets in g and the sets in 1i are also in .1' ) . We 
say these two a-algebras are independent if 

JP(A n B) = JP(A) · lP(B) for all A E Q, B E  11.. 
Let X and Y be random variables on (il, .1', JP) . We say these two random 
variables are independent if the a-algebras they generate, a(X) and a(Y) , 
are independent. We say that the random variable X is independent of the 
a-algebra g if a( X) and g are independent. 

Recall that a( X) is the collection of all sets of the form {X E C}, where C 
ranges over the Borel subsets of JR.. Similarly, every set in a(Y) is of the form 
{Y E D} .  Definition 2.2. 1 says that X and Y are independent if and only if 

JP{X E C and Y E D} =  lP{X E C} · lP{Y E D} 
for all Borel subsets C and D of R 
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Example 2. 2. 2. Recall the space {l of three independent coin tosses on which 
the stock price random variables of Figure 1 .2 .2 of Chapter 1 are constructed. 
Let the probability measure IP' be given by 

IP'(HHH) = p3 , IP'(HHT) = p2q, IP'(HTH) = p2q, IP'(HTT) = pq2 , 
IP'(THH) = p2q , IP'(THT) = pq2 , IP'(TTH) = pq2 , IP'(TTT) = q3 . 

Intuitively, the random variables s2 and s3 are not independent because if we 
know that s2 takes the value 16, then we know that s3 is either 8 or 32 and 
is not 2 or .50. To formalize this, we consider the sets {S3 = 32} = {HHH} 
and {S2 = 16} = {HHH, HHT} , whose probabilities are IP'{S3 = 32} = p3 
and IP'{ S2 = 16} = p2 . In order to have independence, we must have 

IP'{S2 = 16 and S3 = 32} = IP'{S2 = 16} · IP'{S3 = 32} = p5 . 

But IP'{ S2 = 16 and S3 = 32} = IP'{ H H H} = p3 , so independence requires 
p = 1 or p = 0. Indeed, if p = 1 , then after learning that S2 = 16, we do not 
revise our estimate of the distribution of S3 ; we already knew it would be 32. 
If p = 0, then S2 cannot be 16, and we do not have to worry about revising 
our estimate of the distribution of S3 if this occurs because it will not occur. 

As the previous discussion shows, in the interesting cases of 0 < p < 1 , 
the random variables S2 and S3 are not independent. However, the random 
variables S2 and t are independent. Intuitively, this is because S2 depends 
on the first two tosses, and t depends on the third toss only. The a-algebra 
generated by s2 comprises 0, n3 , the atoms (fundamental sets) 

{S2 = 16} = {HHH, HHT} , 
{S2 = 4} = {HTH, HTT, THH, THT} , 
{S2 = 1} = {TTH, TTT}, 

and their unions. The a-algebra generated by t comprises 0, il3, and the 
atoms 

{ �:  = 2} = {HHH, HTH, THH, TTH} ,  { s3 1 } S2 
= 2" = {HHT, HTT, THT, TTT} . 

To verify independence, we can conduct a series of checks of the form 

IP' { S2 = 16 and �: = 2} = IP'{S2 = 16} · IP' { �: = 2} . 

The left-hand side of this equality is 

IP' { S2 = 16 and �: = 2} = IP'{HHH} = p3 , 
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and the right-hand side is 

IP{ 82 = 16} · JlD { �: = 2} 
= IP{HHH, HHT} · IP{HHH, HTH, THH, TTH} 
= p2 · p. 

Indeed, for every A E a(S2) and every B E  a ( �) , we have 

Jl»(A n B) = JP(A) · Jl»(B) . 0 
We shall often need independence of more than two random variables. We 
make the following definition. 

Definition 2.2.3.  Let (!I, F, IP) be a probability space and let gb g2 , g3 , . . .  
be a sequence of sub-a-algebms of F. For a fixed positive integer n, we say 
that the n a -algebras g 1 , g2 , . . .  , gn are independent if 

JP(A1 n A2 n . . . n An) = IP(A1 ) . IP(A2) . . . • . JP(An) 
for all A1 E gb A2 E g2 , . . .  , An E gn · 

Let X1 , X2 , X3 , . . .  be a sequence ofmndom variables on (!I, F, IP) .  We say the 
n random variables X1 , X2 , . . .  , Xn are independent if the a-algebms a( XI ) ,  
a(X2) ,  . . .  , a(Xn) are independent. We say the full sequence of a-algebras 
gb g2 , g3 , . . .  is independent if, for every positive integer n, the n a-algebms 
g1 , g2 , . . .  , gn are independent. We say the full sequence of random variables 
X1 , X2 , X3 , . . .  is independent if, for every positive integer n, the n mndom 
variables X1 , X2 , • • •  , Xn are independent. 

Example 2. 2.4 .  The infinite independent coin-toss space (!100 , F, JP) of Exam
ple 1 . 1 .4 of Chapter 1 exhibits the kind of independence described in Definition 
2.2.3 . Let gk be the a-algebra of information associated with the kth toss. In 
other words, gk comprises the sets 0, !100, and the atoms 

Note that gk is different from Fk in Example 1 . 1 .4 of Chapter 1 , the a-algebra 
associated with the first k tosses. Under the probability measure constructed 
in Example 1 . 1 .4 of Chapter 1 , the full sequence of a-algebras g1 , g2 , g3 , . . .  
is independent. Now recall the sequence of the random variables of ( 1 .2.8) of 
Chapter 1 :  

Yk (w) = { 
1 �f wk = H, 
0 lf Wk = T. 

The full sequence of random variables Y1 , Y2 , Y3 , . . .  is likewise independent . 
0 
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The definition of independence of random variables, which was given in 
terms of independence of a-algebras that they generate, is a strong condition 
that is conceptually useful but difficult to check in practice. We illustrate the 
first point with the following theorem and thereafter give a second theorem 
that simplifies the verification that two random variables are independent . 
Although this and the next section treat only the case of a pair of random 
variables, there are analogues of these results for n random variables. 

Theorem 2.2.5. Let X and Y  be independent mndom variables, and let f and 
g be Borel-measumble functions on JR.. Then f(X) and g(Y) are independent 
mndom variables. 
PROOF:  Let A be in the a-algebra generated by f(X) . This a-algebra is a 
sub-a-algebra of a(X) .  To see this , recall that , by definition, every set A in 
a(f(X)) is of the form {w E fl; f(X(w)) E C} , where C is a Borel subset of 
R We define D =  {x E JR.; f(x) E C} and then have 

A =  {w E fl; f(X(w)) E C} = {w E  fl, X(w) E D} .  (2.2 . 1 )  

The set on the right-hand side of  (2 .2 . 1) i s  in a(X) ,  so A E a(X) . 
Let B be in the a-algebra generated by g(Y) . This a-algebra is a sub

a-algebra of a(Y) , so B E a(Y) . Since X and Y are independent, we have 
IP'(A n B) = IP'(A) · IP'(B) . 0 
Definition 2.2.6. Let X and Y be mndom variables. The pair of mndom 
variables (X, Y) takes values in the plane IR.2 , and the joint distribution mea
sure of (X, Y) is given by4 

t-tx,y (C) = IP'{ (X, Y) E C} for all Borel sets C C IR.2 • (2 .2 .2) 

This is a probability measure (i. e . ,  a way of assigning measure between 0 and 
1 to subsets of IR.2 so that /-tX,Y (IR.2 ) = 1 and the countable additivity property 
is satisfied}. The joint cumulative distribution function of (X, Y) is 

Fx,y (a, b) = t-tx,y ((-oo, a] x (-oo, bl )  = IP'{X � a, Y � b} , a E IR., b E JR.. 
(2 .2 .3) 

We say that a nonnegative, Borel-measumble function fx,y (x, y) is a joint 
density for the pair of mndom variables (X, Y) if 

t-tx,Y (C) = I: I: Hc (x, y)fx,y (x, y) dy dx for all Borel sets C c JR.2 . 

(2.2 .4) 

4 One way to generate the u-algebra of Borel subsets of R2 is to start with the 
collection of closed rectangles (a r ,  b r ]  x (a2 , b2] and then add all other sets necessary 
in order to have a u-algebra. Any set in this resulting u-algebra is called a Borel 
subset of R2 • All subsets of R2 normally encountered belong to this u-algebra. 
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Condition (2.2.4) holds if and only if 

Fx,Y (a, b) = /_� /_b

oo 
fx,v (x, y) dy dx for all a E JR, b E  JR. (2.2.5) 

The distribution measures (generally called the marginal distribution mea
sures in this context) of X and Y are 

J.Lx (A) = JP{X E A} 
J.Ly (B) = lP{Y E B} 

J.Lx,v (A x JR) for all Borel subsets A C JR, 
J.Lx,v (JR x B) for all Borel subsets B C R 

The {marginal) cumulative distribution functions are 

Fx (a) = J.Lx (-oo, a] 
Fy (b) = J.Ly (-oo, b] 

JP{X � a} for all a E JR, 
JP{Y � b} for all b E  JR. 

If the joint density fx,Y exists, then the marginal densities exist and are given 
by 

fx (x) = /_: fx,v (x, y) dy and fy (y) = /_: fx,v (x, y) dx. 

The marginal densities, if they exist , are nonnegative, Borel-measurable func
tions that satisfy 

J.Lx (A) = i fx (x) dx for all Borel subsets A C JR, 

J.LY (B) = L Jy (y) dy for all Borel subsets B c JR. 

These last conditions hold if and only if 

Fx (a) = /_� fx (x) dx for all a E JR, 

Fy (b) = /_b

oo 
Jy (y) dy for all b E  JR. 

(2 .2.6) 

(2 .2 .7) 

Theorem 2.2. 7. Let X and Y be random variables. The following conditions 
are equivalent. 
{i} X and Y are independent. 
{ii} The joint distribution measure factors: 

J.Lx,v (A x B) = J.Lx (A) · J.Lv (B) for all Borel subsets A C JR, B C R 
(2.2.8) 

{iii} The joint cumulative distribution function factors: 

Fx,v (a, b) = Fx (a) · Fv (b) for all a E JR, b E  JR. (2.2.9) 
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(iv) The joint moment-generating function factors: 

IEeuX +vY = IEeuX . lEevY 

for all u E IR, v E lR for which the expectations are finite. 

(2 .2 . 10) 

If there is a joint density, each of the conditions above is equivalent to the 
following. 
(v) The joint density factors: 

fx,y (x, y) = fx (x) · Jy (y) for almost every x E IR, y  E JR. 

The conditions above imply but are not equivalent to the following. 
{vi} The expectation factors: 

IE[XY] = lEX · lEY, 

provided IEIXYI < oo. 

(2.2. 1 1 )  

(2.2 . 12) 

OUTLINE OF PROOF: We sketch the various steps that constitute the proof 
of this theorem. 
(i)=?(ii) Assume that X and Y are independent . Then 

JLx,y (A x B) = IP'{X E A and Y E B} 
= IP'({X E A} n {Y E B}) 
= IP'{X E A} · IP'{Y E B} 
= JLx (A) · JLy (B) .  

(ii)=?(i) A typical set in a(X) i s  of the form {X E A} , and a typical set in 
a(Y) is of the form {Y E B} .  Assume (ii) . Then 

IP'({X E A} n {Y E B}) = IP'{X E A and Y E B} 
= JLX,Y (A X B) 
= JLx (A) · JLy (B) 
= IP'{X E A} · IP'{Y E B} . 

This shows that every set in a(X) is independent of every set in a(Y) . 
(ii)=?(iii) Assume (2 .2 .8) . Then 

Fx,y (a, b) = JLx,Y ((-oo, a] x (-oo, bl )  
= JLx (-oo, a] · JLy (-oo, b] 
= Fx (a) · Fy (b) . 

(iii)=?(ii) Equation (2.2 .9) implies that (2 .2 .8) holds whenever A is of the 
form A = ( -oo, a] and B is of the form B = ( -oo, b] . This is enough to 
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establish (2.2.8) for all Borel sets A and B, but the details of this are beyond 
the scope of the text. 
(iii)=?(v) If there is a joint density, then (iii) implies 

/_�/_boo Jx,y (x, y) dy dx = /_� fx (x) dx · �� Jy(y) dy. 

Differentiating first with respect to a and then with respect to b, we obtain 

!x,y (a, b) = !x (a) · Jy(b) , 

which is just (2.2 . 1 1 )  with different dummy variables. 
(v)=?(iii) Assume there is a joint density. If we also assume (2.2 . 1 1 ) ,  we can 
integrate both sides to get 

Fx,y (a, b) = /_�/_boo Jx,y (x, y) dy dx 

= /_�/_boo fx (x) · Jy(y) dy dx 

= /_� fx (x) dx · /_boo Jy(y) dy 

= Fx (a) · Fy (b) . 

(i)=? (iv) We first use the "standard machine" as in the proof of Theorem 
1 .5. 1 of Chapter 1 , starting with the case when h is the indicator function of 
a Borel subset of JR.2 , to show that, for every real-valued, Borel-measurable 
function h(x, y) on IR.2 , we have 

lEih(X, Y) l = { i h(x, y) i dJ.Lx,y (x, y) ,  }R2 
and if this quantity is finite, then 

lEh(X, Y) = { h(x, y) dJ.Lx,y (x, y) . JR2 (2.2. 13) 

This is true for any pair of random variables X and Y, whether or not they 
are independent. If X and Y are independent, then the joint distribution J.Lx, y 
is a product of marginal distributions, and this permits us to rewrite (2.2 .13) 
as 

lEh(X, Y) = /_: /_: h(x, y) dJ.Ly(y) dJ.Lx (x) . (2.2 .14) 
We now fix numbers u and v and take h(x, y) = eux+vy . Equation (2.2. 14) 
reduces to 
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lEeuX+vY = /_: i: eux+vy dJ-Ly (y) dJ-Lx (x) 

= /_: eux dJ-Lx (x) · /_: evy dJ-Ly (y) 

= IEeuX . lEevY ' 
where we have used Theorem 1 .5 . 1 of Chapter 1 for the last step. The proof 
(iv)=?(i) is beyond the scope of this text. 
(i)=?(vi) In the special case when h(x, y) = xy, (2.2. 14) reduces to 

IE[XY] = /_: x dJ-Lx (x) · /_: y dJ-Ly (y) = lEX · lEY, 

where again we have used Theorem 1 .5 . 1 of Chapter 1 for the last step. 0 
Example 2. 2. 8 {Independent normal random variables). Random variables X 
and Y are independent and standard normal if they have the joint density 

1 1 ( 2+ 2 ) !x,y (x, y) = 211" 
e- 2 x Y for all x E IR, y E JR. 

This is the product of the marginal densities 

We use the notation 
(2 .2 .15) 

for the standard normal cumulative distribution function. The joint cumula
tive distribution function for (X, Y) factors: 

Fx,y (a , b) = /_�/_boo fx (x)Jy (y) dy dx 

= /_� fx (x) dx · /_boo Jy(y) dy 

= N(a) · N(b) . 

The joint distribution J-Lx is the probability measure on JR2 that assigns a 
measure to each Borel set C C JR2 equal to the integral of Jx,y (x, y) over C. 
If C = A  x B, where A E B(IR) and B E  B(IR) , then J-Lx,Y factors: 

J-Lx,y (A x B) = i l fx (x)Jy(y) dy dx 

= i fx (x) dx · l Jy(y) dy 

= J-Lx (A) · J-Ly (B) . 0 
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We give an example to show that property (vi) of Theorem 2.2 .7 does not 
imply independence. We precede this with a definition. 

Definition 2.2.9. Let X be a random variable whose expected value is defined. 
The variance of X ,  denoted Var(X) ,  is 

Var(X) = lE [(X - JEX )2) . 

Because (X - lEX)2 is nonnegative, Var(X) is always defined, although it 
may be infinite. The standard deviation of X is yfVar(X) .  The linearity of 
expectations shows that 

Let Y be another random variable and assume that lEX , Var(X) ,  lEY and 
Var(Y) are all finite. The covariance of X and Y is 

Cov(X, Y) = lE [ (X - lEX)(Y - lEY)] . 

The linearity of expectations shows that 

Cov(X, Y) = lE[XY] - lEX · lEY. 

In particular, lE [XY] = lEX · lEY if and only if Cov(X, Y) = 0. Assume, in 
addition to the finiteness of expectations and variances, that Var(X) > 0 and 
Var(Y) > 0. The correlation coefficient of X and Y is 

(X Y) _ Cov(X, Y) 
p ' - JVar(X)Var(Y) 

If p(X, Y) = 0 (or equivalently, Cov(X, Y) = 0}, we say that X and Y are 
uncorrelated . 

Property (vi) of Theorem 2.2 .7 implies that independent random variables 
are uncorrelated. The converse is not true, even for normal random variables, 
although it is true of jointly normal random variables (see Definition 2.2. 1 1  
below) . 

Example 2. 2. 1 0  (Uncorrelated, dependent normal random variables). Let X 
be a standard normal random variable and let Z be independent of X and 
satisfy5 

5 To construct such random variables, we can choose {} = { (w1 , w2 ) ;  0 :S w1 :S 
1 ,  0 :S w2 :S 1 }  to be the unit square and choose JP> to be the two-dimensional 
Lebesgue measure according to which JP>(A) is equal to the area of A for every 
Borel subset of G. We then set X(w1 , w2 ) = N-1 (wt ) ,  which is a standard normal 
random variable under JP> (see Example 1 .2 .6 for a discussion of this probability 
integral transform) . We set Z(w1 , w2 ) to be - 1  if 0 :S w2 :S � and to be 1 if 
� < W2 :S 1 .  
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1 1 IP'{Z = 1 }  = - and IP'{Z = - 1} = - .  2 2 (2 .2 .16} 

Define Y = ZX. We show below that, like X ,  the random variable Y is 
standard normal. FUrthermore, X and Y are uncorrelated, but they are not 
independent. The pair (X, Y) does not have a joint density. 

Let us first determine the distribution of Y. We compute 

Fy (b) = IP'{Y :S b} 
= IP'{Y :::; b and Z = 1}  + IP'{Y ::; b and Z = - 1} 
= IP'{X ::; b and Z = 1}  + IP'{ -X :S b and Z = -1 } .  

Because X and Z are independent, we have 

IP'{X :::; b and Z = 1 }  + IP'{ -X :::; b and Z = - 1}  
= IP'{Z = 1 }  · IP'{X :S b} + IP'{Z = - 1}  · IP'{ -X :S b }  

1 1 = 2 · IP'{X :S b} + 2 · IP'{ -X ::; b} . 

Because X is a standard normal random variable, so is -X.  Therefore, IP'{X :::; 
b} = IP'{ -X :::; b} = N(b) .  It follows that Fy (b) = N(b) ; in other words, Y is 
a standard normal random variable. 

Since lEX = lEY = 0, the covariance of X and Y is 

Cov(X, Y) = JE[XY] = lE (ZX2] . 

Because Z and X are independent, so are Z and X2 , and we may use Theorem 
2.2.7(vi) to write 

Therefore, X and Y are uncorrelated. 
The random variables X and Y cannot be independent for if they were, 

then lX I and IY I would also be independent (Theorem 2.2.5) . But lX I = IY I · 
In particular, 

IP'{ IX I :::; 1, IY I :::; 1 } = IP'{ IX I :::; 1} = N(1) - N( - 1) ,  

and 
IP'{ IX I :::; 1 }  · IP'{ IY I :::; 1} = (N(1) - N(- 1) ) 2 . 

These two expressions are not equal, as they would be for independent random 
variables. 

Finally, we want to examine the joint distribution measure /LX,Y of (X, Y) . 
Since lX I = IY I , the pair (X, Y) takes values only in the set 

C = { (x, y) ; x = ±y} .  
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In other words, J-Lx,Y (C) = 1 and J-Lx.Y (Cc) = 0. But C has zero area. It 
follows that for any nonnegative function f, we must have /_: i: ITc (x, y)f (x, y) dy dx = 0. 

One way of thinking about this is to observe that if we want to integrate a 
function ITc (x, y)f(x, y) over the plane JR.2 , we could first fix x and integrate 
out the y-variable, but since f(x, y)ITc(x, y) is zero except when y = x and 
y = -x, we will get zero. When we next integrate out the x-variable, we will 
be integrating the zero function, and the end result will be zero. There cannot 
be a joint density for (X, Y) because with this choice of the set C, the left
hand side of (2.2 .4) is one but the right-hand side is zero. Of course, X and 
Y have marginal densities because they are both standard normal. Moreover, 
the joint cumulative distribution function exists (as it always does) . In this 
case, it is 

Fx ,y (a , b) 
= IP'{X ::; a and Y ::; b} 
= IP'{X ::; a, X ::; b, and Z = 1 }  + IP'{X ::; a, -X ::; b, and Z = - 1}  
= IP'{ Z = 1 }  · IP'{ X ::; min( a, b) } + IP'{  Z = -1}  · IP'{ -b ::; X ::; a} 

1 . 1 
= 2N(mm(a , b) )  + 2 max{N(a) - N(-b) , O} . 

There is no joint density fx ,y (x, y) that permits us to write this function in 
the form (2.2.5) . 0 
Definition 2.2. 11 .  Two mndom variables X and Y are said to be jointly 
normal if they have the joint density 

fx.Y (x, y) 
2p(x - J-LI ) (y - Jl-2) 

(2 .2 . 17) 

where u1 > 0, u2 > 0, I PI < 1 ,  and J-LI , Jl-2 are real numbers. More genemlly, a 
mndom column vector X = (X 1 , . . .  , X n) tr , where the superscript tr denotes 
tmnspose, is jointly normal if it has joint density 

fx (x) = 
1 exp {- -2

1 (x - �-t)C-1 (x - J-t)tr } . J(2rr)ndet( C) 
(2 .2 . 18) 

In equation {2.2. 18}, x = (x1 7 . . • , Xn ) is a row vector of dummy variables, 
J-L = (J-LI , . . . , J-tn ) is the row vector of expectations, and C is the positive definite 
matrix of covariances. 
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In the case of (2.2 . 17) , X is normal with expectation J.L1 and variance 17f ,  
Y is normal with expectation f..L2 and variance 17� , and the correlation between 
X and Y is p. The density factors (equivalently, X and Y are independent) 
if and only if p = 0. In the case (2 .2 .18) ,  the density factors into the product 
of n normal densities (equivalently, the components of X are independent) if 
and only if C is a diagonal matrix (all the covariances are zero) . 

Linear combinations of jointly normal random variables (i.e. , sums of con
stants times the random variables) are jointly normal. Since independent nor
mal random variables are jointly normal, a general method for creating jointly 
normal random variables is to begin with a set of independent normal random 
variables and take linear combinations. Conversely, any set of jointly normal 
random variables can be reduced to linear combinations of independent nor
mal random variables. We do this reduction for a pair of correlated normal 
random variables in Example 2 .2 .12 below. 

Since the distribution of jointly normal random variables is characterized in 
terms of means and covariances, and joint normality is preserved under linear 
combinations, it is not necessary to deal directly with the density when making 
linear changes of variables. The following example illustrates this point . 
Example 2. 2. 12. Let (X, Y) be jointly normal with the density (2.2 . 17) .  Define 
W = Y - £!!!£X. Then X and W are independent. To verify this, it suffices to ,., 
show that X and W have covariance zero since they are jointly normal. We 
compute 

Cov(X, W) = lE [(X - lEX)(W - JEW)] 

= lE [(X - lEX) (Y - lEY)] - lE [ �2 (X - JEX)2] 
= Cov(X, Y) - p172 17� 171 
= 0. 

The expectation of W is f..L3 = J.L2 - �, and the variance is 
,., 

175 = lE [(W - JEW)2] 

= lE [(Y - JEY)2] - 2P172lE [(X - lEX) (Y - lEY)] + p
2
��lE [(X - JEX)2] 171 171 

= ( 1 - p2)17� . 
The joint density of X and W is 

1 { (X - J.L1 )2 (W - J.L3 )2 } Jx,w (x, w) = 2 exp - 2 2 - 2 2 · rrl71� � � 
Note finally that we have decomposed Y into the linear combination 

y = pl72 X + w (2.2. 19) 171 
of a pair of independent normal random variables X and W. D 
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2 . 3  General Conditional Expectations 

We consider a random variable X defined on a probability space (il, F, IP') 
and a sub-a-algebra g of F. If X is g-measurable, then the information in g 
is sufficient to determine the value of X. If X is independent of g, then the 
information in g provides no help in determining the value of X. In the inter
mediate case, we can use the information in g to estimate but not precisely 
evaluate X. The conditional expectation of X given g is such an estimate. 

We have already discussed conditional expectations in the binomial model. 
Let il be the set of all possible outcomes of N coin tosses, and assume these 
coin tosses are independent with probability p for head and probability q = 
1 - p for tail on each toss. Let IP'(w) denote the probability of a sequence of 
coin tosses under these assumptions. Let n be an integer, 1 � n � N - 1 ,  and 
let X be a random variable. Then the conditional expectation of X under IP', 
based on the information at time n, is (see Definition 2 .3 .1 of Chapter 2) 

lEn [X) (w1 . . .  Wn ) 
"'""' p#H(wn+I · · ·wN ) q#T(wn+ l · · ·wN )X(w W W W ) � 1 · . .  n n+ l · . .  N . 

Wn+ l · · ·WN 

In the special cases n = 0 and n = N, we define 

lEoX = L P#H(wo . . .  wN )q#T(wo . . .  wN )X(wo . . .  wN) = lEX, 
wo . . .  wN 

(2.3. 1 ) 

(2.3.2) 

(2.3.3) 
In (2.3.2) , we have the estimate of X based on no information, and in (2.3.3) 
we have the estimate based on full information. 

We need to generalize (2.3. 1 )-(2.3.3) in a way suitable for a continuous
time model. Toward that end, we examine (2.3 . 1 ) within the context of a 
three-period example. Consider the general three-period model of Figure 2.3. 1 .  
We assume the probability of  head on each toss i s  p and the probability of 
tail is q = 1 - p, and we compute 

lE2 [S3) (HH) = pS3 (HHH) + qS3 (HHT) , 
lE2 [S3] (HT) = pS3 (HTH) + qS3 (HTT) , 
lE2 [S3) (TH) = pS3 (THH) + qS3 (THT) , 
lE2 [S3) (TT) = pS3 (TTH) + qS3 (TTT) . 

(2.3.4) 
(2.3.5) 
(2.3.6) 
(2.3 .7) 

Recall the a-algebra F2 of (2. 1 .3) , which is built up from the four fundamental 
sets (we call them atoms because they are indivisible within the a-algebra) 
AHH, AHr, ArH, and Arr of (2 . 1 .2) . We multiply (2.3.4) by IP'(AHH) = p2 , 
multiply (2.3.5) by IP'(AHr ) = pq, multiply (2.3.6) by IP'(ArH ) = pq, and 
multiply (2.3.7) by IP'(Arr ) = q2 . The resulting equations may be written as 
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Ss (HHH) = u3So 
� S2 (HH) = u2So 

/ � -s1 (H) = uSo � Ss (HHT) - Ss (IfTH) 
/ � / = Ss (THH) = u dSo 

So S2 (HT) = S2 (TH) = udSo 
� / ""' -s1 (T) = dSo -------- Ss (HTT) - S3 (T�T) 

� --------
= Ss (TTH) = ud So 

S2 (TT) = d2 So 
� Ss (TTT) = d3So 

Fig. 2 .3 .1 .  General three-period model. 

(2.3.8) 

E2 [S3] (HT)JP(AHr) = L S3 (w)IP'(w) ,  (2.3.9) 
wEAHT 

(2.3. 10) 

E2 [S3] (TT)IP'(Arr) = L S3 (w)IP'(w) . (2.3. 1 1 )  
wEATT 

We could divide each of these equations by the probability of the atom appear
ing as the second factor on the left-hand sides and thereby recover the formulas 
{2.3.4)-(2.3. 7) for the conditional expectations. However, in the continuous
time model, atoms typically have probability zero, and such a step cannot be 
performed. We therefore take an alternate route here to lay the groundwork 
for the continuous-time model. 

On each of the atoms of :F2 , the conditional expectation IE2 [S3] is con
stant because the conditional expectation does not depend on the third 
toss and the atom is created by holding the first two tosses fixed. It fol
lows that the left-hand sides of (2.3.8)-(2.3 . 1 1 )  may be written as integrals 
of the integrand IE2 [S3] over the atom. For this purpose, we shall write 
lE2 [S3] (w) = IE2 [S3) (w1w2w3) ,  including the third toss in the argument, even 
though it is irrelevant . The right-hand sides of these equations are sums, which 
are Lebesgue integrals on a finite probability space. Using Lebesgue integral 
notation, we rewrite (2.3.8)-(2.3 . 11 )  as 
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{ E2 [S3] (w) dlP'(w) = { S3 (w) dlP'(w) , JAHH JAHH { E2 [S3] (w) dlP'(w) = { S3 (w) dlP'(w) , JAHr JAHr { E2 [S3] (w) dlP'(w) = { S3 (w) dlP'(w) , lATH lArH 

(2.3. 12) 

(2.3. 13) 

(2 .3 .14) 

(2.3. 15) 

In other words, on each of the atoms the value of the conditional expectation 
has been chosen to be that constant that yields the same average over the 
atom as the random variable s3 being estimated. 

We turn our attention now to the other sets in :F2 . The full list appears 
in (2. 1 .3) , and every set on the list , except for the empty set , is a finite union 
of atoms. If we add equations (2.3 . 12) and (2.3 . 13) , we obtain 

Similarly, but adding various combinations of (2.3. 12)-(2.3. 15) ,  we see that 

(2 .3 . 16) 

for every set A E :F2, except possibly for A = 0. However, if A = 0, equa
tion (2 .3 . 16) still holds, with both sides equal to zero. We call (2.3. 16) the 
partial-avemging property of conditional expectations because it says that the 
conditional expectation and the random variable being estimated give the 
same value when averaged over "parts" of Jl (those "parts" that are sets in 
the conditioning a-algebra :F2) .  

We take (2.3. 16) as the defining property of conditional expectations. The 
precise definition is the following. 
Definition 2.3. 1 .  Let (il, :F, IP') be a probability space, let g be a sub-a-algebm 
of :F, and let X be a mndom variable that is either nonnegative or integmble. 
The conditional expectation of X given 9, denoted JE[X I9) , is any mndom 
variable that satisfies 
{i) (Measurability) JE[X I9] is 9-measumble, and 
{ii) (Partial averaging) 

i lE[X jQ] (w) dlP'(w) = i X(w) dlP'(w) for all A E Q. (2.3. 17) 

If g is the a-algebm genemted by some other mndom variable W (i. e. , g = 
a(W)) , we genemlly write JE[X IW] mther than JE[X ja(W)] . 
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Property (i) in Definition 2.3. 1 guarantees that, although the estimate of 
X based on the information in g is itself a random variable, the value of the 
estimate JE[X Ig] can be determined from the information in g. Property (i) 
captures the fact that the estimate lE[X Ig] of X is based on the information in 
g. Note in (2.3.4)-(2.3 . 7) that the conditional expectation lE2 [S3] is constant 
on the atoms of F2 ; this is property (i) for this case. 

The second property ensures that JE[X Ig] is indeed an estimate of X. It 
gives the same averages as X over all the sets in g. If g has many sets, 
which provide a fine resolution of the uncertainty inherent in w, then this 
partial-averaging property over the "small" sets in g says that lE[X Ig] is a 
good estimator of X.  If g has only a few sets, this partial-averaging property 
guarantees only that JE[X Ig] is a crude estimate of X. 

Definition 2.3. 1 raises two immediate questions. First , does there always 
exist a random variable lE[X Ig] satisfying properties (i) and (ii)? Second, if 
there is a random variable satisfying these properties, is it unique? The answer 
to the first question is yes, and the proof of the existence of JE[X Ig] is based on 
the Radon-Nikodym Theorem, Theorem 1 .6 .7 (see Appendix B) .  The answer 
to the second question is a qualified yes, as we now explain. Suppose Y and 
Z both satisfy conditions (i) and (ii) of Definition 2.3. 1 .  Because both Y 
and Z are g-measurable, their difference Y - Z is as well, and thus the set 
A =  {Y - Z > 0} is in g. From (2.3. 17) , we have 

L Y(w) dlP(w) = L X(w) dlP(w) = L Z(w) dlP(w) , 

and thus L (Y (w) - Z (w) ) dlP(w) = 0. 

The integrand is strictly positive on the set A, so the only way this equation 
can hold is for A to have probability zero (i.e. , Y :::; Z almost surely) . We 
can reverse the roles of Y and Z in this argument and conclude that Z :::; Y 
almost surely. Hence Y = Z almost surely. This means that although differ
ent procedures might result in different random variables when determining 
E[X Ig] , these different random variables will agree almost surely. The set of 
w for which the random variables are different has zero probability. 

In this more general context , conditional expectations still have the five 
fundamental properties developed in Theorem 2.3.2 of Chapter 2 of Volume 
I. We restate them in the present context . 

Theorem 2.3.2. Let (il, F, IP) be a probability space and let g be a sub-a
algebra of F. 
{i) (Linearity of conditional expectations) If X and Y are integrable 

random variables and c1 and c2 are constants, then 

(2 .3 . 18) 
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This equation also holds if we assume that X and Y are nonnegative 
(mther than integmble) and c1 and c2 are positive, although both sides 
may be +oo. 

{ii} (Taking out what is known) If X and Y are integmble mndom vari
ables, Y and XY are integmble, and X is g-measumble, then 

IE[XYig] = XIE[Yigj . (2 .3 . 19) 

This equation also holds if we assume that X is positive and Y is nonneg
ative (mther than integmble}, although both sides may be +oo. 

(iii} (Iterated conditioning) If 1l is a sub-a algebm of g (1£ contains less 
information than g) and X is an integmble mndom variable, then 

IE [IE[X IgJ I1l] = IE [X I1l) .  (2.3.20) 

This equation also holds if we assume that X is nonnegative {mther than 
integmble}, although both sides may be +oo. 

(iv) (Independence) If X is integmble and independent of g, then 

IE[X Ig] = lEX. (2.3 .21) 

This equation also holds if we assume that X is nonnegative (mther than 
integmble}, although both sides may be +oo. 

{v} (Conditional Jensen's inequality) If cp(x) is a convex function of a 
dummy variable x and X is integmble, then 

IE [cp(X) Ig) 2:: cp (E[X Igl ) .  (2.3 .22) 

DISCUSSION AND SKETCH OF PROOF: We take each of these properties in 
turn. 
(i) Linearity allows us to separate the estimation of random variables into 
estimation of separate pieces and then add the estimates of the pieces to 
estimate the whole. To verify that IE[c1X + c2Y igj is given by the right
hand side of (2.3. 18) , we observe that the right-hand side is g-measurable 
because IE[X Ig] and IE[Y ig] are g-measurable and then must check the partial
averaging property (ii) of Definition 2.3. 1 .  Using the fact that E[X Ig] and 
E[Y ig] themselves satisfy the partial-averaging property, we have for every 
A E g that 

i (cl!E[X Ig] (w) + c21E[Y igj (w) } dlP'(w) 

= c1 i IE[X Ig] (w) dlP'(w) + c2 i IE[Y ig] (w) dlP'(w) 

= c1 i X(w) dlP'(w) + c2 i Y(w) dlP'(w) 

= i (c1X(w) + c2Y(w)) dlP'(w) , 
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which shows that c1lE(X Ig] + c2lE[Y jg] satisfies the partial-averaging property 
that characterizes JE(c1X + c2Y ig] and hence is JE[c1X + c2Y ig] .  
(ii) Taking out what is known permits us to remove X from the estimation 
problem if its value can be determined from the information in g. To estimate 
XY, it suffices to estimate Y alone and then multiply the estimate by X. To 
prove (2.3 . 19) , we observe first that XlE(Y igj is g-measurable because both X 
and JE(Y ig] are g-measurable. We must check the partial-averaging property. 

Let us first consider the case when X is a g-measurable indicator random 
variable (i.e. , X = HB , where B is a set in g) . Using the fact that JE(Y jg] itself 
satisfies the partial-averaging property, we have for every set A E g that 

{ X(w)JE[Y jg] (w) dlP'(w) = { JE[Yjg] (w) dlP'(w) jA lAnB 
= { Y(w) dlP'(w) lAnB 
= L X(w)Y(w) dlP'(w) . (2.3 .23) 

Having proved (2.3 .23) for g-measurable indicator random variables X, we 
may use the standard machine developed in the proof of Theorem 1 .5 . 1  of 
Chapter 1 to obtain this equation for all g-measurable random variables X 
for which XY is integrable. This shows that XlE[Y jg] satisfies the partial
averaging condition that characterizes lE[XYjg] ,  and hence XJE(Y jg] is the 
conditional expectation lE[XYjg] .  
(iii) If we estimate X based on the information in g and then estimate the 
estimate based on the smaller amount of information in H., we obtain the 
random variable we would have gotten by estimating X directly based on 
the smaller amount of information in H.. To prove this, we observe first that 
lE(X j'H.] is H.-measurable by definition. The partial-averaging property that 
characterizes lE [lE(X jg] jH.) is 

i lE [lE[X jg] jH.] (w) dlP'(w) = i JE(X jg] (w) IP'(w) for all A E H.. 

In order to prove (2.3.20) , we must show that we can replace lE [lE[X jg] jH.) on 
the left-hand side of this equation by JE[X I'H.] . But when A E H., it is also in 
g, and the partial-averaging properties for JE(X j'H.] and JE [X jg] imply 

i lE[X j'H.] (w) dlP'(w) = i X(w) dlP'(w) = i JE[X jg] (w) dlP'(w) . 

This shows that lE(X I'H.] satisfies the partial-averaging property that charac
terizes lE [lE(X jg] j'H.) , and hence JE[X j'H.] is lE [lE(X jg] jH.) . 
(iv) If X is independent of the information in g, then the best estimate we can 
give of X is its expected value. This is also the estimate we would give based 
on no information. To prove this, we observe first that lEX is g-measurable. 
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Indeed, lEX is not random and so is measurable with respect to every a
algebra. We need to verify that lEX satisfies the partial-averaging property 
that characterizes IE[X IQ] ;  i .e . , 

i lEX dlP(w) = i X(w) dlP(w) for all A E Q. (2.3.24) 

Let us consider first the case when X is an indicator random variable indepen
dent of Q (i.e. , X =  HB , where the set B is independent of Q) .  For all A E Q, 
we have then 

i X(w) dlP(w) = JP>(A n B) = JP>(A) · JP>(B) = JP>(A)IEX = i lEX dlP(w) , 

and (2.3.24) holds. We complete the proof using the standard machine devel
oped in the proof of Theorem 1 .5 . 1  of Chapter 1 .  
(v) Using the linearity of conditional expectations, we can repeat the proof 
of Theorem 2.2 .5 of Chapter 2 to prove the conditional Jensen's inequality. 0 

We note that IE[X IQ] is an unbiased estimator of X:  

IE (IE[X IQ] )  = lEX. (2.3 .25) 

This equality is just the partial-averaging property ( 2.3. 17) with A = il. 

Example 2. 3. 3. Let X and Y be a pair of jointly normal random variables 
with joint density (2.2 . 17) .  As in Example 2.2. 12, define W = Y - £!!!.a X so <Tt that X and W are independent and (2.2 .19) holds: 

(2.2 .19) 

In Example 2 .2 .12 ,  we saw that W is normal with mean J.LJ = J.L2 - � <Tt 
and variance a� = ( 1 - p2)a� .  Let us take the conditioning a-algebra to be 
g = a(X) . (When g is generated by a random variable X, it is customary to 
write IE[· · · IX] rather than IE[· · · l a(X)] . ) We estimate Y, based on X, using 
(2.2 .19) above and properties (i) (Linearity) and (iv) (Independence) from 
Theorem 2.3.2 to get the linear regression equation 

pa2 pa2 IE[Y IX] = -X + lEW = -(X - J.LI ) + J.L2 · a1 a1 (2.3.26) 

Note that the right-hand side of (2.3.26) is random but is a(X)-measurable 
(i.e. , if we know the information in a(X) , which is the same as knowing the 
value of X, then we can evaluate IE[Y IX] ) .  Subtracting (2.3 .26) from (2.2 . 19) , 
we see that the error made by the estimator is 

Y - IE[Y IX] = W - lEW 
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The error is random, with expected value zero (the estimator is unbiased) ,  and 
is independent of the estimate IE[Y IX] (because IE[Y IX] is a(X)-measurable 
and W is independent of a(X) ) .  The independence between the error and the 
conditioning random variable X is a consequence of the joint normality in 
the example. In general, the error and the conditioning random variable are 
uncorrelated, but not necessarily independent; see Exercise 2.8. 0 

The Independence Lemma, Lemma 2.5 .3 of Chapter 2 of Volume I, now 
takes the following more general form. 
Lemma 2 .3.4 (Independence) .  Let (!l, :F, IP') be a probability space, and 
let g be a sub-a-algebra of :F. Suppose the random variables X1 ,  . . .  , XK are 
Q-measurable and the random variables Y� , . . .  , YL are independent of g.  Let 
f(x � ,  . . .  , XK ,  y� , . . .  , YL )  be a function of the dummy variables x 1 , . . .  , XK and 
Yl l . . .  , YL , and define 

Then 
g (x 1 ,  . • .  , xK ) = 1Ef (x 1 ,  • • •  , xK ,  Y� , . . .  , YL) .  (2.3 .27) 

(2.3 .28) 
As with Lemma 2.5.3 of Volume I, the idea here is that since the informa

tion in g is sufficient to determine the values of x� , 0 0 0 , XK , we should hold 
these random variables constant when estimating f (X 1 , . . .  , X K, Y� , . . .  , Y K) . 
The other random variables, Y1 , . . .  , YL , are independent of g, and so we 
should integrate them out without regard to the information in g.  These two 
steps, holding X1 , . . .  , XK constant and integrating out Y1 , • • •  , YL , are ac
complished by (2.3 .27) . We get an estimate that depends on the values of 
xb 0 0 0 , XK and, to capture this fact , we replaced the dummy (nonrandom) 
variables x1 , . • . , x K by the random variables X 1 , . . .  , X K at the last step. Al
though Lemma 2.5 .3 of Volume I has a relatively simple proof, the proof of 
Lemma 2.3.4 requires some measure-theoretic ideas beyond the scope of this 
text, and will not be given. 

Example 2. 3. 3 continued. Continuing with the notation of Example 2.3 .3 , 
suppose we want to estimate some function f ( x, y) of the random variables 
X and Y based on knowledge of X. We cannot use the Independence Lemma 
directly because X and Y are not independent . However, we can write Y as 
Y = 7;-X + W. Because X is a(X)-measurable, W is independent of a(X) 
and W is normal with mean J.L3 and variance a� , the Independence Lemma tells 
us how to compute IE[/( X, Y) IX] .  We should first replace the random variable 
X by a dummy variable x and then take the expectation (i.e. , integrate with 
respect to the distribution of W) .  Thus, we define 

g(x) = IE/ ( x, P�l x + W) 
1 !(X) ( pa1 ) { (w - J.L3)2 } = tn= f x, -x + w exp - 2 dw. a3v 2rr -oo a2 2a3 
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Then 
lE [f(X, Y) !XJ = 9(X) .  

Our final answer i s  random but a(X)-measurable, as i t  should be. 0 

We have all the tools required to introduce martingales and Markov pro
cesses in a continuous-time framework. The definitions are provided below. 
Examples will be given after we construct Brownian motion and Ito integrals 
in the next chapters. 

Definition 2.3.5. Let ( Jl, F, IP') be a probability space, let T be a fixed positive 
number, and let F(t) , 0 :::; t :::; T, be a filtration of sub-a-algebras of F. 
Consider an adapted stochastic process M ( t) , 0 :::; t :::; T. 
(i} If 

JE[M(t) IF(s)] = M(s) for all 0 :::; s :::; t :::; T, 
we say this process is a martingale. It has no tendency to rise or fall. 

(ii} If 
JE[M(t) IF(s)] 2: M(s) for all 0 :::; s :::; t :::; T, 

we say this process is a submartingale. It has no tendency to fall; it may 
have a tendency to rise. 

(iii} If 
JE[M(t) IF(s)] :::; M(s) for all 0 :::; s :::; t :::; T, 

we say this process is a supermartingale. It has no tendency to rise; it 
may have a tendency to fall. 

Definition 2.3.6. Let (Jl, F, IP') be a probability space, let T be a fixed positive 
number, and let F(t) , 0 :::; t :::; T, be a filtration of sub-a-algebras of F. 
Consider an adapted stochastic process X(t) , 0 :::; t :::; T. Assume that for all 
0 :::; s :::; t :::; T and for every nonnegative, Borel-measurable function f, there 
is another Borel-measurable function 9 such that 

lE[f(X(t) ) IF(s)] = 9(X(s) ) .  (2.3.29) 

Then we say that the X is a Markov process . 

Remark 2.3. 7. In Definition 2.3.6, the function f is permitted to depend on 
t, and the function g will depend on s. These dependencies are not indicated 
in (2.3 .29) because we wish there to emphasize how the dependence on the 
sample point w works (i.e. , the right-hand side depends on w only through 
the random variable X ( s ) ) .  If we indicate the dependence on time by writing 
f(t, x) rather than f(x) , we can write f(s, x) rather than 9(x) (we do not need 
different symbols f and 9 because the time variables t and s indicate we are 
dealing with different functions of x at the different times) and can rewrite 
(2.3.29) as 
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lE[f(t, X(t) ) IF(s)] = f(s, X(s) ) ,  0 � s � t � T. (2 .3.30) 

Ultimately, we shall see that when we regard f(t, x) as a function of two 
variables this way, (2 .3 .30) implies that it satisfies a partial differential equa
tion. This partial differential equation gives us a way to determine f(s , x) if 
we know f(t, x) . The Black-Scholes-Merton partial differential equation is a 
special case of this . 0 

2.4 Summary 

In measure-theoretic probability, information is modeled using a-algebras. The 
information associated with a a-algebra g can be thought of as follows. A 
random experiment is performed and an outcome w is determined, but the 
value of w is not revealed. Instead, for each set in the a-algebra g, we are told 
whether w is in the set . The more sets there are on g, the more information this 
provides. If g is the trivial a-algebra containing only 0 and n, this provides 
no information. 

A random variable X is g-measurable if and only if the set {X E B} = 
{w E fl; X(w) E B} is in g for every Borel subset of R In this case, the 
information in g is enough to determine the value of the random variable 
X(w) , even though it may not be enough to determine the value w of the 
outcome of the random experiment. 

At the other extreme, the information in a a-algebra g may be irrelevant 
to the determination of the value of X. In this case, we say that g and X are 
independent. This idea is captured mathematically by Definition 2.2.3, which 
says that X and g are independent if, for every set A E g and every Borel 
subset B of IR, we have 

JP{w E fl; w E A and X(w) E B} = lP(A) · lP{w E fl; X(w) E B} .  

Two random variables X and Y are independent i f  and only i f  the a algebra 
generated by X, defined to be the collection of sets of the form {X E B} ,  is 
independent of the a-algebra generated by Y. In other words, X and Y are 
independent if and only if 

lP{X E B and Y E C} = JP{X E B} · lP{X E C} for all B E  B(IR), C E B(IR) , 
where B(IR) denotes the a-algebra of Borel subsets of R There are several 
equivalent ways to describe independence between two random variables hav
ing to do with factoring the joint cumulative distribution function, factoring 
the joint moment-generating function, and factoring the joint density (if there 
is a joint density) . These are set out in Theorem 2.2 .7 . Independence implies 
uncorrelatedness, but uncorrelated random variables do not need to be in
dependent. Jointly normally distributed random variables (Definition 2.2 . 1 1 )  
are uncorrelated i f  and only i f  tl>ey are independent, but normally distributed 
random variables do not need to be jointly normal. 
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Often we find ourselves between the two extremes of random variables X 
that are g-measurable and random variables X that are independent of g. In 
such a case, the information in g is relevant to the determination of the value 
of X but is not sufficient to completely determine it . We then want to use the 
information in g to estimate X. We denote our estimate by JE[X Ig] and call 
this the conditional expectation of X given g. This is itself a random variable, 
but one that is g-measurable (i.e. , one that we can evaluate using only the 
information in g) . To be sure this is a good estimate of X, we require that it 
satisfy the partial-averaging property (see Definition 2.3. 1 (ii) ) :  

L lE[X Ig] (w) dlP'(w) = L X(w) dlP'(w) for every A E g .  

Conditional expectations behave in  many ways like expectations, except that 
expectations do not depend on w and conditional expectations do. The princi
pal properties of conditional expectations are provided in Theorem 2.3 .2 , and 
these are reported briefly here. 
Linearity: JE[c1X + c2Y igl = c1lE[X Ig] + c2lE[Y ig] .  
Taking out what is known: lE[XYig] = XJE[Y ig] if X is g-measurable. 
Iterated conditioning: lE [lE[X IgJ I1l] = JE[X I1l] if 1l is a sub-a-algebra of 
g. 
Independence: JE[X Ig] = lEX if X is independent of g. 
Jensen's inequality: JE[cp(X) Ig] ;:::: cp(lE[X Ig] )  if cp is convex. 

In continuous-time finance, we work within the framework of a probabil
ity space (!l, :F, IP') . We normally have a fixed final time T and then have a 
filtration, which is a collection of a-algebras {:F(t) ; 0 � t � T} indexed by the 
time variable t . We interpret :F(t) as the information available at time t . For 
0 � s � t � T, every set in :F(s) is also in :F(t) . In other words, information 
increases over time. Within this context , an adapted stochastic process is a 
collection of random variables {X ( t) ; 0 � t � T} also indexed by time such 
that , for every t, X(t) is :F(t)-measurable; the information at time t is suffi
cient to evaluate the random variable X(t) . We think of X(t) as the price of 
some asset at time t and :F(t) as the information obtained by watching all the 
prices in the market up to time t. 

Two important classes of adapted stochastic processes are martingales and 
Markov processes. These are defined in Definitions 2.3.5 and 2.3.6, respectively. 
A martingale has the property that 

JE[M (t) I:F(s)] = M(s) for all 0 � s � t � T. 

If JE[M (t) I:F(s)] ;:::: M(s) when 0 � s � t � T, we have a submartingale. If the 
inequality is reversed, we have a supermartingale. A Markov process has the 
property that whenever 0 � s � t � T and we are given a function f, there is 
another function g such that 

lE[f(X(t) ) I:F(s)] = g(X(s) ) . 
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The important feature here is that the estimate of f (X (t) )  made at time s 

depends only on the process value X(s) at time s and not on the path of the 
process before time s. 

A useful tool for establishing that a process is Markov is the Independence 
Lemma, Lemma 2.3.4. The simplest version of this says that if X is a Q
measurable random variable and Y is independent of Q, then 

lE[f(X, Y) IQ] = g(X) , 

where g(x) = lEf(x, Y) .  

2. 5  Notes 

In the measure-theoretic view of probability theory, a conditional expectation 
is itself a random variable, measurable with respect to the conditioning a
algebra. This point of view is indispensable for treating the rather complicated 
conditional expectations that arise in martingale theory. It was invented by 
Kolmogorov [104] . The term martingale was apparently first used by Ville 
[158] , who assigned the name to a betting strategy. The concept dates back to 
1934 work of Levy. The first systematic treatment of martingales was provided 
by Doob [53] . 

2.6 Exercises 

Exercise 2. 1 .  Let ( !l, F, IP') be a general probability space, and suppose a 
random variable X on this space is measurable with respect to the trivial 
a-algebra Fo = {0 ,  !l} .  Show that X is not random (i.e. , there is a constant c 
such that X (w) = c for all w E  !l) . Such a random variable is called degenemte. 

Exercise 2.2.  Independence of random variables can be affected by changes 
of measure. To illustrate this point , consider the space of two coin tosses 
!!2 = { H H, HT, T H, TT} , and let stock prices be given by 

So = 4, S1 (H) = 8, S1 (T) = 2, 
S2 (HH) = 16, S2 (HT) = S2 (TH) = 4, S2 (TT) = 1 .  

Consider two probability measures given by 

JP(HH) = i , lP(HT) = i , lP(TH) = i , lP(TT) = i , 
IP'(HH) = � '  IP'(HT) = � .  IP'(TH) = � '  IP'(TT) = � ·  

Define the random variable 

X = { 1 if 82 = 4, 
0 if 82 -1- 4. 
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(i) List all the sets in a(X) . 
(ii) List all the sets in a(SI ) .  
(iii) �how that a (  X )  and a(S1 ) are independent under the probability measure 

IP'. 
(iv) Show that a(X) and a(SI ) are not independent under the probability 

measure IP'. 
(v) Under IP', we have IP'{S1 = 8} = � and IP'{S1 = 2} = � · Explain intuitively 

why, if you are told that X = 1 ,  you would want to revise your estimate 
of the distribution of sl . 

Exercise 2.3 (Rotating the axes) . Let X and Y be independent standard 
normal random variables. Let () be a constant , and define random variables 

V = X cos () + Y sin () and W = -X sin () + Y cos (). 

Show that V and W are independent standard normal random variables. 

Exercise 2.4. In Example 2.2 .8 , X is a standard normal random variable and 
Z is an independent random variable satisfying 

1 IP'{Z = 1 }  = IP'{Z = - 1}  = -
2 '  

We defined Y = X Z and showed that Y is standard normal. We established 
that although X and Y are uncorrelated, they are not independent . In this 
exercise, we use moment-generating functions to show that Y is standard 
normal and X and Y are not independent. 
(i) Establish the joint moment-generating function formula 

uv + -uv IE uX+vY l (u2+v2 ) _e_
--::-

e __ 
e = e 2 . 

2 

(ii) Use the formula above to show that lEevY = e !v2 • This is the moment
generating function for a standard normal random variable, and thus Y 
must be a standard normal random variable. 

(iii) Use the formula in (i) and Theorem 2.2.7(iv) to show that X and Y are 
not independent . 

Exercise 2.5. Let (X, Y) be a pair of random variables with joint density 
function 

{ 2lx i +Y exp { - (2 lx i+Y)2 } if y ;::: - lx l ,  !x,v (x, y) =  v'21r 2 . 0 If y < - lx l -

Show that X and Y are standard normal random variables and that they are 
uncorrelated but not independent. 
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Exercise 2.6. Consider a probability space fl with four elements, which we 
call a, b, c, and d (i .e . ,  fl = {a, b, c, d} ) .  The a-algebra :F is the collection of 
all subsets of fl; i .e . ,  the sets in :F are 

n, {a, b, c} , {a, b, d}, {a, c, d} , {b, c, d} ,  
{a, b} ,  {a, c} , {a, d}, {b, c} ,  {b , d} , {c, d} , 
{a} ,  {b} , {c} , {d} , 0. 

We define a probability measure lP' by specifying that 

1 1 1 1 IP'{a} = 6 '  IP'{b} = 3 '  IP'{c} = 4 '  IP'{d} = 4 '  
and, as usual, the probability of every other set in :F is the sum of the prob
abilities of the elements in the set , e.g. , IP'{ a, b, c} = IP'{ a} + IP'{b} + IP'{ c} = � .  

We next define two random variables, X and Y ,  by the formulas 

X(a) = 1 , X(b) = 1 ,  X(c) = -1 ,  X(d) = - 1 ,  
Y(a) = 1 ,  Y(b) = -1 ,  Y(c) = 1 ,  Y(d) = -1 .  

We then define Z = X + Y .  
(i) List the sets in  a(X) .  
(ii) Determine IE[Y IX] (i .e . , specify the values of  this random variable for a, 

b, c, and d) . Verify that the partial-averaging property is satisfied. 
(iii) Determine IE[Z IX] .  Again, verify the partial-averaging property. 
(iv) Compute IE[ZIX] - IE[Y IX] .  Citing the appropriate properties of condi

tional expectation from Theorem 2.3.2, explain why you get X .  

Exercise 2.7. Let Y be  an integrable random variable on  a probability space 
(fl, :F, IP') and let g be a sub-a-algebra of F. Based on the information in Q, 
we can form the estimate IE[Y IQ] of Y and define the error of the estimation 
Err = Y - IE[Y IQ] .  This is a random variable with expectation zero and some 
variance Var(Err) . Let X be some other Q-measurable random variable, which 
we can regard as another estimate of Y. Show that 

Var(Err) � Var(Y - X) .  

In other words, the estimate IE[Y IQ] minimizes the variance of the error among 
all estimates based on the information in Q. (Hint : Let J.L = IE(Y -X) .  Compute 
the variance of Y - X as 

IE [(Y - X - J.L)2) = IE  [ ( (Y - IE[Y IQ] )  + (IE[Y IQ] - X - J.L)) 2] .  
Multiply out the right-hand side and use iterated conditioning to show the 
cross-term is zero.) 
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Exercise 2.8. Let X and Y be integrable random variables on a probability 
space (n, :F, IP') . Then Y = Y1 + Y2 , where Y1 = IE[Y IX] is a(X)-measurable 
and Y2 = Y - E[Y IX] .  Show that Y2 and X are uncorrelated. More generally, 
show that Y2 is uncorrelated with every a(X)-measurable random variable. 

Exercise 2.9. Let X be a random variable. 
(i) Give an example of a probability space (n, :F, IP') , a random variable X 

defined on this probability space, and a function f so that the a-algebra 
generated by f(X) is not the trivial a-algebra {0 , n} but is strictly smaller 
than the a-algebra generated by X. 

(ii) Can the a-algebra generated by f(X) ever be strictly larger than the 
a-algebra generated by X? 

Exercise 2 .10 .  Let X and Y be random variables (on some unspecified prob
ability space (n, :F, IP') ) ,  assume they have a joint density Jx,y (x, y) , and as
sume IE IY I  < oo. In particular, for every Borel subset C of IR.2 , we have 

IP'{ (X, Y) E C} = fc fx,y (x , y) dx dy. 

In elementary probability, one learns to compute IE[Y IX = x] , which is a 
nonrandom function of the dummy variable x, by the formula 

IE[YIX = x] = 1: YfY IX (Y ix)dy, 

where fY IX (Y ix) is the conditional density defined by 

!x,y (x, y) fY IX (y ix) = fx (x) · 

(2.6. 1 )  

The denominator in this expression, fx (x) = f�oo Jx,y (x, ry)dry, i s  the marginal 
density of X, and we must assume it is strictly positive for every x. We intro
duce the symbol g(x) for the function IE[Y IX = x] defined by (2.6. 1 ) ;  i.e. , 

g(x) = 100 YfY IX (y ix)dy = 100 yf�,\(x
)
, y) dy. -oo -oo X X 

In measure-theoretic probability, conditional expectation is a random vari
able IE[Y IX] .  This exercise is to show that when there is a joint density for 
(X, Y) , this random variable can be obtained by substituting the random vari
able X in place of the dummy variable x in the function g(x) . In other words, 
this exercise is to show that 

IE[Y IX] = g(X ) . 

(We introduced the symbol g(x) in order to avoid the mathematically confus
ing expression E[Y IX = X] . )  
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Since g(X) is obviously a(X)-measurable, to verify that IE[Y IX] = g(X) ,  
we need only check that the partial-averaging property is satisfied. For every 
Borel-measurable function h mapping lR to lR and satisfying 1Eih(X) I < oo, we 
have 

IEh(X) = /_: h(x)fx (x)dx.  (2.6.2) 

This is Theorem 1 .5 .2 in Chapter 1 .  Similarly, if h is a function of both x and 
y, then 

lEh(X, Y) = /_: /_: h(x, y)Jx,y (x , y)dxdy (2.6.3) 

whenever (X, Y) has a joint density Jx,y (x, y) .  You may use both (2.6 .2) and 
(2.6.3) in your solution to this problem. 

Let A be a set in a(X) .  By the definition of a( X) ,  there is a Borel subset 
B of lR such that A =  {w E n; X(w) E B} or, more simply, A =  {X E B} .  
Show the partial-averaging property 

i g(X)diP' = i y 
diP'. 

Exercise 2 .11 .  (i) Let X be a random variable on a probability space 
(n, :F, IP') , and let W be a nonnegative a(X)-measurable random variable. 
Show there exists a function g such that W = g(X) .  (Hint : Recall that 
every set in a(X) is of the form {X E B} for some Borel set B C R Sup
pose first that W is the indicator of such a set, and then use the standard 
machine. )  

(ii) Let X be a random variable on a probability space (il, :F,  IP') , and let Y be 
a nonnegative random variable on this space. We do not assume that X 
and Y have a joint density. Nonetheless, show there is a function g such 
that IE[Y IX] = g(X) .  
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3 

Brownian Motion 

3 . 1  Introduction 

In this chapter, we define Brownian motion and develop its basic properties. 
The definition of Brownian motion is provided in Section 3.3. Section 3.2 
precedes it to give some intuition. For us, the most important properties of 
Brownian motion are that it is a martingale (Theorem 3.3.4) and that it 
accumulates quadratic variation at rate one per unit time (Theorem 3.4.3) . 
The notion of quadratic variation is profound. It makes stochastic calculus 
different from ordinary calculus. For this reason, we begin already in Section 
3.2 to talk about it . 

Sections 3.5-3. 7 develop properties of Brownian motion we shall need later 
but not in the development of stochastic calculus in Chapter 4. Therefore, 
the reader can go to Chapter 4 after completing Section 3.4. The Markov 
property is the concept used to relate stochastic calculus to partial differential 
equations. For Brownian motion, this property is presented in Section 3.5 . The 
first passage time of Brownian motion to a level is presented in Section 3.6 
and used in Chapter 8 to analyze a perpetual American put on a geometric 
Brownian motion. This is in the spirit of the perpetual American put analysis 
for the binomial model, which is given in Section 5.4 of Volume I. The reflection 
principle for Brownian motion developed in Section 3. 7 is used in Chapter 7 
to price exotic options. 

3.2 Scaled Random Walks 

3.2. 1 Symmetric Random Walk 

To create a Brownian motion, we begin with a symmetric random walk, one 
path of which is shown in Figure 3.2. 1 .  To construct a symmetric random 
walk, we repeatedly toss a fair coin (p, the probability of H on each toss, and 
q = 1 - p, the probability of T on each toss, are both equal to � ) .  We denote 
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1 

Mo 

- 1  

-2 

Fig. 3.2.1.  Five steps of a random walk. 

Ms 

the successive outcomes of the tosses by w = w1 w2w3 . . . .  In other words, w is 
the infinite sequence of tosses, and Wn is the outcome of the nth toss. Let 

and define Mo = 0, 

X 0 - { 
1 if Wj = H, 

J - -1 if Wj = T, 

k 
Mk = LXi , k = 1 , 2, . . . .  

j=l 

(3.2 . 1 )  

(3.2.2) 

The process Mk , k = 0, 1 ,  2, . . .  is a symmetric random walk. With each toss, 
it either steps up one unit or down one unit , and each of the two possibilities 
is equally likely. 

3.2.2 Increments of the Symmetric Random Walk 

A random walk has independent increments. This means that if we choose 
nonnegative integers 0 = ko < k1 < · · · < km, the random variables 

are independent. Each of these random variables, 

ki+ l 
Mki+ l - Mk, = L Xj , 

j=k;+ l 
(3 .2 .3) 

is called an increment of the random walk. It is the change in the position of 
the random walk between times ki and ki+l · Increments over nonoverlapping 
time intervals are independent because they depend on different coin tosses. 
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Moreover, each increment Mki+ t - Mk, has expected value 0 and variance 
ki+t - ki . It is easy to see that the expected value is zero because the expected 
value of each Xj appearing on the right-hand side of (3.2.3) is zero. We also 
have Var(Xj )  = lEXJ = 1 , and since the different Xj are independent , we 
have from (3.2.3) that 

ki+l ki+ l  
Var (Mk,+ t - Mk. ) = L Var(Xj )  = L 1 = ki+l - ki . (3.2 .4) 

The variance of the symmetric random walk accumulates at rate one per unit 
time, so that the variance of the increment over any time interval k to f for 
nonnegative integers k < f is f - k. 

3.2.3 Martingale Property for the Symmetric Random Walk 

To see that the symmetric random walk is a martingale, we choose nonnegative 
integers k < f and compute 

lE [Me iFk] = lE [(Mt - Mk)  + Mk iFk] 
= lE [Me - Mk iFk] + lE [Mk iFk] 
= lE [Me - Mk iFk] + Mk 
= lE [Me - Mk] + Mk = Mk . (3.2.5) 

Here we have used the notation lE[· · · I.Fk] of Chapter 2 to denote the con
ditional expectation based on the information at time k, which in this case 
is knowledge of the first k coin tosses . The second equality is a result of the 
linearity of conditional expectations (Theorem 2.3.2(i) ) .  The third equality 
is because Mk depends only on the first k coin tosses (it is .1"k-measurable, 
where, in the language of Definition 2 . 1 .5 , Fk is the a-algebra of information 
corresponding to the first k coin tosses ) .  The fourth equality follows from 
independence (Theorem 2.3.2 (iv) ) .  

3.2.4 Quadratic Variation of  the Symmetric Random Walk 

Finally, we consider the quadratic variation of the symmetric random walk. 
The quadratic variation up to time k is defined to be 

k 
[M, M]k = L (MJ

- Mj_ t ) 2 = k. (3.2.6) 
j=l 

Note that this is computed path-by-path. The quadratic variation up to time 
k along a path is computed by taking all the one-step increments Mj - Mj- l 
along that path (these are equal to Xj , which is either 1 or - 1 ,  depending on 
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the path) , squaring these increments, and then summing them. Since (Mj 
Mj_ 1 )2 = 1 ,  regardless of whether Mj - Mj-1 is 1 or - 1 ,  the sum in (3.2.6) 
is equal to E7=1 1 = k, as reported in that equation. 

We note that [M, M] k is the same as Var(Mk) (set ki+l = k and ki = 0 
in (3 .2 .4) ) ,  but the computations of these two quantities are quite different . 
Var(Mk) is computed by taking an average over all paths, taking their prob
abilities into account. If the random walk were not symmetric (i.e. , if p were 
different from q) ,  this would affect Var(Mk ) · By contrast, [M, M]k is com
puted along a single path, and the probabilities of up and down steps do not 
enter the computation. One can compute the variance of a random walk only 
theoretically because it requires an average over all paths, realized and unre
alized. However, from tick-by-tick price data, one can compute the quadratic 
variation along the realized path rather explicitly. For a random walk, there is 
the somewhat unusual feature that [M, M]k does not depend on the particular 
path chosen, but we shall see later that the quadratic variation for a random 
process generally does depend on the path along which it is computed. 

3.2.5 Scaled Symmetric Random Walk 

To approximate a Brownian motion, we speed up time and scale down the step 
size of a symmetric random walk. More precisely, we fix a positive integer n 
and define the scaled symmetric random walk 

w<n> (t) = JnMnt , (3 .2 .7) 

provided nt is itself an integer. If nt is not an integer, we define w<nl (t) by 
linear interpolation between its values at the nearest points s and u to the left 
and right of t for which ns and nu are integers. We shall obtain a Brownian 
motion in the limit as n ---+ 00. Figure 3.2.2 shows a simulated path of w<100) 
up to time 4; this was generated by 400 coin tosses with a step up or down of 
size 1� on each coin toss. 

Like the random walk, the scaled random walk has independent incre
ments. If 0 = to < t 1 < · · · < tm are such that each ntj is an integer, then 

are independent . These random variables depend on different coin tosses. For 
example, w<100) (0.20) - w<100) (0) depends on the first 20 coin tosses and 
w<100l (0 .70) - w<100l (0.20) depends on the next 50 tosses . Furthermore, if 
0 :S s :S t are such that ns and nt are integers, then 

IE(w<n> (t) - w<n> (s) ) = 0, Var (w<nl (t) - w<nl (s) ) = t - s. (3 .2 .8) 

This is because w<nl (t) - w<nl (s) is the sum of n (t - s) independent 
random variables, each with expected value zero and variance � .  For ex
ample, w<100l (0 . 70) - w< 100l (0 .20) is the sum of 50 independent random 
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1 

- 1  

Fig. 3.2.2. A sample path of w(lOO) . 

variables, each of which takes the value 1� or - 1
1
0 . Each of these ran

dom variables has expected value zero and variance 1�0 , so the variance of 
w<100l (0 .70) - w<100l (0.20) is 50 · 1�0 = 0.50. 

Let 0 :::; 8 :::; t be given, and decompose w<nl (t) as 

H s and t are chosen so that n8 and nt are integers, then the first term on the 
right-hand side is independent of :F(8) , the a-algebra of information available 
at time 8 (which is knowledge of the first n8 coin tosses) , and w<n> (s) is :F(8)
measurable (i .e . ,  it depends only on the first n8 coin tosses) . We may prove 
the martingale property for the scaled random walk as we did for the random 
walk in (3 .2 .5) : 

(3.2.9) 
for 0 :::; 8 :::; t such that n8 and nt are integers. 

Finally, we consider the quadratic variation of the scaled random walk. For 
W(lOO) , the quadratic variation up to a time, say 1 .37, is defined to be 

[W(100) W(100) ] (1 37) = I: [w(100) (_l_) _ W(100) (j - 1 ) ] 2 , . 
j= 1 100 100 
137 [ 1 ] 2 137 1 

= � lOXi = � 100 = 1 .37· 
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In general, for t 2:: 0 such that nt is an integer, 

(3.2 . 10) 

If we go from time 0 to time t along the path of the scaled random walk, 
evaluating the increment over each time step and squaring these increments 
before summing them, we obtain t, the length of the time interval over which 
we are doing the computation. This is a path-by-path computation, not an 
average over all possible paths, and could in principle depend on the particular 
path along which we do the computation. However, along each path we get 
the same answer t. Note that Var w<n> (t) is also t (the second equation in 
(3.2 .8) with s = 0) , but this latter quantity is an average over all possible 
paths. 

3.2.6 Limiting Distribution of the Scaled Random Walk 

In Figure 3.2 .2 we see a single sample path of the scaled random walk. In 
other words, we have fixed a sequence of coin tosses w = w1w2 . . .  and drawn 
the path of the resulting process as time t varies. Another way to think about 
the scaled random walk is to fix the time t and consider the set of all possible 
paths evaluated at that time t. In other words, we can fix t and think about 
the scaled random walk corresponding to different values of w, the sequence of 
coin tosses . For example, set t = 0.25 and consider the set of possible values of 
w<100l (0.25) = 1�M25 . This random variable is generated by 25 coin tosses, 
and since the unsealed random walk M25 can take the value of any odd integer 
between -25 and 25, the scaled random walk w<100) (0.25) can take any of 
the values 

-2.5, -2.3, -2 . 1 ,  . . .  , -0.3, -0. 1 , 0. 1 , 0.3, . . .  , 2 . 1 ,  2.3, 2 .5 . 

In order for w<100l (0.25) to take the value 0.1 , we must get 13 heads and 12 
tails in the 25 tosses. The probability of this is 

( 100) - - � � -( ) 25 
P{W (0.25) - 0.1 } - 13! 12! 2 - 0. 1555. (3.2. 1 1 ) 

We plot this information in Figure 3.2.3 by drawing a histogram bar centered 
at 0. 1 with area 0. 1555. Since this bar has width 0.2, its height must be 
0·J�:5 = 0. 7775. Figure 3.2 .3 shows similar histogram bars for all possible 
values of w<100> (0.25) between - 1 .5 and 1 .5 . 

The random variable w<100l (0.25) has expected value zero and variance 
0.25. Superimposed on the histogram in Figure 3.2 .3 is the normal density 
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Fig. 3 .2 .3 .  Distribution of w<100l (0.25) and normal curve y = h:;re-2"'2 • 

with this mean and variance. We see that the distribution of w<100l (0.25) is 
nearly normal. If we were given a continuous bounded function g(x) and asked 
to compute 1Eg (W<100l (0.25)) , a good approximation would be obtained by 
multiplying g(x) by the normal density shown in Figure 3.2 .3 and integrating: 

1Eg (W(l00) (0.25) ) � - g(x)e-2x dx. 2 100 2 
..j2ii -oo 

(3 .2 .12) 

The Central Limit Theorem asserts that the approximation in (3 .2 .12) is 
valid. We provide the version of it that applies to our context . 

Theorem 3.2.1 (Central limit) .  Fix t 2: 0. As n -+  oo, the distribution of 
the scaled random walk w<nl (t) evaluated at time t converges to the normal 
distribution with mean zero and variance t .  

OUTLINE OF  PROOF: One can identify distributions by identifying their 
moment-generating functions. For the normal density 

with mean zero and variance t, the moment-generating function is 



90 3 Brownian Motion 

cp(u) = /_: eux f(x) dx 

= -1- 100 
exp {ux - x2 } dx .,ffii -00 2t 

l u2t 1 100 { (x - ut)2 } d = e 2 · -- exp - x .,ffii -00 2t 
(3 .2 .13) 

because the- (z-2�•>
2 

is a normal density with mean ut and variance t and v 211"t 
hence integrates to 1 .  

If t is such that nt is an integer, then the moment-generating function for 
w<n> (t) is 

'Pn (u) = lEeuw<n> (t) = lE exp { .J:n,Mnt } 
= lE exp { � fxi } = lE IT exp { .Jnxi } . (3 .2 . 14) 

v •• J =l  J =l 

Because the random variables are independent, the right-hand side of (3 .2 .14) 
may be written as 

We need to show that, as n --+ oo, 

converges to the moment-generating function cp(u) = e!u2t in (3.2 .13) . To do 
this, it suffices to consider the logarithm of 'Pn ( u) and show that 

converges to log cp(u) = �u2t. 
For this final computation, we make the change of variable x = Jn so that 

If we were to substitute x = 0 into the expression on the right-hand side, 
we would obtain g ,  and in this situation, we may use L'Hopital's rule. The 
derivative of the numerator with respect to x is 
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and the derivative of the denominator is 

Therefore, 

where we have used the fact that limx.l-0 ( ! eux + !e-ux) = 1 .  If we were to 
substitute x = 0 into the expression on the right-hand side, we would again 
obtain § . In this situation, we apply L'Hopital 's rule again. The derivative of 
the numerator is 

!::1 2 2 u (U ux U -ux) U ux + 
U -ux - -e - - e = -e -e ax 2  2 2 2 '  

and the derivative of the denominator is fx x = 1 .  Hence, 

as desired. 0 

3.2. 7 Log-Normal Distribution as the Limit of the Binomial Model 

The Central Limit Theorem, Theorem 3.2. 1 ,  can be used to show that the 
limit of a properly scaled binomial asset-pricing model leads to a stock price 
with a log-normal distribution. We present this limiting argument here under 
the assumption that the interest rate r is zero. The case of a nonzero interest 
rate is outlined in Exercise 3.8. These results show that the binomial model 
is a discrete-time version of the geometric Brownian motion model, which is 
the basis for the Black-Scholes-Merton option-pricing formula. 

Let us build a model for a stock price on the time interval from 0 to t by 
choosing an integer n and constructing a binomial model for the stock price 
that takes n steps per unit time. We assume that n and t are chosen so that 
nt is an integer. We take the up factor to be Un = 1 + Jn and the down factor 
to be dn = 1 - Jn. Here a is a positive constant that will turn out to be the 
volatility of the limiting stock price process. The risk-neutral probabilities are 
then (see ( 1 . 1 .8) of Chapter 1 of Volume I) 

1 + r - dn af..fii 1 p = - -
Un - dn - 2a/..fii - 2 ' 

1 
2 " 
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The stock price at time t is determined by the initial stock price 8(0) and 
the result of the first nt coin tosses. The sum of the number of heads Hnt and 
number of tails Tnt in the first nt coin tosses is nt , a fact that we write as 

nt = Hnt + Tnt · 

The random walk Mnt is the number of heads minus the number of tails in 
these nt coin tosses: 

Mnt = Hnt - Tnt · 
Adding these two equations and dividing by 2, we see that 

1 Hnt = 2 (nt + Mnt ) · 

Subtracting them and dividing by 2, we see further that 

In the model with up factor Un and down factor dn , the stock price at time t 
is 

( ) � (nt+Mnt ) ( ) ! (nt-Mnt ) 
8n (t) = 8(0)ut[n• d?;nt = 8(0) 1 + .In 1 - .In 

(3 .2 .15) 
We wish to identify the distribution of this random variable as n -+ oo. 

Theorem 3.2.2. As n -+  oo, the distribution of 8n (t) in {3. 2. 15) converges 
to the distribution of 

8(t) = 8(0) exp { uW (t) - �u2t} , (3 .2 . 16) 

where W(t) is a normal random variable with mean zero and variance t .  

The distribution of 8(t) i n  (3 .2 .16) is called log-normal. More generally, 
any random variable of the form cex , where c is a constant and X is normally 
distributed, is said to have a log-normal distribution. In the case at hand, 
X = uW (t) - !u2t is normal with mean - !u2t and variance u2t. 

PROOF OF THEOREM 3 . 2 . 2 :  It suffices to show that the distribution of 
1og 8n (t ) 

= log 8(0) + � (nt + Mnt ) log ( 1 + .In) + � (nt - Mnt ) log ( 1 - .In) 
(3.2 . 17) 

converges to the distribution of 
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1 log S(t) = log S(O) + aW(t) - 2a2t ,  

where W(t) i s  a normal random variable with mean zero and variance t . To do 
this , we need the Taylor series expansion of f (x ) = log(1 + x) . We compute 
f' (x) = ( 1 + x)- 1 and f" (x) = -(1 + x)-2 and evaluate them to obtain 
f' (O) = 1 and f"(O) = -1 .  According to Taylor's Theorem, 

where O(x3) indicates a term of order x3 . We apply this to (3 .2 .17) first with 
x = :/n and then with x = -:/n · Our intention is to then let n --+ oo, and 
so we need to keep track of which terms have powers of n in the denominator 
and which terms do not. The former ones will have limit zero and the latter 
ones will not . We use. the 0( · )  notation to do this. Not every term of the form 
0 ( n- � ) in the following equation is the same; their only common feature is 
that they have n� in their denominators. In particular, from (3 .2 . 17) we have 

The term w<nl (t) = .}nMnt appears in two places in the last line. By the 
Central Limit Theorem, Theorem 3.2 . 1 ,  its distribution converges to the distri
bution of a normal random variable with mean zero and variance t, a random 
variable we call W(t) . However, in one of its appearances, w<nl (t) is multiplied 
by a term that has n in the denominator, and this will have limit zero. The 
term 0 ( n- ! ) also has limit zero as n --+ oo. We conclude that as n --+ oo the 
distribution of log S(t) approaches the distribution of log S(O) - �a2t+aW(t) , 
which is what we set out to prove. 0 

3 . 3  Brownian Motion 

3.3.1 Definition of Brownian Motion 

We obtain Brownian motion as the limit of the scaled random walks w<nl (t) 
of (3 .2 .7) as n --+ oo. The Brownian motion inherits properties from these 
random walks. This leads to the following definition. 
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Definition 3.3.1 .  Let (il, F, IP') be a probability space. For each w E  il, sup
pose there is a continuous function W(t) of t � 0 that satisfies W(O) = 0 
and that depends on w.  Then W(t ) ,  t � 0, is a Brownian motion if for all 
0 = to < t 1 < · · · < tm the increments 

W(ti )  = W(h ) - W(to ) , W(t2 ) - W(ti ) ,  . . . , W(tm) - W(tm-d (3.3 . 1 ) 

are independent and each of these increments is normally distributed with 

IE [W(ti+ I ) - W(ti ) ] = 0, 
Var [W(ti+ I ) - W(ti ) ] = ti+ I - ti . 

(3.3.2) 
(3.3.3) 

One difference between Brownian motion W(t) and a scaled random walk, 
say w<100) (t ) ,  is that the scaled random walk has a natural time step 1�0 and 
is linear between these time steps, whereas the Brownian motion has no linear 
pieces. The other difference is that , while the scaled random walk w<100) (t) 
is only approximately normal for each t (see Figure 3.2.3) ,  the Brownian 
motion is exactly normal. This is a consequence of the Central Limit Theorem, 
Theorem 3.2. 1 .  Not only is W(t) = W(t) - W(O) normally distributed for each 
t, but the increments W(t) - W(s) are normally distributed for all 0 ::;  s < t . 

There are two ways to think of w in Definition 3.3 . 1 .  One is to think of 
w as the Brownian motion path. A random experiment is performed, and its 
outcome is the path of the Brownian motion. Then W(t) is the value of this 
path at time t ,  and this value of course depends on which path resulted from 
the random experiment . Alternatively, one can think of w as something more 
primitive than the path itself, akin to the outcome of a sequence of coin tosses, 
although now the coin is being tossed "infinitely fast ." Once the sequence of 
coin tosses has been performed and the result w obtained, then the path of the 
Brownian motion can be drawn. If the tossing is done again and a different w 
is obtained, then a different path will be drawn. 

In either case, the sample space il is the set of all possible outcomes of 
a random experiment , .r is the a-algebra of subsets of il whose probabilities 
are defined, and IP' is a probability measure. For each A E .r, the probability 
of A is a number IP'(A ) between zero and one. The distributional statements 
about Brownian motion pertain to IP'. 

For example, we might wish to determine the probability of the set A 
containing all w E il that result in a Brownian motion path satisfying 0 ::; 
W(0.25) ::; 0.2. Let us first consider this matter for the scaled random walk 
w(loo) . If we were asked to determine the set {w : 0 ::;  W(I00) (0 .25) ::; 0.2} ,  
we would note that in  order for the scaled random walk w<100) to fall between 
0 and 0.2 at time 0.25, the unsealed random walk M25 = 10W<100) (0.25) must 
fall between 0 and 2 after 25 tosses. Since M25 can only be an odd number, 
it falls between 0 and 2 if and only if it is equal to 1 or, equivalently, if and 
only if w<100) (0 .25) = 0 . 1 .  To achieve this, the coin tossing must result in 13 
heads and 12 tails in the first 25 tosses. Therefore, A is the set of all infinite 
sequences of coin tosses with the property that in the first 25 tosses there 
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are 13 heads and 12 tails. The probability that one of these sequences occurs, 
given by (3.2 . 1 1 ) ,  is IP(A) = 0. 1555. 

For the Brownian motion W, there is also a set of outcomes w to the 
random experiment that results in a Brownian motion path satisfying 0 � 
W(0.25) � 0.2 . We choose not to describe this set as concretely as we just did 
for the scaled random walk w<100) . Nonetheless, there is such a set of w E  Jl, 
and the probability of this set is 

2 {0.2 
IP{O � W(0.25) � 0.2} = v'2ir Jo e-2x2 dx. 

In place of the area in the histogram bar centered at 0 .1 in Figure 3.2 .3 , which 
is 0. 1555, we now have the area under the normal curve between 0 and 0.2 in 
that figure. These two areas are nearly the same. 

3.3.2 Distribution of Brownian Motion 

Because the increments 

W(tl ) = W(tl ) - W(to ) ,  W(t2 ) - W(h ) ,  . . .  , W(tm ) - W(tm-d 

of (3.3. 1 ) are independent and normally distributed, the random variables 
W (tt ) , W(h) , . . .  , W(tm) are jointly normally distributed. The joint distri
bution of jointly normal random variables is determined by their means and 
covariances. Each of the random variables W(ti )  has mean zero. For any two 
times, 0 � s < t, the covariance of W(s) and W(t) is 

lE [W(s)W(t)] = lE [W(s) (W(t) - W(s) ) + W2 (s)] = lE (W(s)] · lE (W(t) - W(s)] + lE (W2 (s) ] = 0 + Var[W(s)] = s , 
where we have used the independence of W(s) and W(t) - W(s) in the second 
equality. Hence, the covariance matrix for Brownian motion (i.e. , for the m
dimensional random vector ( W ( t t ) , W ( t2 ) ,  . . .  , W ( tm)) ) is 

[ JE (W2 (t 1 )] JE (W(ti )W(t2 )] · · · lE [W(tt )W(tm)] l 
lE (W(t2 )W(h )] lE (W2 (t2 ) ] · · · lE [W(t2 )W(tm)] 

. . . . . . . . . 
lE (W(tm)W(ti ) ] lE [W(tm)W(t2 )] · · · lE (W2 (tm)] [ :,: :: : : :,: ] · 

h t2 · · · tm 
(3.3.4) 

The moment-generating function of this random vector can be computed 
using the moment-generating function (3 .2 . 13) for a zero-mean normal random 
variable with variance t and the independence of the increments in (3.3. 1 ) .  To 
assist in this computation, we note first that 
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u3W(t3 ) + u2W(t2 ) + u1W(h ) = u3 (W(t3 ) - W(t2 ) ) + (u2 + u3) (W(t2 ) - W(tl ) ) 
+(u1 + u2 + u3 )W(h ) 

and more generally 

UrnW(trn) + Urn-1 W(trn-d + Urn-2W(trn-2) + 0 0 0 + u1W(t1 ) = Urn (W(trn) - W(trn-d) + (urn-1 + Urn) (W(trn- 1 ) - W(trn-2)) 
+ (urn-2 + Urn-1 + Urn) (W(trn-2 ) - W(trn-3 ) ) + . . .  
. . . + (u1 + u2 + . . .  + urn)W(h ) . 

We use these facts to compute the moment-generating function of the random 
vector (W(t1 ) ,  W(t2 ) ,  . . .  , W(trn) ) : 

cp(ub u2 , . . .  , Urn) = lE exp {urnW(trn) + Urn- 1 W(trn-1 ) + · · · + U1 W(ti ) }  = lE exp {urn (W(trn ) - W(trn- 1 ) ) + (urn- 1 + urn) (W(trn-1 ) - W(trn-2 )) +  
. . .  + (u1 + u2 + . .  · + Urn)W(t1 ) } 

= lE exp {Urn (W(trn) - W(trn- 1 ) ) } 
·lE exp { (urn-1 + urn) (W(trn-1 ) - W(trn-2)) } 
. .  · lE exp { (u1 + u2 + . . .  + urn)W(t1 ) }  = exp { �u;.(trn - trn- 1 ) } · exp { � (urn- 1 + urn)2 (trn- 1 - trn-2 ) } 
. . .  exp { � ( U1 + u2 + . . .  + Urn)2t1 } . 

In conclusion, the moment-genemting function for Brownian motion (i.e. , for 
the m-dimensional random vector (W(tl ) ,  W(t2 ) ,  . . .  , W(trn)) ) is 

The distribution of the Brownian increments in (3.3. 1 ) can be specified 
by specifying the joint density or the joint moment-generating function of 
the random variables W(t1 ) ,  W(t2 ) , . . .  , W(trn) · This leads to the following 
theorem. 
Theorem 3.3.2 (Alternative characterizations of Brownian motion) . 
Let (f.?, .1", lP) be a probability space. For each w E f.?, suppose there is a 
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continuous function W(t) of t 2: 0 that satisfies W(O) = 0 and that depends 
on w. The following three properties are equivalent. 
(i} For all 0 = to < t1 < · · · < tm , the increments 

W(h )  = W(h ) - W(to ) ,  W(t2 ) - W(t1 ) ,  . . .  , W(tm) - W(tm-d 

are independent and each of these increments is normally distributed with 
mean and variance given by (3.3. 2} and (3. 3. 3). 

(ii} For all 0 = to < t1 < · · · < tm , the mndom variables W(t1 ) ,  W(t2 ) ,  . . .  , 
W(tm) are jointly normally distributed with means equal to zero and co
variance matrix (3. 3.4). 

(iii} For all 0 = to < h < · · · < tm , the mndom variables W(h ) ,  W(t2 ) ,  . . .  , 
W(tm)  have the joint moment-genemting function (3. 3. 5} . 

If any of (i}, (ii}, or (iii} holds (and hence they all hold}, then W(t) , t 2: 0, 
is a Brownian motion. 

3.3.3 Filtration for Brownian Motion 

In addition to the Brownian motion itself, we will need some notation for the 
amount of information available at each time. We do that with a filtration. 
Definition 3.3.3. Let ( !l, F, IP') be a probability space on which is defined a 
Brownian motion W(t) , t 2: 0. A filtration for the Brownian motion is a 
collection of a-algebms F(t) , t 2: 0, satisfying: 
(i} (Information accumulates) For 0 � s < t, every set in F(s) is also in 

F(t) . In other words, there is at least as much information available at 
the later time F ( t) as there is at the earlier time F ( s) . 

(ii} (Adaptivity) For each t 2: 0, the Brownian motion W(t) at time t is 
F(t) -measumble. In other words, the information available at time t is 
sufficient to evaluate the Brownian motion W(t) at that time. 

(iii} (Independence of future increments) For 0 � t < u, the increment 
W(u) - W(t) is independent of F(t) . In other words, any increment of the 
Brownian motion after time t is independent of the information available 
at time t . 

Let Ll(t) , t 2: 0, be a stochastic process. We say that Ll(t) is adapted to the 
filtmtion F(t) if for each t 2: 0 the mndom variable Ll(t) is F(t) -measumble. 1 

Properties (i) and (ii) in the definition above guarantee that the infor
mation available at each time t is at least as much as one would learn from 
observing the Brownian motion up to time t . Property (iii) says that this 

1 The adapted processes we encounter will serve as integrands, and for this one 
needs them to be jointly measurable in t and w so that their integrals are defined 
and are themselves adapted processes. This is a technical requirement that we 
shall ignore in this text. 
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information is of no use in predicting future movements of the Brownian mo
tion. In the asset-pricing models we build, property (iii) leads to the efficient 
market hypothesis. 

There are two possibilities for the filtration :F(t) for a Brownian motion. 
One is to let :F(t) contain only the information obtained by observing the 
Brownian motion itself up to time t . The other is to include in :F(t) information 
obtained by observing the Brownian motion and one or more other processes. 
However, if the information in :F(t) includes observations of processes other 
than the Brownian motion W, this additional information is not allowed to 
give clues about the future increments of W because of property (iii) . 

3.3.4 Martingale Property for Brownian Motion 

Theorem 3.3.4. Brownian motion is a martingale. 
PROOF: Let 0 :::; s :::; t be given. Then 

IE [W(t) i:F(s)) = IE [ (W(t) - W(s) )  + W(s) i:F(s) ] 
= IE (W(t) - W(s) i:F(s)) + IE (W(s) i:F(s)) 
= IE (W(t) - W(s)] + W(s) 
= W(s) . 

The justifications for the steps in this equality are the same as the justifications 
for (3.2 .5) . 0 

3.4 Quadratic Variation 

We computed the quadratic variation of the scaled random walk W(n) up 
to time T in (3.2 .10) , and this quadratic variation turned out to be T. This 
was computed by taking each of the steps of the scaled random walk between 
times 0 and T, squaring them, and summing them. 

For Brownian motion, there is no natural step size. If we are given T > 0, 
we could simply choose a step size, say � for some large n, and compute the 
quadratic variation up to time T with this step size. In other words, we could 
compute 

� [w ( (j +nl )T) - w (j�) ] 2 (3.4. 1 )  

We are interested in this quantity for small step sizes, and so as a last step we 
could evaluate the limit as n ---+ oo.  If we do this, we will get T, the same final 
answer as for the scaled random walk in (3.2. 10) . This is proved in Theorem 
3.4.3 below. 

The paths of Brownian motion are unusual in that their quadratic variation 
is not zero. This makes stochastic calculus different from ordinary calculus 
and is the source of the volatility term in the Black-Scholes-Merton partial 
differential equation. These matters will be discussed in the next chapter. 
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3.4.1  First-Order Variation 

Before proving that Brownian motion accumulates T units of quadratic varia
tion between times 0 and T, we digress slightly to discuss first-order variation 
(as opposed to quadratic variation, which is second-order variation) . Consider 
the function f(t) in Figure 3.4. 1 .  We wish to compute the amount of up and 
down oscillation undergone by this function between times 0 and T, with the 
down moves adding to rather than subtracting from the up moves. We call 
this the first-order variation FV r(f) . For the function f shown, it is 

FVr (f) = [f (tt ) - f(O)) - [f(t2 ) - f(h )) + [f(T) - j(t2 ) ) 

= t1 f' (t) dt + [t2 (-f' (t) ) dt + [T 
f' (t) dt 

lo t 1 t2 

The middle term 

= 1T 
lf' (t) j dt . (3.4.2) 

is included in a way that guarantees that the magnitude of the down move of 
the function f(t) between times t1 and t2 is added to rather than subtracted 
from the total. 

f(t) 

Fig. 3.4.1 .  Computing the first-order variation. 

In general, to compute the first-order variation of a function up to time T, 
we first choose a partition II =  { t0 , t 1 1 • • •  , tn } of [0, T] , which is a set of times 

0 = t0 < h < · · · < tn = T. 
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These will serve to determine the step size. We do not require the parti
tion points to = 0, h ,  t2 , . . .  , tn = T to be equally spaced, although they 
are allowed to be. The maximum step size of the partition will be denoted 
I IJI I I  = maxj=O, . . .  ,n- l (tj+ l - tj ) · We then define 

n- 1 
FVr (J) = lim L l f(ti+ I ) - f(tj ) l . 1 1 11 1 1-+0 j=O 

(3.4.3) 

The limit in (3.4.3) is taken as the number n of partition points goes to infinity 
and the length of the longest subinterval ti+ l - ti goes to zero. 

Our first task is to verify that the definition (3.4.3) is consistent with the 
formula (3.4.2) for the function shown in Figure 3.4. 1 .  To do this, we use 
the Mean Value Theorem, which applies to any function f(t) whose deriva
tive f' (t) is defined everywhere. The Mean Value Theorem says that in each 
subinterval [tj , ti+ I l  there is a point tj such that 

/(tj+ I ) - f(tj ) = f' (t* ) .  tj+ l - tj J 
(3.4.4) 

In other words, somewhere between ti and ti+ l , the tangent line is parallel 
to the chord connecting the points ( t i , f ( t i ) )  and ( t i + 1 , f ( t i + 1 ) )  (see Figure 
3.4.2) . 

f(t) 

Fig. 3.4.2. Mean Value Theorem. 

Multiplying (3.4.4) by ti+ l - ti , we obtain 

f(tj+ I ) - f(tj ) = f'(tj ) (tj+ l - tj ) · 

The sum on the right-hand side of (3.4.3) may thus be written as 

t 
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n- 1 
'E if' <t; ) i (tj+ l - tj ) ,  
i=O 

which is a Riemann sum for the integral of the function 1 /' (t) j . Therefore, 
n- 1 T 

FVT(/) = lim L i f' (tj ) i (ti+ l - tj ) = r if' (t) i dt, I I II I I-+O i=O lo 

and we have rederived (3.4.2) . 

3.4.2 Quadratic Variation 

Definition 3.4.1 .  Let f (t) be a function defined for O :S t :S T. The quadratic 
variation of f  up to .time T is 

n- 1 
[f, f] (T) = lim �)f(tH1 ) - f(ti )] 2 , I III I I-+O j=O 

(3.4.5) 

where II =  {to , tt ,  . . .  , tn } and 0 = to <  t1 < · ·  · < tn = T. 

Remark :1.4 . . 2. Suppose the function f has a continuous derivative. Then 
n- 1 n- 1 n- 1 
'Elf(tj+ l ) - f(tiW = L i f' (tj ) i 2 (tj+1 - tj ) 2 :s I III I I · L i f' (tj ) i 2 (tj+ 1 - tj ) ,  
i=O 
and thus 

i=O i=O 

[f, f] (T) :S lim [ I III I I · I: l/' (tj ) l 2 (ti+ 1 - ti )l I I II I I-+0 i=O 
n- 1 

= lim I III I I · lim L i f' (tj ) i2 (ti+l - ti ) I III II-+0 I III I I-+0 i=O 

= lim I III I I · rT 
l!' (t) i 2 dt = o. I III II-+0 Jo 

In the last step of this argument , we use the fact that f' (t) is continuous to 
ensure that f0T lf' (t) j 2dt is finite. If J: l f' (t) j 2dt is infinite, then 

leads to a 0 · oo situation, which can be anything between 0 and oo . 0 
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Most functions have continuous derivatives, and hence their quadratic vari
ations are zero. For this reason, one never considers quadratic variation in 
ordinary calculus. The paths of Brownian motion, on the other hand, can
not be differentiated with respect to the time variable. For functions that do 
not have derivatives, the Mean Value Theorem can fail and Remark 3.4.2 no 
longer applies. Consider, for example, the absolute value function f(t) = l t l in 
Figure 3.4.3. The chord connecting (t 1 , J(t i ) )  and (t2 , j(t2 ) )  has slope ! , but 
nowhere between h and t2 does the derivative of f(t) = l t l equal ! · Indeed, 
this derivative is always - 1 for t < 0, is always 1 for t > 0, and is undefined 
at t = 0, where the the graph of the function f(t) = l t l has a "point ." Figure 
3.2 .2 suggests correctly that the paths of Brownian motion are very "pointy." 
Indeed, for a Brownian motion path W(t) , there is no value of t for which 
ft W ( t) is defined. 

Fig. 3.4.3. Absolute value function. 

Theorem 3.4.3. Let W be a Brownian motion. Then [W, W] (T) = T for all 
T 2: 0 almost surely. 

We recall that the terminology almost surely means that there can be some 
paths of the Brownian motion for which the assertion [W, W] (T) = T is not 
true. However, the set of all such paths has zero probability. The set of paths 
for which the assertion of the theorem is true has probability one. 

PROOF OF THEOREM 3 .4 . 3 :  Let II =  {to ,  t 1 ,  . . .  , tn } be a partition of [0, T) . 
Define the sampled quadratic variation corresponding to this partition to be 

n- 1 
Qrr = L (W(ti+ I ) - W(ti ) ) 2 • 

j =O 

We must show that this sampled quadratic variation, which is a random vari
able (i .e. , it depends on the path of the Brownian motion along which it is 
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computed) converges to T as I IJI I I ---+ 0. We shall show that it has expected 
value T, and its variance converges to zero. Hence, it converges to its expected 
value T, regardless of the path along which we are doing the computation.2 

The sampled quadratic variation is the sum of independent random vari
ables. Therefore, its mean and variance are the sums of the means and vari
ances of these random variables. We have 

IE [ (W(ti+I ) - W(ti ) ) 2] = Var [W(ti+I ) - W(ti )] = ti+l - ti , (3.4.6) 
which implies 

n- 1 n- 1 
IEQrr = LIE  [(w(tj+ I ) - W(ti ) ) 2] = L(ti+I - ti ) = T, 

j=O j=O 
as desired. Moreover, 

Var [ (W(tj+I ) - W(tj ) ) 2] 

= IE [ ( (W(tj+ I ) - W(ti ) ) 2 - (ti+ l - ti )r] 
= IE [ (W(tj+I ) - W(ti ) ) 4] - 2(ti+ I - ti )IE [ (W(ti+I ) - W(ti ) ) 2] 

+(tj+1 - tj )2 • 
The fourth moment of a normal random variable with zero mean is three times 
its variance squared (see Exercise 3.3) . Therefore, 

IE [ (W(tJ+ 1 ) - W(tj ) ) 4] = 3(ti+ l - ti )2 , 

Var [ (W(ti+I ) - W(ti ) ) 2] = 3(ti+l - ti )2 - 2(tj+ l - ti )2 + (ti+l - ti )2 

and 
n- 1 

= 2(tj+l - tj )2 , (3.4.7) 

n- 1 
Var(Qrr) = L: var [ (w(tj+1 ) - W(ti ) ) 2] L: 2(tj+ l - tj )2 

j=O j=O 
n- 1 

:::; L 2 I I1I I I (tj+1 - tj ) = 2 I I1I I IT. 
j=O 

In particular, limiiiii i-tO Var(Qrr) = 0, and we conclude that limiiii i i-tO Qrr = 
IEQrr = T. 0 
2 The convergence we prove is actually convergence in mean square, also called 

L2 -convergence. When this convergence takes place, there is a subsequence along 
which the convergence is almost sure (i .e. , the convergence takes place for all 
paths except for a set of paths having probability zero) . We shall not dwell on 
subtle differences among types of convergence of random variables. 
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Remark 3.4 .4 .  In the proof above, we derived the equations (3.4.6) and (3.4. 7) : 

and 
Var [(W(ti+I ) - W(tJ ) ) 2] = 2(ti+ l - ti )2 • 

It is tempting to argue that when ti+ l - ti is small, (ti+ l - tj )2 is very small, 
and therefore (W(tj+l ) - W(tJ ) ) 2 , although random, is with high probability 
near its mean ti+l - ti . We could therefore claim that 

(3.4.8) 

This approximation is trivially true because, when ti+ l - ti is small , both 
sides are near zero. It would also be true if we squared the right-hand side, 
multiplied the right-hand side by 2, or made any of several other significant 
changes to the right-hand side. In other words, (3.4.8) really has no content. 
A better way to try to capture what we think is going on is to write 

instead of (3.4.8) .  However, 

(W(ti+I ) - W(ti ) ) 2 
tj+l - tj 

(3.4.9) 

is in fact not near 1, regardless of how small we make tj+ l - ti . It is the square 
of the standard normal random variable 

and its distribution is the same, no matter how small we make ti+ 1 - ti . 
To understand better the idea behind Theorem 3.4.3, we choose a large 

value of n and take ti = i£-,  j = 0, 1 ,  . . .  , n. Then tj+ l - ti = � for all j and 

Since the random variables Y1 , Y2 , . . .  , Yn are independent and identically dis
tributed, the Law of Large Numbers implies that 2:::7�� Y�1 converges to the 
common mean JE}'?+l as n ---+ oo. This mean is 1 ,  and hence 2:::7�� (W(tj+l ) 
W(tj ) ) 2 converges to T. Each of the terms (W(ti+ 1 ) - W(t1 )) 2 in this sum 
can be quite different from its mean t1+ 1 - t1 = � '  but when we sum many 
terms like this , the differences average out to zero. 
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We write informally 
dW(t) dW(t) = dt , (3.4. 10) 

but this should not be interpreted to mean either (3 .4 .8) or (3.4.9) . It is only 
when we sum both sides of (3.4.9) and call upon the Law of Large Numbers 
to cancel errors that we get a correct statement. The statement is that on an 
interval [0, T] , Brownian motion accumulates T units of quadratic variation. 

If we compute the quadratic variation of Brownian motion over the time 
interval [0, TI) ,  we get [W, W] (T1 )  = T1 . If we compute the quadratic variation 
over [0, T2] ,  where 0 < T1 < T2 , we get [W, W] (T2) = T2 . Therefore, if we 
partition the interval [T1 1 T2] ,  square the increments of Brownian motion for 
each of the subintervals in the partition, sum the squared increments, and 
take the limit as the maximal step size approaches zero, we will get the limit 
[W, W] (T2) - [W, W] (TI ) = T2 - T1 . Brownian motion accumulates T2 - T1 
units of quadratic variation over the interval [T1 , T2] .  Since this is true for 
every interval of time, we conclude that 

Brownian motion accumulates quadratic variation at rate one per unit 
time. 

We write (3.4. 10) to record this fact. In particular, the dt on the right-hand 
side of (3.4. 10) is multiplied by an understood 1 .  

As mentioned earlier, the quadratic variation of Brownian motion is the 
source of volatility in asset prices driven by Brownian motion. We shall even
tually scale Brownian motion, sometimes in time- and path-dependent ways, 
in order to vary the rate at which volatility enters these asset prices. 0 
Remark 3.4 . 5. Let II = {to , t 1 , . . .  , tn } be a partition of [O, T) (i.e. , 0 = to <  
t1 < · · · < tn = T) . In addition to computing the quadratic variation of 
Brownian motion 

(3.4. 1 1 )  

we can compute the cross variation of W(t) with t and the quadratic variation 
of t with itself, which are 

n- 1 
1 1N1�0 � (W (ti+1 ) - W(ti )) (ti+1 - ti ) = o, 

J=O 
n- 1 

lim "" (t ·+ l - t · )2 = 0. 
1 117 1 1-tO � J J 

J=O 

To see that 0 is the limit in (3.4. 12) , we observe that 

(3.4. 12) 

(3.4. 13) 
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and so 

Since W is continuous, maxo9�n - l !W(tk+l ) - W(k) ! has limit zero as 1 111 1 1 , 
the length of the longest subinterval, goes to zero. To see that 0 is the limit 
in (3.4. 13) , we observe that 

which obviously has limit zero as 1 111 1 1  --+ 0. 
Just as we capture (3.4. 1 1 ) by writing (3.4. 10) , we capture (3.4. 12) and 

(3.4. 13) by writing 
dW(t) dt = 0, dt dt = 0. 

3.4.3 Volatility of Geometric Brownian Motion 

(3.4.14) 
0 

Let a and a > 0 be constants, and define the geometric Brownian motion 

S(t) = S(O) exp { aW(t) + (a - �a2) t} . 
This is the asset-price model used in the Black-Scholes-Merton option-pricing 
formula. Here we show how to use the quadratic variation of Brownian motion 
to identify the volatility a from a path of this process. 

Let 0 � T1 < T2 be given, and suppose we observe the geometric Brownian 
motion S(t) for T1 � t � T2 . We may then choose a partition of this interval, 
T1 = to < t2 < · · · < tm = T2 , and observe "log returns" 

S(ti+I ) ( ( ) ( 1 2) log S(tj ) = a  W(tj+I ) - W ti ) + a - 2a (ti+ l - ti ) 

over each of the subintervals [tj , ti+I l ·  The sum of the squares of the log 
returns, sometimes called the realized volatility, is 

E (log S�t��I ) ) 2 
j=O ( J ) 

= a2 �1 (W(ti+I ) - W(ti ) ) 2 + (a - �a2) 2 � (ti+ l - ti ) 2 

+2a (a - �a2) Y: (W(tj+I ) - W(tj ) ) (ti+ 1 - ti ) · (3.4. 15) 
]=0 
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When the maximum step size l lll l l = maxj=O, . . .  ,m- l (tj+ l - tj )  is small, 
then the first term on the right-hand side of (3.4. 15) is approximately equal to 
its limit , which is a2 times the amount of quadratic variation accumulated by 
Brownian motion on the interval [T1 1 T2] ,  which is T2 - T1 . The second term 
on the right-hand side of (3.4. 15) is (a - !a2) 2 times the quadratic variation 
of t, which was shown in Remark 3.4.5 to be zero. The third term on the 
right-hand side of (3.4. 1'5) is 2a (a - !a2) times the cross variation of W(t) 
and t , which was also shown in Remark 3.4.5 to be zero. We conclude that 
when the maximum step size l lll l l  is small, the right-hand side of (3.4. 15) is 
approximately equal to a2 (T2 - Tl ) ,  and hence 

(3.4. 16) 

If the asset price S(t) really is a geometric Brownian motion with constant 
volatility a, then a can be identified from price observations by computing the 
left-hand side of (3.4. 16) and taking the square root. In theory, we can make 
this approximation as accurate as we like by decreasing the step size. In prac
tice, there is a limit to how small the step size can be. Between trades, there 
is no information about prices, and when a trade takes place, it is sometimes 
at the bid price and sometimes at the ask price. On small time intervals, the 
difference in prices due to the bid-ask spread can be as large as the difference 
due to price fluctuations during the time interval. 

3.5  Markov Property 

In this section, we show that Brownian motion is a Markov process and discuss 
its transition density. 
Theorem 3.5.1 .  Let W(t) , t � 0, be a Brownian motion and let :F(t) , t � 0, 
be a filtration for this Brownian motion (see Definition 3. 3. 3). Then W(t) , 
t � 0, is a Markov process. 
PROOF: According to Definition 2.3.6, we must show that whenever 0 � s � 
t and f is a Borel-measurable function, there is another Borel-measurable 
function g such that 

lE [f (W(t)) j:F(s)] = g (W(s)) . (3.5 . 1 )  

To do this , we write 

lE [f (W(t)) j:F(s)] = lE [/ ((W(t) - W(s) ) + W(s)) j:F(s)] . (3 .5 .2) 

The random variable W(t) - W(s) is independent of :F(s) , and the random 
variable W(s) is :F(s)-measurable. This permits us to apply the Independence 
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Lemma, Lemma 2.3.4. In order to compute the expectation on the right-hand 
side of (3.5.2) , we replace W(s) by a dummy variable x to hold it constant 
and then take the unconditional expectation of the remaining random variable 
(i .e. , we define g(x) = lEf (W(t) - W(s) + x) ) .  But W(t) - W(s) is normally 
distributed with mean zero and variance t - s. Therefore, 

1 100 ,.,2 
g(x) = f(w + x)e- 2 C•- •> dw. 

J2rr(t - s) - oo  

(3.5.3) 

The Independence Lemma states that if we now take the function g ( x) defined 
by (3.5 .3) and replace the dummy variable x by the random variable W(s) ,  
then equation (3.5. 1 ) holds. 0 

We may make the change of variable T = t - s and y = w + x in (3.5.3) to 
obtain 

1 100 (y-:c)2 g(x) = � f(y)e- 2T dy. 
y 21l"T - oo  

We define the transition density p(r, x, y) for Brownian motion to be 

1 (y-:c)2 
p(r, x, y) = . �e- 2T , 

y 21l"T 

so that we may further rewrite (3.5.3) as 

g(x) = I: f(y)p(r, x, y) dy 

and (3.5 . 1 ) as 

IE [f (W(t)) j.F(s)] = I: f(y)p(r, W(s) , y) dy. 

(3.5.4) 

(3.5 .5) 

This equation has the following interpretation. Conditioned on the informa
tion in .F(s) (which contains all the information obtained by observing the 
Brownian motion up to and including time s) , the conditional density of W(t) 
is p(r, W(s) , y) . This is a density in the variable y. This density is normal with 
mean W(s) and variance T = t - s. In particular, the only information from 
F(s) that is relevant is the value of W(s) .  The fact that only W(s) is relevant 
is the essence of the Markov property. 

3 . 6  First Passage Time Distribution 

In Chapter 5 of Volume I, we studied the first passage time for a random walk, 
first using the optional sampling theorem for martingales to obtain the distri
bution in Section 5 .2 and then rederiving the distribution using the reflection 
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principle in Section 5.3. Here we develop the first approach; the second is pre
sented in the next section. In Sections 5 .2 and 5.3 of Volume I, we observed 
after deriving the distribution of the first passage time for the symmetric 
random walk that our answer could easily be modified to obtain the first pas
sage distribution for an asymmetric random walk. In this section, we work 
only with Brownian motion, the continuous-time counterpart of the symmet
ric random walk. The case of Brownian motion with drift, the continuous-time 
counterpart of an asymmetric random walk, is treated in Exercise 3 .7. We re
visit this problem in Chapter 7, where it is solved using Girsanov's Theorem. 
The resulting formulas often provide explicit pricing and hedging formulas for 
exotic options. Examples of the application of these formulas to such options 
are given in Chapter 7. 

Just as we began in Section 5.2 of Volume I with a martingale that had 
the random walk in the exponential function, we must begin here with a 
martingale containing Brownian motion in the exponential function. We fix a 
constant u. The so-called exponential martingale corresponding to u, which is 

Z(t) = exp { uW(t) - �u2t} , (3.6. 1 ) 

plays a key role in much of the remainder of this text. 
Theorem 3.6.1 (Exponential martingale) .  Let W(t) , t ;:::: 0, be a Brow
nian motion with a filtmtion :F( t) , t ;:::: 0, and let u be a constant. The process 
Z(t) , t 2: 0, of {3. 6. 1} is a martingale. 
PROOF: For 0 :::; s :::; t, we have 

lE [Z(t) I:F(s)] 
= lE [ exp { uW(t) - �u2t} I :F(s)] 
= lE [ exp { u (W(t) - W(s)) }  · exp { uW(s) - �u2t} I :F(s)] 
= exp { uW(s) - �u2t} · lE [ exp { u (W(t) - W(s)) } I  :F(s)] , (3.6 .2 ) 

where we have used "taking out what is known" (Theorem 2.3 .2 (ii) ) for the 
last step. We next use "independence" (Theorem 2.3.2 (iv) )  to write 

lE [exp {u (W(t) - W(s)) } I :F(s)] = lE [exp {u (W(t) - W(s) ) } ] . 
Because W(t) - W(s) is normally distributed with mean zero and variance 
t - s , this expected value is exp { �u2 (t - s) } (see (3.2. 13) ) . Substituting this 
into (3.6.2) , we obtain the martingale property 

lE [Z(t) i:F(s ) ] = exp { uW(s) - �u
2s} = Z(s ) .  D 
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Let m be a real number, and define the first passage time to level m 

Tm = min{t ;;:: 0; W(t) = m}. (3.6.3) 

This is the first time the Brownian motion W reaches the level m. If the 
Brownian motion never reaches the level m, we set Tm = oo. A martingale 
that is stopped ( "frozen" would be a more apt description) at a stopping 
time is still a martingale and thus must have constant expectation. (The text 
following Theorem 4.3.2 of Volume I discusses this in more detail . )  Because 
of this fact , 

1 = Z(O) = IEZ(t 1\ Tm) = IE [ exp { uW(t 1\ Tm) - �u2 (t 1\ Tm) }] , (3.6.4) 

where the notation t 1\ Tm denotes the minimum of t and Tm . 
For the next step, we assume that u > 0 and m > 0. In this case, the 

Brownian motion is always at or below level m for t � T m and so 

(3.6.5) 

If Tm < oo, the term exp { - �u2 (t 1\ Tm) } is equal to exp { - �u2rm } for large 
enough t. On the other hand, if Tm = oo, then the term exp { - �u2 (t 1\ Tm) } 
is equal to exp { - �u2t} , and as t ---+ oo, this converges to zero. We capture 
these two cases by writing 

where the notation n{r,.<oo} is used to indicate the random variable that takes 
the value 1 if Tm < oo and otherwise takes the value zero. If Tm < oo, then 
exp{uW(t 1\ Tm) }  = exp{uW(rm) }  = e""

m when t becomes large enough. If 
Tm = oo, then we do not know what happens to exp{uW(t 1\ Tm) }  as t ---+ oo, 
but we at least know that this term is bounded because of (3.6.5) . That is 
enough to ensure that the product of exp{uW(t 1\ Tm) }  and exp { - �u2rm } 
has limit zero in this case. In conclusion, we have 

t�� exp { uW(t 1\ Tm) - �u2 (t 1\ Tm) } = H{r,.<oo} exp { um - �u2Tm } . 

We can now take the limit in (3.6.4)3 to obtain 

1 = IE [n{r,.<oo} exp { um - �u2rm }] 

or, equivalently, 
3 The interchange of limit and expectation implicit in this step is justified by the 

Dominated Convergence Theorem, Theorem 1 .4.9. 
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IE [n{rm<oo} exp { - �u2rrn }] = e-arn . (3.6.6) 

Equation (3.6.6) holds when m and u are positive. We may not substitute u = 0 into this equation, but since it holds for every positive u, we may take 
the limit on both sides as u ..!.  0. This yields4 1E [n{rm<oo} ] = 1 or, equivalently, P{rrn < oo} = 1 .  (3.6.7) 
Because Trn is finite with probability one (we say Trn is finite almost surely) , 
we may drop the indicator of this event in (3.6.6) to obtain 

IE [exp { - �0'2Trn }] = e-arn. (3.6.8) 

We have done the hard work in the proof of the following theorem. 
Theorem 3.6.2. For m E IR, the first passage time of Brownian motion to 
level m is finite almost surely, and the Laplace transform of its distribution is 
given by 

(3.6.9) 
PROOF: We consider first the case when m is positive. Let a be a positive 
constant, and set u = J2c;, so that !u2 = a. Then (3.6.8) becomes (3.6.9) . If 
m is negative, then because Brownian motion is symmetric, the first passage 
times Trn and Tlrnl have the same distribution. Equation (3.6.9) for negative 
m follows. 0 

Remark 3. 6. 3. Differentiation of (3.6.9) with respect to a results in 

IE [rrne-arm ] = ��e- lrnlv'2c> for all a >  0.  
v 2a 

Letting a ..!. 0, we obtain IEr rn = oo so long as m =F 0. 

3. 7 Reflection Principle 

3. 7.1 Reflection Equality 

In this section, we repeat for Brownian motion the reflection principle argu
ment of Section 5.3 of Volume I for the random walk. The reader may wish 
to review that section before reading this one. 

We fix a positive level m and a positive time t. We wish to "count" the 
Brownian motion paths that reach level m at or before time t (i .e. , those paths 
for which the first passage time Trn to level m is less than or equal to t) .  There 
are two types of such paths: those that reach level m prior to t but at time t 
are at some level w below m, and those that exceed level m at time t. There 
are also Brownian motion paths that are exactly at level m at time t, but 
unlike the case of the random walk in Section 5 .3 of Volume I, the probability 
of this for Brownian motion is zero. We may thus ignore this possibility. 

4 Here we use the Monotone Convergence Theorem, Theorem 1 .4 .5 .  
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M(t) 

2m - w  

m 

w 

Fig. 3.7.1 .  Brownian path and reflected path. 

As Figure 3 .7 .1 illustrates, for each Brownian motion path that reaches 
level m prior to time t but is at a level w below m at time t, there is a 
"reflected path" that is at level 2m - w at time t. This reflected path is 
constructed by switching the up and down moves of the Brownian motion 
from time T m onward. Of course, the probability that a Brownian motion 
path ends at exactly w or at exactly 2m - w is zero. In order to have nonzero 
probabilities, we consider the paths that reach level m prior to time t and are 
at or below level w at time t, and we consider their reflections, which are at 
or above 2m - w at time t. This leads to the key reflection equality 

lP{Tm � t , W(t) � w} = lP{W (t) � 2m - w} , w � m, m > 0. 

3.7.2 First Passage Time Distribution 

(3.7. 1 )  

We draw two conclusions from (3.7. 1 ) .  The first is the distribution for the 
random variable T m .  

Theorem 3.7. 1 .  For all m f. 0, the random variable Tm has cumulative dis
tribution function 
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t ;:::: 0, (3.7.2) 

and density 

(3.7.3) 

PROOF: We first consider the case m > 0. We substitute w = m into the 
reflection formula (3.7. 1 ) to obtain 

JP>{rm ::; t, W(t) ::; m} = JP>{W(t) ;:::: m} . 

On the other hand, if  W(t) ;:::: m, then we are guaranteed that Tm ::; t. In 
other words, 

JP>{rm ::; t, W(t) ;:::: m} = JP>{W(t) ;:::: m} . 
Adding these two equations, we obtain the cumulative distribution function 
for Tm : 

JP>{rm ::; t} = JP>{rm ::; t, W(t) ::; m} + JP>{rm ::; t, W(t) ;:::: m} 
2 100 ,2 

= 2JP>{W(t) ;:::: m} = rrc; e-r. dx. 
v 2rrt m 

We make the change of variable y = Jt in the integral, and this leads to 
(3.7.2) when m is positive. If m is negative, then Tm and Tlml have the same 
distribution, and (3.7.2) provides the cumulative distribution function of the 
latter. Finally, (3 .7.3) is obtained by differentiating (3.7.2) with respect to t. 
0 

Remark 3. 7.2. From (3.7.3) , we see that 100 100 jmj m2 
lEe-<XTm = e-am frm (t) dt = -- e-am-2t dt for all (): > 0. 0 0 t../2rri 

(3. 7.4) 
Theorem 3.6.2 provides the apparently different Laplace transform formula 
(3.6.9) .  These two formulas are in fact the same, and the steps needed to 
verify this are provided in Exercise 3.9. 0 

3. 7.3 Distribution of Brownian Motion and Its Maximum 

We define the maximum to date for Brownian motion to be 

M(t) = max W(s) . O�s�t (3 .7 .5) 

This stochastic process is used in pricing barrier options. For the value of t in 
Figure 3.7. 1 ,  the random variable M(t) is indicated. For positive m, we have 
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M(t) � m if and only if Tm :::; t. This observation permits us to rewrite the 
reflection equality (3 .7 . 1 )  as 

JP{M(t) � m, W(t) :::; w} = JP{W(t) � 2m - w} ,  w :::; m, m > 0. (3.7.6) 

From this, we can obtain the joint distribution of W(t) and M(t) . 

Theorem 3.7.3. For t > 0, the joint density of (M(t) , W(t)) is 

2(2m - w) _ (2m-4 
fM(t) ,W(t) (m, w) = 

t../2irt 
e 2' , w :::; m, m > O. 

PROOF: Because 

and 

JP{M(t) � m, W(t) :::; w} = Loo 1: fM(t) ,W(t) (x, y) dy dx 

1 100 .2 
JP{W(t) � 2m - w} = � e- r. dz, 

y 27rt 2m-w 
we have from (3 .7.6) that 1oo lw 1 1oo .2 

fM(t) ,W(t) (x, y) dy dx = � e-r. dz. m -oo V 27rt 2m-w 
We differentiate first with respect to m to obtain 

lw 2 _ (2m-w)2 
- fM(t) ,W(t) (m, y) dy = - � e 2• • -oo v 2ri 

We next differentiate with respect to w to see that 

2(2m - w) - (2m-w)2 
-fM(t) ,W(t) (m, w) = -

tv"iirt 
e 2• • 

This is (3 .7 .7) .  

(3.7.7) 

D 
When simulating Brownian motion to price exotic options, it is often con

venient to first simulate the value of the Brownian motion at some time T > 0 
and then simulate the maximum of the Brownian motion between times 0 and 
t. This second step requires that we know the distribution of the maximum 
of the Brownian motion M(t) on [0, t] conditioned on the value of W(t) . This 
conditional distribution is provided by the following corollary. 

Corollary 3.7.4. The conditional distribution of M(t) given W(t) = w is 
2(2m - w) 2m(m-w) 

fM(t) iW(t) (mlw) = t e- • , w :::; m, m > 0. 
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PROOF: The conditional density is the joint density divided by the marginal 
density of the conditioning random variable. The conditional density we seek 
here is 

f ( I ) _ !M(t) ,W(t) (m, w) M(t) IW(t) m W - f ( ) W(t) W 

3.8 Summary 

2(2m - w) � - (2m-w )2 + "'2 
= . v 21rt e 2• 2• 

t../2ii 
2(2m - w) 2m(m-w) = e • D t 

Brownian motion is a continuous stochastic process W(t) , t � 0, that has 
independent, normally distributed increments . In this text, we adopt the con
vention that Brownian motion starts at zero at time zero, although one could 
add a constant a to our Brownian motion and obtain a "Brownian motion 
starting at a" . For either Brownian motion starting at 0 or Brownian motion 
starting at a, if 0 = to < t 1 < · · · < tm , then the increments 

W(h ) - W(to ) ,  W(t2 ) - W(h ) ,  . . .  , W(tm) - W(tm- l ) 

are independent and normally distributed with 

This is Definition 3.3. 1 .  Associated with Brownian motion there is a filtration 
:F(t) , t � 0, such that for each t � 0 and u � t, W(t) is :F(t)-measurable and 
W(u) - W(t) is independent of :F(t) . 

Brownian motion is both a martingale and a Markov process. Its transition 
density is 

1 - (y-:c)2 
p(r, x , y) = �e 27' • 

v 27rr 
This is the density in the variable y for the random variable W ( s + T) given 
that W(s) = x. 

A profound property of Brownian motion is that it accumulates quadratic 
variation at rate one per unit time (Theorem 3.4.3) .  If we choose a time 
interval [T1 , T2] ,  choose partition points T1 = to < h < · · · < tm = T2 , 
and compute E';,:�1 (W(tj+l ) - W(ti ) ) 2 , we get an answer that depends 
on the path along which the computation is done. However, if we let the 
number of partition points approach infinity and the length of the longest 
subinterval ti+ l - ti approach zero, this quantity has limit T2 - T1 , the length 
of the interval over which the quadratic variation is being computed. We 
write dW(t) dW(t) = dt to symbolize the fact that the amount of quadratic 
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variation Brownian motion accumulates in an interval is equal to the length 
of the interval, regardless of the path along which we do the computation. 

If we compute L.;'=-�/ (W(ti+ I ) - W(tj )) (ti+ l - tj ) or L.;'=-;_1 (tj+ l - tj )2 
and pass to the limit , we get zero (Remark 3.4.5) .  We symbolize this by writing 
dW (t ) dt = dt dt = 0. 

The first passage time of Brownian motion, 

Tm = min{ t ;:::: 0; W(t) = m} ,  

i s  the first time the Brownian motion reaches the level m. For m "1- 0 ,  we 
have IP'{rm < oo} = 1 (equation (3.6.7)) (i .e . ,  the Brownian motion eventually 
reaches every nonzero level) , but IErm = oo (Remark 3.6.3) . The random 
variable Tm is a stopping time, has density (Theorem 3.7. 1 )  

lm l frm (t )  = 
t../2irt' 

and this density has Laplace transform (Theorem 3.6.2; see also Exercise 3.9) 

1Ee-ar, = e- lmlv'20 for all a > 0. 

The reflection principle used to determine the density frm (t) can also be 
used to determine the joint density of W(t) and its maximum to date M(t) = 
maxo<s<t W(s) .  This joint density is (Theorem 3.7.3) 

2 (2m - w) (2m-w)2 
!M(t) ,W(t) (m, w) = 

t../2irt 
e- 2• , w � m, m > 0. 

3.9 Notes 

In 1828, Robert Brown observed irregular movement of pollen suspended in 
water. This motion is now known to be caused by the buffeting of the pollen 
by water molecules, as explained by Einstein [62] . Bachelier [6] used Brown
ian motion (not geometric Brownian motion) as a model of stock prices, even 
though Brownian motion can take negative values. Levy [ 107] , [108] discovered 
many of the nonintuitive properties of Brownian motion. The first mathemat
ically rigorous construction of Brownian motion is credited to Wiener [159] , 
[ 160] , and Brownian motion is sometimes called the Wiener process. 

Brownian motion and its properties are presented in numerous texts, in
cluding Billingsley [10] . The development in these notes is a summary of that 
found in Karatzas and Shreve [101] . The properties of Brownian motion and 
many formulas useful for pricing exotic options are developed in Borodin and 
Salminen [ 18] .  

Convergence of discrete-time and/or discrete-state models to continuous
time models, a topic touched upon in Section 3.2 .7 , is treated by Amin and 
Khanna [3] , Cox, Ross and Rubinstein [42] , Duffie and Protter [60] , and Will
inger and Taqqu [ 162] ,  among others. 
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3 . 10 Exercises 

Exercise 3 .1 .  According to Definition 3.3.3 (iii) , for 0 :::; t < u, the Brownian 
motion increment W(u) - W(t) is independent of the a-algebra :F(t) . Use this 
property and property (i) of that definition to show that, for 0 :::; t < u1 < u2 , 
the increment W(u2) - W(ui )  is also independent of :F(t) .  

Exercise 3.2. Let W(t) , t ;::: 0, be a Brownian motion, and let :F(t) ,  t ;::: 0,  
be a filtration for this Brownian motion. Show that W2(t) - t is a martingale. 
(Hint : For 0 ::=; s ::=; t, write W2(t) as (W(t) - W(s))2 + 2W(t)W(s) - W2 (s) . )  

Exercise 3 .3  (Normal kurtosis) .  The kurtosis of a random variable i s  de
fined to be the ratio of its fourth central moment to the square of its variance. 
For a normal random variable, the kurtosis is 3. This fact was used to obtain 
(3.4. 7) . This exercise verifies this fact . 

Let X be a normal random variable with mean JL, so that X - JL has 
mean zero. Let the variance of X, which is also the variance of X - JL, be 
a2 . In (3.2 . 13) , we computed the moment-generating function of X - JL to be 
cp(u) = IEeu(X-JL) = du2cr2 , where u is a real variable. Differentiating this 
function with respect to u, we obtain 

cp' (u) = IE [(X - JL)eu(X-JL) ] = a2ue!cr2u2 

and, in particular, cp' (O) = IE(X - JL) = 0. Differentiating again, we obtain 

cp"(u) = IE  [(X - JL)2eu(X-JL)] = (a2 + a4u2) e�cr2u2 

and, in particular, cp" (O) = IE  [(X - JL)2] = a2 . Differentiate two more times 
and obtain the normal kurtosis formula IE [(X - JL )4] = 3a4 .  

Exercise 3.4 (Other variations of  Brownian motion) . Theorem 3.4.3 
asserts that if T is a positive number and we choose a partition II with points 
0 = to < t1 < t2 < · · · < tn = T, then as the number n of partition points 
approaches infinity and the length of the longest subinterval I III I I  approaches 
zero, the sample quadratic variation 

n- 1 
L (W(tj+ I ) - W(tj ) ) 2 
j=O 

approaches T for almost every path of the Brownian motion W. In Re
mark 3.4.5, we further showed that I:;:� (W(tJ+I ) - W(t3 ) ) (tJ+ 1 - t3 )  and 
.L:7:� (tJ+ 1 - t3 ) 2 have limit zero. We summarize these facts by the multipli
cation rules 

dW(t) dW(t) = dt, dW(t) dt = 0, dt dt = 0. (3. 10 . 1 ) 
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(i) Show that as the number m of partition points approaches infinity and 
the length of the longest subinterval approaches zero, the sample first 
variation n- 1 

L IW(tj+I ) - W(tj ) i 
j=O 

approaches oo for almost every path of the Brownian motion W. (Hint: 
n- 1 
L (W(tj+1 ) - W(tj )} 2 
j=O 

(ii) Show that as the number n of partition points approaches infinity and 
the length of the longest subinterval approaches zero, the sample cubic 
variation n- 1 

L IW(tj+1 ) - W(tj ) l 3 
j=O 

approaches zero for almost every path of the Brownian motion W. 

Exercise 3.5 (Black-Scholes-Merton formula) . Let the interest rate r 
and the volatility u > 0 be constant. Let 

be a geometric Brownian motion with mean rate of return r, where the initial 
stock price S(O) is positive. Let K be a positive constant. Show that, for 
T > O, 

where 
d± (T, S(O) ) = u� [log S�) + (r ± �

2 ) r] , 
and N is the cumulative standard normal distribution function 

1 ly 
1 2 1 100 1 2 N (y) = to= e- 2 z dz = to= e - 2 z dz . 

V 211" - oo  V 211" - y  

Exercise 3.6. Let W(t) be a Brownian motion and let :F(t) , t � 0, be an 
associated filtration. 
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(i) For J.L E JR., consider the Brownian motion with drift J.L: 
X(t) = J.Lt + W(t) . 

Show that for any Borel-measurable function f(y) , and for any 0 :::; s < t, 
the function 

g(x) = J2rrtt - s) i: f(y) exp {- (y - x
2� �(:)- s))2 } dy 

satisfies lE (f {X(t)) IF(s)] = g (X(s)) , and hence X has the Markov prop
erty. We may rewrite g(x) as g(x) = f�oo f(y )p( T, x, y) dy, where T = t - s 
and 1 { (y - X - J.LT)2 } p(T, x, y) = J27IT exp - 27 
is the transition density for Brownian motion with drift J.L. 

(ii) For v E JR. and a > 0, consider the geometric Brownian motion 
S(t) = S(O)eo"W(t)+vt . 

Set T = t - s and 

_ 1 { (log � - VT) 2 } p(T, x, y) - J21IT exp - 2 2 . ay 2rrT a T 
Show that for any Borel-measurable function f(y) and for any 0 :::; s < t 
the function g(x) = J000 h(y)p(T, x, y) dy satisfies lE [f (S(t)) IF(s)] = 
g (S(s)) and hence S has the Markov property and p(T, x, y) is its transi
tion density. 

Exercise 3.7. Theorem 3.6.2 provides the Laplace transform of the density 
of the first passage time for Brownian motion. This problem derives the anal
ogous formula for Brownian motions with drift. Let W be a Brownian motion. 
Fix m > 0 and J.L E JR.. For 0 :::; t < oo, define 

X(t) = J.Lt + W(t) , 
Tm = min{ t � O; X(t) = m} . 

As usual, we set Tm = oo if X(t) never reaches the level m. Let a be a positive 
number and set 

Z(t) = exp { aX(t) - ( aJ.L + �a2) t} . 

(i) Show that Z(t) , t � 0, is a martingale. 
(ii) Use (i) to conclude that 

lE [exp {aX(t A Tm) - (aJ.L + �a2) (t i\ Tm) }] = 1 , t � O. 
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(iii) Now suppose J.L 2: 0. Show that, for a > 0, 

Use this fact to show IP'{ Tm < oo} = 1 and to obtain the Laplace transform 

lEe-arm = emJ-L-mV2"'+J-L2 for all a > 0. 

(iv) Show that if J.L > 0, then IETm < oo. Obtain a formula for IETm . (Hint: 
Differentiate the formula in (iii) with respect to a.) 

(v) Now suppose J.L < 0. Show that, for a > -2J.L, 

Use this fact to show that IP'{ Tm < oo} = e-2x iJ-LI ,  which is strictly less 
than one, and to obtain the Laplace transform 

Exercise 3.8. This problem presents the convergence of the distribution of 
stock prices in a sequence of binomial models to the distribution of geometric 
Brownian motion. In contrast to the analysis of Subsection 3.2. 7, here we 
allow the interest rate to be different from zero. 

Let a > 0 and r 2: 0 be given. For each positive integer n, we consider 
a binomial model taking n steps per unit time. In this model, the interest 
rate per period is � ,  the up factor is Un = eulfo, and the down factor is 
dn = e-u/fo. The risk-neutral probabilities are then 

.!:. + 1 - e-u/,fii - n 
Pn = -"eu'-;-:-,;n--=n=--_-e ___ u_,/,--,fii=n ' 

Let t be an arbitrary positive rational number, and for each positive integer 
n for which nt is an integer, define 

nt 
Mnt ,n = L Xk,n , 

k= l 

where X1 ,n , . . .  , Xn,n are independent, identically distributed random vari
ables with 

The stock price at time t in this binomial model, which is the result of nt 
steps from the initial time, is given by (see (3.2 . 1 5) for a similar equation) 



Sn (t) = S(O)uA (nt+Mnt .n )dj (nt-Mnt ,n )  
3.10 Exercises 121  

= S(O) exp { 2Jn (nt + Mnr,n ) } exp { - 2Jn (nt - Mnt,n ) } 
= S(O) exp { :/nMnt,n } . 

This problem shows that as n -+ oo, the distribution of the sequence of random 
variables JnMnt ,n appearing in the exponent above converges to the normal 
distribution with mean (r - �u2)t and variance u2t . Therefore, the limiting 
distribution of Sn ( t) is the same as the distribution of the geometric Brownian 
motion S(O) exp { uW(t) + (r - �u)t} at time t. 
(i) Show that the moment-generating function cpn (u) of JnMnt,n is given by 

(ii) We want to compute 

lim cpn (u) = lim cp 1 (u) , n-too x.(.O ;2" 

where we have made the change of variable x = Jn · To do this, we will 
compute log cp 1 ( u) and then take the limit as x ..j.. 0. Show that ;2" 

1 ( ) _ .!._ 1 [ (rx2 + 1) sinh ux + sinh(u - u)x ] og cp:\ u - 2 og . h "' X Sill O'X 

(the definitions are sinh z = e• -2e- • , cosh z = e• +2e- • ) , and use the formula 

sinh(A - B) = sinh A cosh B - cosh A sinh B 

to rewrite this as 
1 ( ) t 1 [ h (rx2 + 1 - cosh ux) sinh ux ] og cp:\ u = 2 og cos ux + . h · 

"' X Sill O'X 

(iii) Use the Taylor series expansions 
1 cosh z = 1 + 2z2 + O(z4 ) ,  sinh z = z + O(z3) ,  

to show that 

h (rx2 + 1 - cosh ux) sinh ux cos ux + ' h  Sill O'X 
1 rux2 1 = 1 + 2u2x2 + 7 - 2ux2u + O(x4 ) . 

The notation O(xi ) is used to  represent terms of  the order xi . 
(3.10 .2) 
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(iv) Use the Taylor series expansion log(1 + x ) = x + O (x2 ) to compute 
limx.(.O log <p � ( u) . Now explain how you know that the limiting distri-
bution for j..Mnt ,n is normal with mean (r - �a2 )t and variance a2t. 

Exercise 3.9 (Laplace transform of first passage density) . The so
lution to this problem is long and technical. It is included for the sake of 
completeness, but the reader may safely skip it . 

Let m > 0 be given, and define 

m { m2 } J(t, m) = rcc; exp --
2 

. 
tv 21rt t 

According to (3 .7.3) in Theorem 3.7. 1 ,  f (t , m) is the density in the variable t 
of the first passage time T m = min { t 2': 0; W ( t) = m} , where W is a Brownian 
motion without drift. Let 

g(a, m) = 100 e-a.t f(t, m) dt, a: > 0, 

be the Laplace transform of the density f(t, m) . This problem verifies that 
g(a, m) = e-mv'2a, which is the formula derived in Theorem 3.6.2. 
(i) For k 2': 1 ,  define 

ak (m) = vk 100 ck/2 exp { -o:t - ;: } dt, 

so g(o:, m) = maa (m) .  Show that 

9m (o:, m) = aa (m) - m2as (m) ,  
9mm(o:, m) = -3mas (m) + m3a7 (m) . 

(ii) Use integration by parts to show that 

2o: m2 
as (m) = -3aa (m) + 3a7(m) .  

(iii) Use (i) and (ii) to  show that g satisfies the second-order ordinary differ
ential equation 

9mm(o:, m) = 2o:g(o:, m) . 
(iv) The general solution to a second-order ordinary differential equation of 

the form 
ay" (m) + by' (m) + cy(m) = 0 

is 
y(m) = AleA'm + A2eA2m , 

where ..X1 and ..X2 are roots of the characteristic equation 



a..\2 + b,\ + c = 0. 
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Here we are assuming that these roots are distinct . Find the general so
lution of the equation in (iii) when a > 0. This solution has two undeter
mined parameters A1 and A2 , and these may depend on a. 

(v) Derive the bound 

g(a, m) :S -- - c312 exp - - dt + -- e-at dt m 1m R { m2 } 1 1oo 
y'2ii 0 t 2t .,fiiiTn m 

and use it to show that, for every a > 0, 
lim g(a, m) = 0. m-too 

Use this fact to determine one of the parameters in the general solution 
to the equation in (iii) . 

(vi) Using first the change of variable s = tjm2 and then the change of variable 
y = 1/JS, show that 

lim g(a, m) = 1 .  m.(.O 
Use this fact to determine the other parameter in the general solution to 
the equation in (iii) . 
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4 

Stochastic Calculus 

4 . 1  Introduction 

This chapter defines Ito integrals and develops their properties. These are 
used to model the value of a portfolio that results from trading assets in 
continuous time. The calculus used to manipulate these integrals is based 
on the lt6-Doeblin formula of Section 4.4 and differs from ordinary calcu
lus. This difference can be traced to the fact that Brownian motion has a 
nonzero quadratic variation and is the source of the volatility term in the 
Black-Scholes-Merton partial differential equation. The Black-Scholes-Merton 
equation is presented in Section 4.5. This is in the spirit of Sections 1 . 1  and 
1 .2 of Volume I in which we priced options by determining the portfolio that 
would hedge a short position. In particular, there is no discussion of risk
neutral pricing in this chapter. That topic is taken up in Chapter 5 . 

Section 4.6 extends stochastic calculus to multiple processes. Section 4. 7 
discusses the Brownian bridge, which plays a useful role in Monte Carlo meth
ods for pricing. We do not treat Monte Carlo methods in this text; we include 
the Brownian bridge only because it is a natural application of the stochastic 
calculus developed in the earlier sections. 

4.2 Ito's Integral for Simple Integrands 

We fix a positive number T and seek to make sense of 

1T Ll(t) dW(t) . (4.2. 1 )  

The basic ingredients here are a Brownian motion W(t) , t 2: 0 ,  together with 
a filtration :F(t) ,  t � 0, for this Brownian motion. We will let the integrand 
Ll(t) be an adapted stochastic process. Our reason for doing this is that Ll(t) 
will eventually be the position we take in an asset at time t ,  and this typically 
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depends on the price path of the asset up to time t. Anything that depends on 
the path of a random process is itself random. Requiring Ll(t) to be adapted 
means that we require Ll(t) to be F(t)-measurable for each t ;:::: 0. In other 
words, the information available at time t is sufficient to evaluate Ll(t) at 
that time. When we are standing at time 0 and t is strictly positive, Ll(t) 
is unknown to us. It is a random variable. When we get to time t , we have 
sufficient information to evaluate Ll(t) ; its randomness has been resolved. 

Recall that increments of the Brownian motion after time t are indepen
dent of F(t) ,  and since Ll(t) is F(t)-measurable, it must also be independent 
of these future Brownian increments. Positions we take in assets may depend 
on the price history of those assets, but they must be independent of the 
future increments of the Brownian motion that drives those prices. 

The problem we face when trying to assign meaning to the Ito integral 
(4.2 . 1 )  is that Brownian motion paths cannot be differentiated with respect 
to time. If g(t) is a differentiable function, then we can define 

1T Ll(t) dg(t) = 1T Ll(t)g' (t) dt , 

where the right-hand side is an ordinary (Lebesgue) integral with respect to 
time. This will not work for Brownian motion. 

4.2.1 Construction of the Integral 

To define the integral (4.2. 1 ) ,  Ito devised the following way around the nondif
ferentiability of the Brownian paths. We first define the Ito integral for simple 
integrands Ll(t) and then extend it to nonsimple integrands as a limit of the 
integral of simple integrands. We describe this procedure. 

Let II = {t0 , t1 , . . .  , tn } be a partition of [0, T] ; i .e. , 

Assume that Ll(t) is constant in t on each subinterval [t3 , t3+ I ) · Such a process 
Ll(t) is a simple process. 

Figure 4.2 . 1  shows a single path of a simple process Ll(t) . We shall always 
choose these simple processes, as shown in this figure, to take a value at a 
partition time t3 and then hold it up to but not including the next partition 
time tJ+l · Although it is not apparent from Figure 4.2. 1 ,  the path shown 
depends on the same w on which the path of the Brownian motion W(t) (not 
shown) depends. If one were to choose a different w, there would be a different 
path of the Brownian motion and possibly a different path of Ll(t) . However, 
the value of Ll(t) can depend only on the information available at time t. 
Since there is no information at time 0, the value of Ll(O) must be the same 
for all paths, and hence the first piece of Ll(t) , for 0 � t < h ,  does not really 
depend on w. The value of Ll(t) on the second interval, [h , t2 ) ,  can depend on 
observations made during the first time interval [0, h ) .  
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Ll(t) 

•• ..... ----�o 

• 

t3 

....... -----0 

Fig. 4.2 .1 .  A path of a simple process. 

We shall think of the interplay between the simple process Ll(t) and the 
Brownian motion W(t) in (4.2 . 1 )  in the following way. Regard W(t) as the 
price per share of an asset at time t . (Since Brownian motion can take negative 
as well as positive values, it is not a good model of the price of a limited
liability asset such as a stock. For the sake of this illustration, we ignore that 
issue. )  Think of t0 , t 1 , . . .  , tn_ 1 as the trading dates in the asset, and think 
of Ll(t0) ,  Ll(t1 ) ,  . . .  , Ll(tn- 1 ) as the position (number of shares) taken in the 
asset at each trading date and held to the next trading date. The gain from 
trading at each time t is given by 

l(t) = Ll(t0) [W(t) - W(t0)] = Ll(O)W(t) , 0 � t � t� ,  
l(t) = Ll(O)W(t1 ) + Ll(t1 ) [W(t) - W(t1 ) ] , t1 � t � t2 , 
I(t) = Ll(O)W(h ) + Ll(h ) [W(t2) - W(t1 )] + Ll(t2) [W(t) - W(t2)] , 

t2 � t � t3 , 

and so on. In general , if tk � t � tk+b then 
k-1 

l(t) = L Ll(tj ) [W(tj+l ) - W(tj )] + Ll(tk ) [W(t) - W(tk )] . (4.2 .2) 
j=O 

The process l(t) in (4.2 .2) is the Ito integral of the simple process Ll(t) , a fact 
that we write as 
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I(t) = lot 
Ll(u) dW(u) . 

In particular, we can take t = tn = T, and (4.2 .2) provides a definition for 
the Ito integral (4.2. 1 ) .  We have managed to define this integral not only for 
the upper limit of integration T but also for every upper limit of integration 
t between 0 and T. 

4.2.2 Properties of the Integral 

The ItO integral (4.2 .2) is defined as the gain from trading in the martingale 
W ( t) . A martingale has no tendency to rise or fall , and hence it is to be 
expected that J(t) , thought of as a process in its upper limit of integration t , 
also has no tendency to rise or fall . We formalize this observation by the next 
theorem and proof. 

Theorem 4.2. 1 .  The Ito integml defined by (4 . 2. 2} is a martingale. 

PROOF: Let 0 � s � t � T be given. We shall assume that s and t are in 
different subintervals of the partition II (i .e. , there are partition points te and 
tk such that te < tk , s E [te , te+I ) , and t E [tk , tk+I ) ) .  If s and t are in the same 
subinterval, the following proof simplifies . Equation (4.2 .2) may be rewritten 
as 

l- 1 
I(t ) = L Ll(tj ) [W(ti+ 1 ) - W(ti )] + Ll(te ) [W(te+d - W(te ) ] 

j=O 
k-1 

+ L Ll(tj ) [W(tj+l ) - W(tj ) ] + Ll(tk ) [W(t) - W(tk )] . (4.2.3) 
j=l+ 1 

We must show that IE [J(t) IF(s)] = I(s) . We take the conditional expecta
tion of each of the four terms on the right-hand side of (4.2.3) . Every random 
variable in the first sum E�;:� Ll(tj ) [W(tj+ l ) - W(tj ) ] is F(s)-measurable 
because the latest time appearing in this sum is te and te � s. Therefore, 

[ l- 1 l l- 1 
IE ?; Ll(ti ) [W(ti+ 1 ) - W(ti ) ] F(s) = ?; Ll(ti ) [W(ti+I )  � W(ti )] . 

(4.2.4) 
For the second term on the right-hand side of (4.2.3) , we "take out what is 
known" (Theorem 2.3.2 (ii) ) and use the martingale property of W to write 

IE [Ll(te ) (W(te+d - W(te ) ) iF(s)] = Ll(te ) (lE [W(te+ I ) iF(s)] - W(te ) )  
= Ll(te ) (W(s) - W(te ) ) . (4.2 .5) 

Adding (4.2.4) and (4.2 .5) , we obtain I(s) . 
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It remains to show that the conditional expectations of the third and 
fourth terms on the right-hand side of ( 4.2.3) are zero. We will then have 
IE [I(t) iF(s)] = I(s) . 

The summands in the third term are of the form Ll(tj ) [W(ti+ I ) - W(tj )] , 
where ti 2:: tt+ 1 > s . This permits us to use the following iterated conditioning 
trick, which is based on properties (iii) (iterated conditioning) and (ii) (taking 
out what is known) of Theorem 2.3 .2 : 

IE{ Ll(ti ) (W(ti+ l ) - W(tj ) )  IF(s) } 
= IE{ IE [Ll(tj ) (W(tj+ l ) - W(tj ) ) IF(tj ) ] l.r(s) } 
= IE{ Ll(ti ) (IE [W(ti+l ) IF(tj ) ) - W(ti ) )  l.r(s) } 
= IE{Ll(tj ) (W(tj ) - W(tj ) ) l.r(s) } = o. 

At the end, we have used the fact that W is a martingale. Because the condi
tional expectation of each of the summands in the third term on the right-hand 
side of (4.2.3) is zero, the conditional expectation of the whole term is zero: 

The fourth term on the right-hand side of (4.2.3) is treated like the summands 
in the third term, with the result that 

IE{ Ll(tk ) (W(t) - W(tk ) ) IF(s) } 
= IE{ IE [Ll(tk ) (W(t) - W(tk ) ) IF(tk )) l.r(s) } 
= IE{ Ll(tk ) (IE [W(t) IF(tk ) ) - W(tk ) ) IF(s) } 
= IE{ Ll(tk ) (W(tk ) - W(tk ) ) IF(s) } = 0. 

This concludes the proof. 0 

Because I(t) is a martingale and J(O) = 0, we have IEJ(t) = 0 for all t 2:: 0. 
It follows that Var J(t) = IE J2 (t) , a quantity that can be evaluated by the 
formula in the next theorem. 

Theorem 4.2.2 (Ito isometry) . The Ito integml defined by (4 . 2. 2} satisfies 

IE J2 (t) = IE 1t Ll2 (u) du. (4.2 .6) 
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PROOF: To simplify the notation, we set Di = W(tj+t ) - W(tj ) for j = 
0, . . .  , k - 1 and Dk = W(t) - W(tk ) so that (4.2.2) may be written as I(t) = 
E�=O Ll(tj )Dj and 

k 
I2 (t) = L Ll2 (tj )DJ + 2 L Ll(ti )Ll(ti )DiDi . 

j=O O$i<j$k 

We first show that the expected value of each of the cross terms is zero. For i < 
j ,  the random variable Ll(ti )Ll(tj )Di is F(tj )-measurable, while the Brownian 
increment Dj is independent of F(tj ) · Furthermore, lEDj = 0. Therefore, 

We next consider the square terms Ll2(tj )Dj . The random variable Ll2 (tj ) is 
F(tj )-measurable, and the squared Brownian increment DJ is independent of 
F(tj ) · Furthermore, lEDJ = ti+t - ti for j = 0, . . .  , k - 1 and lED� = t - tk . 
Therefore, 

k k 
JEI2 (t) = L lE [Ll2(ti )DJ] L JELl2(ti ) · lEDJ 

j=O j=l 
k- 1 

= L: lELl2(tj ) (tj+l - tj ) + lELl2(tk ) (t - tk ) · 
j=O 

(4.2.7) 

But Ll(tj )  is constant on the interval [tj , tj+I ) ,  and hence Ll2(tj ) (ti+ l - ti ) = 
It:H1 Ll2(u) du. Similarly, Ll2(tk ) (t- tk ) = It: Ll2(u) du. We may thus continue 
{4.2.7) to obtain 

Finally, we turn to the quadratic variation of the Ito integral I(t) thought 
of as a process in its upper limit of integration t . Brownian motion accumulates 
quadratic variation at rate one per unit time. However, Brownian motion is 
scaled in a time- and path-dependent way by the integrand Ll(u) as it enters 
the Ito integral I(t) = I� Ll(u) dB(u) . Because increments are squared in 
the computation of quadratic variation, the quadratic variation of Brownian 
motion will be scaled by Ll2 (u) as it enters the Ito integral. The following 
theorem gives the precise statement. 
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Theorem 4.2.3. The quadmtic variation accumulated up to time t by the Ito 
integml (4 . 2. 2} is 

[I, I] (t) = lot 
Ll2 (u) du. (4.2.8) 

PROOF: We first compute the quadratic variation accumulated by the Ito 
integral on one of the subintervals (tj , ti+ I l  on which Ll(u) i s  constant. For 
this, we choose partition points 

and consider 
m- 1 m- 1 
L [I(si+1 ) - I(si )] 2 = L [Ll(tj ) (W(si+ 1 ) - W(si)) ] 2 
i=O i=O 

m- 1 
= Ll2 (tj ) L (W(si+ 1 ) - W(si )t (4.2.9) 

i=O 
As m --+ oo and the step size maxi=O, . . .  ,m- 1 (si+ l - si ) approaches zero, the 
term E::�1 (W(si+I ) - W(si ) ) 2 converges to the quadratic variation accu
mulated by Brownian motion between times ti and ti+ l > which is ti+l - ti . 
Therefore, the limit of (4.2 .9) , which is the quadratic variation accumulated 
by the Ito integral between times ti and ti+ l • is 

where again we have used the fact that Ll(u) is constant for ti � u < ti+ l · 
Analogously, the quadratic variation accumulated by the Ito integral between 
times tk and t is fttk Ll2 (u) du. Adding up all these pieces, we obtain (4.2 .8) .  
0 

In Theorems 4.2.2 and 4.2.3, we finally see how the quadratic variation 
and the variance of a process can differ. The quadratic variation is computed 
path-by-path, and the result can depend on the path. If along one path of the 
Brownian motion we choose large positions Ll(u) , the Ito integral will have 
a large quadratic variation. Along a different path, we could choose small 
positions Ll(u) and the Ito integral would have a small quadratic variation. 
The quadratic variation can be regarded as a measure of risk, and it depends 
on the size of the positions we take. The variance of I(t) is an average over 
all possible paths of the quadratic variation. Because it is the expectation of 
something, it cannot be random. As an average over all possible paths, real
ized and unrealized, it is a more theoretical concept than quadratic variation. 
We emphasize here that what we are calling variance is not the empirical vari
ance. Empirical (or sample) variance is computed from a realized path and 
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is an estimator of the theoretical variance we are discussing. The empirical 
variance is sometimes carelessly called variance, which creates the possibility 
of confusion. 

Finally, we recall the equation (3.4. 10) , dW(t) dW(t) = dt , of Remark 
3.4.4. We interpret this equation as the statement that Brownian motion ac
cumulates quadratic variation at rate one per unit time. It is another way of 
writing (W, W] (t) = t, t 2:: 0. The Ito integral formula J(t) = J� Ll(u) dW(u) 
can be written in differential form as dl(t) = Ll(t) dW(t) , and we can then 
use (3.4. 10) to square dl(t) : 

dl(t) dl(t) = ..12(t) dW(t) dW(t) = ..12(t) dt . (4.2. 10) 
This equation says that the Ito integral J(t) accumulates quadratic variation 
at rate ..12 (t) per unit time. The rate of accumulation is typically both time
and path-dependent. Equation (4.2 . 10) is another way of reporting the result 
of Theorem 4.2.3 . 

Remark 4 .2.4 (on notation). The notations 

I(t) = 1t Ll(u) dW(u) (4.2. 1 1 ) 
and 

dl(t) = Ll(t) dW(t) (4.2 . 12) 

mean almost the same thing, although the second is probably more intuitive. 
Equation (4.2. 1 1 ) has the precise meaning given by (4.2.2) . Equation (4.2. 12) 
has the imprecise meaning that when we move forward a little bit in time 
from time t, the change in the Ito integral I is Ll(t) times the change in the 
Brownian motion W. It also has a precise meaning, which one obtains by 
integrating both sides, remembering to put in a constant of integration J(O) : 

I(t) = 1(0) + 1t Ll(u) dW(u) . (4.2. 13) 

We say that (4.2. 12) is the differential form of (4.2. 13) and that (4.2 . 13) is the 
integral form of (4.2 . 12) . These two equations mean exactly the same thing. 

The only difference between (4.2. 1 1 ) and (4.2 . 13) , and hence the only dif
ference between (4.2. 1 1 ) and (4.2 .12) , is that (4.2. 1 1 ) specifies the initial con
dition J(O) = 0, whereas (4.2 . 12) and (4.2. 13) permit J(O) to be any arbitrary 
constant. D 

4.3 Ito's Integral for General Integrands 

In this section, we define the Ito integral J0T Ll(t) dW(t) for integrands Ll(t) 
that are allowed to vary continuously with time and also to jump. In partic
ular, we no longer assume that Ll(t) is a simple process as shown in Figure 
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4.2. 1 .  We do assume that Ll(t) , t ;:::: 0, is adapted to the filtration :F(t ) , t 2: 0. 
We also assume the square-integrability condition 

IE loT 
Ll2(t) dt < 00. (4.3. 1 )  

In order to define J0
T Ll(t) dW(t) , we approximate Ll(t) by simple pro

cesses. Figure 4.3. 1 suggests how this can be done. In that figure, the continu
ously varying Ll(t) is shown as a solid line and the approximating simple inte
grand is dashed. Notice that Ll(t) is allowed to jump. The approximating sim
ple integrand is constructed by choosing a partition 0 = to < t1 < t2 < t3 < t4 , setting the approximating simple process equal to Ll( ti ) at each ti , and then 
holding the simple process constant over the subinterval [tj , tH1 ) .  As the max
imal step size of the partition approaches zero, the approximating integrand 
will become a better and better approximation of the continuously varying 
one. 

Ll(t) 

Fig. 4.3. 1 .  Approximating a continuously varying integrand. 

In general, then, it is possible to choose a sequence Lln ( t) of simple pro
cesses such that as n -+ oo these processes converge to the continuously 
varying Ll(t) . By "converge," we mean that 

lim IE {T 
I Lln (t) - Ll(t) l 2 dt = 0. 

n -+ oo  lo 
(4.3.2) 
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For each Lln (t) , the Ito integral J� Lln(u) dW(u) has already been defined for 
0 � t � T. We define the Ito integral for the continuously varying integrand 
Ll(t) by the formula1 

t Ll(u) dW(u) = lim t Lln(u) dW(u) , 0 � t � T. (4.3.3) Jo n-+oo Jo 
This integral inherits the properties of Ito integrals of simple processes. We 
summarize these in the next theorem. 
Theorem 4.3. 1 .  Let T  be a positive constant and let Ll(t) , 0 � t � T, be an 
adapted stochastic process that satisfies (4 . 3. 1}. Then I(t) = J� Ll(u) dW(u) 
defined by (4 . 3. 3} has the following properties. 
{i} (Continuity) As a function of the upper limit of integmtion t, the paths 

of I(t) are continuous. 
(ii} (Adaptivity) For each t, I(t) is :F(t) -measumble. 
{iii} (Linearity) If I(t) = f� Ll(u) dW(u) and J(t) = f� F(u) dW(u) , then 

I(t) ± J(t) = J� (Ll(u) ± F(u) ) dW(u) ; furthermore, for every constant c, 
cl(t) = J� cLl(u) dW(u) . 

{iv} (Martingale) J(t) is a martingale. 
(v) (Ito isometry) IEJ2 (t) = IE  J� ..12(u) du. 
{vi} (Quadratic variation) [J, J] (t) = J� ..12(u) du .  
Example 4 .3. 2. We compute J0T W(t) dW(t) . To do that , we choose a large 
integer n and approximate the integrand Ll(t) = W(t) by the simple process 

Lln(t) = 

W(O) = 0 

w (�) 

if 0 � t < � , 

W ( (n- l )T ) if (n- l )T < t < T n n - ' 

as shown in Figure 4.3.2. Then limn-too IE J: I Lln (t) - W(t) j 2 dt = 0. By defi
nition, 

{T W(t) dW(t) = lim {T Lln(t) dW(t) k n-+oo k 

= nl�� � W ( j�) [ W ( (j +nl )T) - W ( j�) ] . (4.3.4) 

1 For each t , the limit in (4.3.3) exists because In (t) = J; Lln (u) dW(u) is a Cauchy 
sequence in L2 (il, F, IP') . This is because of Ito's isometry (Theorem 4.2.2) , which 
yields IE(In (t) - Im (t) ) 2 = IE  J; ILln (u) - Llm (u) 1 2 du. As a consequence of (4.3.2) , 
the right-hand side has limit zero as n and m approach infinity. 
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Fig. 4.3.2. Simple process approximating Brownian motion. 

To simplify notation, we denote Wj = W (if:) . As a precursor to evaluating 
the limit in (4.3.4) , we work out equation (4.3.5) below. The second equality 
in (4.3.5) is obtained by making the change of index k = j + 1 in the first 
sum. The third equality uses the fact that W0 = W(O) = 0. We have 

n- 1  n-1  n- 1  n- 1  1 '"' )2 1 '"' 2 '"' 1 '"' 2 2 .L)Wi+1 - wi = 2 L...J wi+l - L...J wi wi+l + 2 L...J wi 
j=O j=O j=O j=O 

n n-1 n-1  1 " 2 '"' 1 " 2 = 2 L...J wk - L...J wiwi+1 + 2 L...J wi 
k=1 j=O j=O 

n-1 n- 1 n- 1  1 2 1 " 2 '"' 1 " 2 = 2Wn + 2 L...J Wk - L...J WiWi+1 + 2 L...J Wi 
k=O j=O j=O 

n- 1  n- 1  1 2 " 2 " = 2Wn + L...J Wi - L...J WiWi+1 
j=O j=O 
n-1 1 2 '"' = 2 Wn + L...J Wj (Wi - Wi+I ) .  
i=O 

(4.3.5) 
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From (4.3 .5) , we conclude that 

In the original notation, this is 

�w (1�) [w ( (j +n1 )T) - w (1�)] 
= �W2 (T) - � � [w ( (j +n1 )T) - W (1�) r 

Letting n --+ oo in (4.3.4) and using this equation, we get 

(4.3.6) 

We contrast ( 4.3.6) with ordinary calculus . If g is a differentiable function 
with g (O) = 0, then 

[T [T 1 T 1 Jo g(t) dg (t) = Jo g (t)g' (t) dt = 2l (t) l 0 = 2l(T) . 
The extra term - � T in ( 4.3.6) comes from the nonzero quadratic variation 
of Brownian motion and the way we constructed the Ito integral, always eval
uating the integrand at the left-hand endpoint of the subinterval (see the 
right-hand side of (4.3.4) ) .  If we were instead to evaluate at the midpoint , 
replacing the right-hand side of ( 4.3.4) by 

(4.3 .7) 

then we would not have gotten this term (see Exercise 4.4) . The integral ob
tained by making this replacement is called the Stratonovich integral, and the 
ordinary rules of calculus apply to it. However, it is inappropriate for finance. 
In finance, the integrand represents a position in an asset and the integrator 
represents the price of that asset . We cannot decide at 1 :00 p.m. which po
sition we took at 9:00 a.m. We must decide the position at the beginning of 
each time interval, and the Ito integral is the limit of the gain achieved by 
that kind of trading as the time between trades approaches zero. 

For functions g(t) that have a derivative, integrals such as J� g(t) dg(t) 
are not sensitive to this distinction (i .e . , the Ito integral and Stratonovich 
integral approximations have the same limit , which is �g2 (T) ) . For functions 
that have a nonzero quadratic variation, integrals are sensitive to where in 
the subintervals the approximating integrands are evaluated. 
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The upper limit of integration T in ( 4.3.6) is arbitrary and can be replaced 
by any t ;:::: 0. In other words, 

t ::::: 0. (4.3 .8) 

Theorem 4.3 . l (iv) guarantees that J; W(u) dW(u) is a martingale and hence 
has constant expectation. At t = 0, this martingale is 0, and hence its expec
tation must always be zero. This is indeed the case because IEW2 (t) = t. If 
the term - !t were not present, we would not have a martingale. D 

4.4 Ito-Doeblin Formula 

The addition of Doeblin's name to what has traditionally been called the Ito 
formula is explained in the Notes , Section 4.9. 

4.4. 1 Formula for Brownian Motion 

We want a rule to "differentiate" expressions of the form f(W(t) ) ,  where f(x) 
is a differentiable function and W(t) is a Brownian motion. If W(t) were also 
differentiable, then the chain rule from ordinary calculus would give 

!f(W(t) ) = J'(W(t))W' (t) , 

which could be written in differential notation as 

df(W(t)) = J' (W(t)) W'(t) dt = J' (W(t)) dW(t) . 

Because W has nonzero quadratic variation, the correct formula has an extra 
term, namely, 

df(W(t)) = J' (W(t)) dW(t) + �f" (W(t)) dt . (4.4. 1 ) 
This is the lto-Doeblin formula in differential form. Integrating this , we obtain 
the lto-Doeblin formula in integral form: 

f(W(t)) - f(W(O)) = 1t J' (W(u)) dW(u) + � 1t J" (W(u)) du. (4.4.2) 

The mathematically meaningful form of the lt6--Doeblin formula is the 
integral form (4.4.2) . This is because we have precise definitions for both 
terms appearing on the right-hand side. The first , J; J' (W(u) ) dW(u) , is an 
Ito integral, defined in the previous section. The second, J; f" (W(u)) du, is 
an ordinary (Lebesgue) integral with respect to the time variable. 
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For pencil and paper computations, the more convenient form of the ltO
Doeblin formula is the differential form (4.4. 1 ) .  There is an intuitive meaning 
but no precise definition for the terms df (W(t)) , dW(t) , and dt appearing in 
this formula. The intuitive meaning is that df (W(t)) is the change in f (W(t)) 
when t changes a "little bit" dt, dW(t) is the change in the Brownian motion 
when t changes a "little bit" dt, and the whole formula is exact only when 
the "little bit" is "infinitesimally small ." Because there is no precise definition 
for "little bit" and "infinitesimally small," we rely on (4.4.2) to give precise 
meaning to (4.4. 1 ) .  

The relationship between (4.4. 1 )  and (4.4.2) is similar to  that developed 
in ordinary calculus to assist in changing variables in an integral. If asked 
to compute the indefinite integral J f(u)f' (u) du, we might make the change 
of variable v = f(u) and write dv = f' (u) du, so that the indefinite integral 
becomes J v dv, which is !v2 + C = !J2 (u) + C, where C is a constant of 
integration. The final formula 

J f(u)f' (u) du = �f2 (u) + C 

is correct , as can be verified by differentiating !P(u) +C to get f(u)f' (u) .  We 
do not attempt to give precise definitions to the terms dv and du appearing 
in the equation dv = f' (u) du used in deriving it. 

We formalize the preceding discussion with a theorem that provides a 
formula slightly more general than ( 4.4.2) in that it allows f to be a function 
of both t and x. 
Theorem 4.4. 1  (ItO-Doeblin formula for Brownian motion) .  Let 
f(t, x) be a function for which the partial derivatives ft (t, x) , fx (t, x) , and 
fxx (t, x) are defined and continuous, and let W(t) be a Brownian motion. 
Then, for every T 2:: 0, 

f (T, W(T)) = f (O, W(O)) + 1T 
ft (t , W(t)) dt 

[T 
1 [T 

+ Jo fx (t , W(t)) dW(t) + 2 Jo fxx (t, W(t)) dt . (4.4.3) 

SKETCH OF PROOF: We first show why (4.4.3) holds when f(x) = !x2 . In this 
case, f' (x) = x and f" (x) = 1 .  Let xi+1 and Xj be numbers. Taylor's formula 
implies 

( 4.4.4) 
In this case, Taylor's formula to second order is exact (there is no remainder 
term) because !'" and all higher derivatives of f are zero. We return to this 
matter later. 
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Fix T > 0, and let II =  {t0 , h , . . .  , tn } be a partition of [O, T] (i .e. , 0 = 
to < t1 < · · · < tn = T) . We are interested in the difference between f (W(O)) 
and f (W(T)) . This change in f (W(t)) between times t = 0 and t = T can 
be written as the sum of the changes in f (W(t) ) over each of the subintervals 
[t; , tJ+ 1 ] .  We do this and then use Taylor's formula (4.4.4) with Xj = W(t; ) 
and Xj+I = W(tJ+d to obtain 

n- 1 
f(W(T) ) - f(W(O) ) = L [f (W(tj+I )) - f (W(t; ) ) ]  

j=O 
n- 1 

= L f' (W(t3 ) ) [W(tJ+I ) - W(t3 )] 
j=O 

n- 1 
+� L j"(W(t3 ) )  [W(tJ+I ) - W(t3 )t (4.4.5) 

j=O 

For the function f(x) = !x2 , the right-hand side of (4.4.5) is 

n- 1 n- 1 
L W(t3 ) [W(t3+ 1 ) - W(t3 )] + � L [W(tJ+I ) - W(t3 )t 
j=O j=O 

(4.4.6) 

If we let I I  II I I  ---+ 0, the left-hand side of (4.4.5) is unaffected and the terms on 
the right-hand side converge to an Ito integral and one-half of the quadratic 
variation of Brownian motion, respectively: 

f (W(T)) - f (W(O) ) 

[T 1 = Jo W(t) dW(t) + 2r 
= 1T f' (W(t)) dW(t) + � 1T f" (W(t)) dt. (4.4.7) 

This is the ItO-Doeblin formula in integral form for the function f(x) = !x2 • 
If instead of the quadratic function f(x) = !x2 we had a general func

tion f(x) , then in (4.4.5) we would have also gotten a sum of terms con
taining [W(tJ+1 ) - W(t3 )t But according to Exercise 3.4 of Chapter 3, 
L:;,:-� iW(tj+I ) - W(t3 ) i 3 has limit zero as I III I I ---+ 0. Therefore, this term 
would make no contribution to the final answer. 

If we take a function f(t, x) of both the time variable t and the variable 
x, then Taylor's Theorem says that 
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f(tj+ I , Xj+I ) - f(tj , Xj ) 
= ft(tj , Xj ) (tj+ 1 - tj ) + fx (tj , Xj ) (Xj+1 - Xj ) 1 

2 + 2fxx (tj , Xj ) (Xj+1 - Xj ) + ftx (tj , Xj ) ( tj+l - tj ) (Xj+1 - Xj ) 

+�ftt (t3 , x3 ) (t3+ l - t3 )2 + higher-order terms. (4.4.8) 

We replace x3 by W(t3 ) ,  replace Xj+l by W(tj+l ) ,  and sum: 

f (T, W(T)) - f (O, W(O)) 
n- 1 

= L [f (tj+ l , W(tj+1 ) ) - f (tj , W(tj ) ) ]  
j=O 
n- 1 n- 1 

= L ft (tj , W(tj ) ) (tj+ l - tj ) + L fx (tj , W(tj ) ) (W(tj+I ) - W(tj )) 
j=O j=O 

1 n- 1 
2 +2 L fxx (tj , W(tj ) ) (W(tj+1 ) - W(tj ) ) 

j=O 
n- 1 

+ L ftx (tj , W(tj ) ) (tj+ l - tj ) (W(tj+1 ) - W(tj ) ) 
j=O 
n- 1 

+� L !tt (ti , W(t3 ) ) (ti+ 1 - t3 )2 + higher-order terms. 
j=O 

( 4.4.9) 

When we take the limit as l lll l l  ---+ 0 ,  the left-hand side of (4.4.9) is unaf
fected. The first term on the right-hand side of (4.4.9) contributes the ordinary 
(Lebesgue) integral 

to the final answer. As 1 117 1 1  ---+ 0, the second term contributes the Ito in
tegral IoT fx (t , W(t)) dW(t) . The third term contributes another ordinary 
(Lebesgue) integral, � I: fxx (t , W(t)) dt , similar to the way we obtained 
this integral in (4.4.7) . In other words , in the third term we can replace 
(W(ti+I ) - W(t3 )) 2 by ti+ 1 - t3 . This is not an exact substitution, but when 
we sum the terms this substitution gives the correct limit as 1 117 1 1  ---+ 0. See 
Remark 3.4.4 for more discussion of this point. With this substitution, the 
third term on the right-hand side of (4.4.9) contributes � I: fxx (t , W(t) )  dt . 
These limits of the first three terms appear on the right-hand side of (4.4.3) .  
The fourth and fifth terms contribute zero. Indeed, for the fourth term, we 
observe that 
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n- 1 
lim """' ftx (t · , W(t · ) ) (t ·+l - t · ) (W(t ·+ I ) - W(t · ) ) 1 11111--+0 � J J J J J J 

n- 1 
< lim L lftx (tj , W(tj ) ) I · (tj+1 - tj ) · IW(tj+1 ) - W(tj ) i  - 1 111 1 1--+0 j=O 

n- 1 
:S lim max iW(tk+I ) - W(tk ) i · lim """' lftx (tj , W(tj )) i (tj+l - tj ) 1 111 1 1--+0 0�k�n- 1 1 111 11--+0 � 

= 0 · 1T 
l ftx (t, W(t)) dt = 0. (4 .4 . 10) 

The fifth term is treated similarly: 
n- 1 

lim � """' !tt (t · , W(t · )) (t ·+ 1 - t · )2 1 111 1 1--+0 2 L....t J J J J ]=0 
n- 1 

:S lim -2
1 L l!tt (tj , W(tj )) i · (tj+ l - t1 )2 1 111 1 1--+0 j=O 

n-1 
:::; -2

1 lim max (tk+ 1 - tk ) · lim """' l!u (tj , W(tj ) ) i (tJ+ 1 - tj ) 1 111 1 1--tO O�k�n- 1 1111 1 1--+0 � 
1 1T 

= - · 0 ·  fu (t , W(t)) dt = 0. 2 0 
(4.4 . 1 1 ) 

The higher-order terms likewise contribute zero to the final answer. 0 
Remark 4 . 4 . 2. The fact that the sum (4 .4 . 10) of terms containing the product 
(tj+ I - t1 ) (W(tJ+1 ) - W(t1 ) ) has limit zero can be informally recorded by 
the formula dt dW ( t) = 0. Similarly, the sum ( 4 .4 . 1 1 ) of terms containing 
( tj+ l - t1 )2 also has limit zero, and this can be recorded by the formula 
dt dt = 0. We can write these terms if we like in the ltO-Doeblin formula, so 
that in differential form it becomes 

df (t, W(t)) 
1 = ft (t , W(t)) dt + fx (t, W(t)) dW(t) + 2fxx (t , W(t)) dW(t) dW(t) 

1 + ftx (t, W(t)) dt dW(t) + 2Jxx (t , W(t)) dt dt , 
but 

dW(t) dW(t) = dt, dt dW(t) = dW(t) dt = 0, dt dt = 0, (4.4 . 12) 
and the ItO-Doeblin formula in differential form simplifies to 

1 df (t , W(t)) = !t (t , W(t) ) dt+ fx (t , W(t) ) dW(t) + 2!xx (t , W(t)) dt. (4.4. 13) 
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In Figure 4.4. 1 ,  we illustrate the Taylor series approximation of the differ
ence f (W(ti+d) - f (W(tj )) for a function f(x) that does not depend on t. 
The first-order approximation, which is f' (W(tj ) ) (W(tj+l ) - W(tj ) ) , has an 
error due to the convexity of the function f(x) . Most of this error is removed 
by adding in the second-order term �f" (W(tj ) ) (W(tj+1 ) - W(tj )) 2 , which 
captures the curvature of the function f(x) at x = W(tj ) · 

� > f' (W(t; ) ) (W(t;+I ) - W(t; ) ) 
. . . . . . . . . . . . . . .  \ 

W(t; ) 

Fig. 4.4.1 .  Taylor approximation to f (W(t;H)) - f (W(t; ) ) .  

In other words, 

f (W(t3+I ) ) - f (W(tj ) ) = f' (W(tj )) (W(tj+l ) - W(ti )) + small error, 
(4.4. 14) 

and 

f (W(ti+I ) ) - f (W(ti ) ) = f' (W(ti ) ) (W(ti+I ) - W(ti ) ) 
+if" (W(ti )) (W(ti+I ) - W(ti ) ) 2 

+ smaller error. (4.4. 15) 

In both (4.4. 14) and (4.4. 15) ,  as l lll l l ---+ 0, the errors approach zero. However, 
before we let l lll l l  ---+ 0, we must first sum these equations over j, and the 
smaller we make l lll l l , the more terms there are in the sum. When we sum 
both sides of (4.4. 14) , the errors accumulate, and although the error in each 
summand approaches zero as l lll l l  ---+ 0, the sum of the errors does not . When 
we use the more accurate approximation (4.4 . 15) ,  this does not happen; the 
limit of the sum of the smaller errors is zero. We need the extra accuracy 
of (4.4. 15) because the paths of Brownian motion are so volatile (i.e. , they 
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have nonzero quadratic variation) . This extra term makes stochastic calculus 
different from ordinary calculus . 

The ItO-Doeblin formula often simplifies the computation of Ito integrals. 
For example, with f(x) = !x2 , this formula says that 

�W2(T) = f (W(T)) - f (W(O)) 

= {T f' (W(t)) dW(t) + � t f" (W(t)) dt lo 2 lo [T 1 = Jo W(t) dW(t) + 2r. 
Rearranging terms, we have formula ( 4.3.6) and have obtained it without 
going through the approximation of the integrand by simple processes as we 
did in Example 4.3.2. 

4.4. 2 Formula for Ito Processes 

We extend the ItO-Doeblin formula to stochastic processes more general than 
Brownian motion. The processes for which we develop stochastic calculus are 
the Ito processes defined below. Almost all stochastic processes, except those 
that have jumps, are ItO processes. 

Definition 4.4.3. Let W(t) , t 2:: 0, be a Brownian motion, and let :F(t) , 
t 2:: 0, be an associated filtration. An Ito process is a stochastic process of the 
form 

X(t) = X(O) + lot 
Ll(u) dW(u) +lot 

8(u) du, (4.4. 16) 

where X(O) is nonrandom and Ll(u) and 8(u) are adapted stochastic pro
cesses.2 

In order to understand the volatility associated with Ito processes, we must 
determine the rate at which they accumulate quadratic variation. 

Lemma 4.4.4. The quadratic variation of the ItO process (4 .4 . 16} is 

[X, X) ( t) = lot 
Ll2(u) du. (4.4. 17) 

PROOF: We introduce the notation I(t) = J; Ll(u) dW(u) , R(t) = J; 8(u) du. 
Both these processes are continuous in their upper limit of integration t . To 
2 We assume that lE I� Ll2 (u) du and I� IB(u) i du are finite for every t > 0 so that 

the integrals on the right-hand side of (4.4. 16) are defined and the Ito integral 
is a martingale. We shall always make such integrability assumptions, but we do 
not always explicitly state them. 
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determine the quadratic variation of X on [0, t] , we choose a partition II = 
{to , h , . . . , tn } of [O, t] (i.e. , 0 = to <  t1 < · · ·  < tn = t) and we write the 
sampled quadratic variation 

n- 1 n- 1 n- 1 
L [X(tj+ I ) - X(tj )] 2 = L [I(ti+I ) - I(tj )] 2 + L [R(tj+I ) - R(tj )] 2 
j=O j=O j=O 

n- 1 
+2 L [I(tj+I ) - I(tj )] [R(tj+1 ) - R(tj )] . 

j=O 

As I III I I  --+ 0, the first term on the right-hand side, I:j,:-g [I(tj+ I ) - I(tj )] 2 , 
converges to the quadratic variation of I on [0, t] , which according to Theorem 
4.3. 1 (vi) is [I, I] (t) = J; Ll2 (u) du. The absolute value of the second term is 
bounded above by 

n- 1 
max I R(tk+ 1 ) - R(tk ) l · L I R(ti+ I ) - R(tj ) l O�k�n- 1 j=O 

� o<'l'l:-· IR(t,., ) - R(t, ) i · � lfH e(u) du l 
:5 olf!t;_1 IR(tk+I ) - R(tk ) l · � lt;+ I 

IB(u) l du 

= max I R(tk+ I ) - R(tk ) l · t IB (u) l du, O�k�n- 1 Jo 

and as I III I I --+ 0, this has limit 0 ·  J; IB(u) l  du = 0 because R(t) is continuous. 
The absolute value of the third term is bounded above by 

n- 1 
2 max I I(tk+ 1 ) - I(tk ) l · "' IR(ti+ I ) - R(ti ) l O<k<n- 1 L....J - - j=O 

:5 2 0�V(t;_1 II(tk+ I ) - I(tk ) i · fot 
IB(u) l du, 

and this has limit 0 ·  J; jB(uW du = 0 as I III I I --+ 0 because I(t) is continuous. 
We conclude that (X, X) (t) = [I, I] (t) = J; Ll2 (u) du. 0 

The conclusion of Lemma 4.4.4 is most easily remembered by first writing 
( 4.4. 16) in the differential notation 

dX(t) = Ll(t) dW(t) + B(t) dt (4.4. 18) 
and then using the differential multiplication table (4.4. 12 ) to compute 
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dX(t) dX(t) = Ll2 (t) dW(t) dW(t) + 2Ll(t)8(t) dW(t) dt + 82 (t) dt dt 
= Ll2 (t) dt. (4.4. 19) 

This says that , at each time t , the process X is accumulating quadratic 
variation at rate Ll2 (t) per unit time, and hence the total quadratic varia
tion accumulated on the time interval (O, t] is (X, X](t) = J� Ll2 (u) du. This 
quadratic variation is solely due to the quadratic variation of the Ito inte
gral I(t) = f� Ll(u) dW(u) .  The ordinary integral R(t) = f� 8(u) du has zero 
quadratic variation and thus contributes nothing to the quadratic variation 
of X. 

Notice in this connection that having zero quadratic variation does not 
necessarily mean that R(t) is nonrandom. Because 8(u) can be random, R(t) 
can also be random. However, R(t) is not as volatile as I(t) .  At each time t , 
we have a good estimate of the next increment of R(t) . For small time steps 
h > 0, 

R(t + h) � R(t) + 8(t)h, 
and we know both R(t) and 8(t) at time t . This is like investing in a money 
market account at a variable interest rate. At each time, we have a good 
estimate of the return over the near future because we know today's interest 
rate. Nonetheless, the return is random because the interest rate ( e in this 
analogy) can change. In contrast, I is more volatile. At time t, one estimate 
of I(t + h) is 

I(t + h) � I(t) + Ll(t) (W(t + h) - W(t)) , 
but we do not know W(t + h) - W(t) at time t. In fact , W(t + h) - W(t) is 
independent of the information available at time t. This is like investing in a 
stock. 

So far we have discussed integrals with respect to time, such as R(t) = 
J� 8( u) du appearing in ( 4.4. 16) and Ito integrals (integrals with respect to 
Brownian motion) such as I(t) = J� Ll(u) dW(u) ,  also appearing in (4.4. 16) .  
In addition, we shall need integrals with respect to Ito processes (i .e. , integrals 
of the form J� r(u) dX(u) , where r is some adapted process) . We define such 
an integral by separating dX(t) into a dW(t) term and a dt term as in (4.4. 18) .  

Definition 4.4.5 .  Let X(t) , t � 0, be an Ito process as described in Definition 
4 -4 . 3, and let r(t) , t � 0, be an adapted process. We define the integral with 
respect to an Ito process3 

lot 
T(u) dX(u) = lot 

T(u)Ll(u) dW(u) + lot 
T(u)8(u) du. (4.4.20) 

We again work through the sketch of the proof of Theorem 4.4. 1 ,  but with 
the Ito process X(t) replacing the Brownian motion W(t) . In place of (4.4.9) , 
we now have 
3 We assume that E J; r2 (u)Ll2 (u) du and J; j r(u)8(u) i du are finite for every 

t > 0 so that the integrals on the right-hand side of ( 4.4.20) are defined. 
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f (T, X(T) ) - f (O, X (O)) 
n- 1 n- 1 

= L ft (ti , X(ti ) ) (ti+1 - ti )  + L fx (ti , X(ti ) } (X(ti+I ) - X (tj ) ) 
j=O j=O 

n- 1 
+� L fxx (tj , X(tj ) } (X(tj+I ) - X(tj ) } 2 

j=O 
n- 1 

+ L ftx (ti , X(ti ) ) (ti+1 - ti ) (X(ti+ 1 ) - X(ti )) 
j=O 

n- 1 
+� t,; ftt (tj , X(tj ) ) (ti+ l - ti )2 + higher-order terms. (4.4 .21) 

The last two sums on the right-hand side have zero limits as l lll l l ---+ 0 for the 
same reasons the analogous terms have zero limits in the sketch of the proof 
of Theorem 4.4. 1 (see (4.4. 10) and (4.4. 1 1 ) ) .  The higher-order terms likewise 
have limit zero. The limit of the first term on the right-hand side of (4.4.21) 
is J0

T ft (t, X(t))dt. The limit of the second term is 

1T 
fx (t , X(t)) dX(t) = 1T 

fx (t , X(t) }Ll(t) dW(t) + 1T 
fx (t, X (t))8(t) dt . 

Finally, the limit of the third term on the right-hand side of (4.4. 19) is � 1T 
fxx (t, X(t)) d[X, X] (t) = � 1T 

fxx (t, X (t) )Ll2 (t) dt 

because the Ito process X(t) accumulates quadratic variation at rate Ll2 (t) 
per unit time (Lemma 4.4.4) . These considerations lead to the following gen
eralization of Theorem 4.4. 1 .  
Theorem 4.4.6 {ItO-Doeblin formula for an Ito process) .  Let X(t) , 
t 2:: 0, be an Ito process as described in Definition 4 .4 .3, and let f (t, x) be a 
function for which the partial derivatives ft (t , x) ,  fx (t, x) , and fxx (t, x) are 
defined and continuous. Then, for every T 2:: 0, 

f (T, X(T) ) 

= f (O, X(O)} + 1T 
ft (t, X(t) ) dt + 1T 

fx (t , X(t) ) dX(t) 

1 1T 
+2 0 

fxx (t, X(t) ) d [X, X] (t) 

= f (O, X(O)) + 1T 
ft (t , X(t) ) dt + 1T 

fx (t, X(t) )Ll(t) dW(t) 

1T 1 1T 
+ fx (t , X (t ) )8(t) dt + - fxx (t , X (t) ) Ll2 (t) dt . 

0 2 0 
(4.4.22) 
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Remark 4 .4 .  7 (Summary of stochastic calculus). Theorem 4.4.6 is stated in 
mathematically precise language. Every term on the right-hand side has a solid 
definition, and in the end the right-hand side reduces to a sum of a nonrandom 
quantity / (0, X(O) ) ,  three ordinary (Lebesgue) integrals with respect to time, 
and an Ito integral. 

However, it is easier to remember and use the result of this theorem if we 
recast it in differential notation. We may rewrite ( 4.4.22) as 

1 df (t, X(t) ) = ft (t, X(t)) dt + fx (t, X(t)) dX(t) + 2/xx (t, X(t)) dX(t) dX(t) . 
(4.4.23) 

The guiding principle here is that we write out the Taylor series expansion of 
f (t, X(t)) with respect to all its arguments, which in this case are t and X(t) . 
We take this Taylor series expansion out to first order for every argument that 
has zero quadratic variation, which in this case is t, and we take the expansion 
out to second order for every argument that has nonzero quadratic variation, 
which in this case is X(t) . 

We may reduce (4.4.23) to an expression that involves only dt and dW(t) 
by using the differential form (4.4. 18) of the Ito process (i.e. , dX(t) = 
Ll(t) dW(t) + B(t) dt) and the formula (4.4. 19) for the rate at which X(t) 
accumulates quadratic variation (i.e . ,  dX(t) dX(t) = Ll2 (t) dt) .  This is ob
tained by squaring the formula for dX(t) and using the multiplication table 
(4.4. 12) . Making these substitutions in (4.4.23) , we obtain 

df (t, X(t)) = It (t, X(t)) dt + fx (t, X(t))Ll(t) dW(t) 
1 + fx (t, X(t) )B(t) dt + 2/xx (t, X(t))Ll2(t) dt . (4.4.24) 

Ito calculus is little more than repeated use of this formula in a variety of 
situations. 0 

4.4.3 Examples 

We conclude this section with three examples illustrating Remark 4.4. 7. Many 
more examples are developed in subsequent sections and in the exercises. 

Example 4 . 4 . 8  (Generalized geometric Brownian motion) . Let W(t) , t � 0, 
be a Brownian motion, let :F(t) , t � 0,  be an associated filtration, and let a(t) 
and u(t) be adapted processes. Define the Ito process 

Then 

1t 1t 1 X(t) = 0 u(s) dW(s) + 0 ( a(s) - 2u2 (s) ) ds . 
dX(t) = u(t) dW(t) + ( a(t) - �u2 (t) ) dt , 

(4.4.25) 
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and 
dX(t) dX(t) = a2 (t) dW (t) dW (t) = a2 (t) dt . 

Consider an asset price process given by 

S(t) = S(O)eX(t) = S(O) exp {lot 
a(s) dW (s) + lot ( a(s) - �a2 (s) ) ds} , 

(4.4.26) 
where S(O) is nonrandom and positive. We may write S(t) = f (X(t) ) , where 
f (x) = S(O)ex , f' (x) = S(O)ex , and f" (x) = S(O)ex . According to the It6-
Doeblin formula 

dS(t) = df (X(t) ) 
= f' (X(t) ) dX(t) + �f" (X (t) ) dX(t) dX(t) 

= S(O)eX (t) dX(t) + �S(O)ex(t) dX(t) dX(t) 2 

= S(t) dX(t) + �S(t) dX(t) dX(t) 
= a(t)S(t) dt + a(t)S(t) dW(t) . (4.4.27) 

The asset price S(t) has instantaneous mean rate of return a(t) and volatil
ity a(t) . Both the instantaneous mean rate of return and the volatility are 
allowed to be time-varying and random. 

This example includes all possible models of an asset price process that is 
always positive, has no jumps, and is driven by a single Brownian motion. 
Although the model is driven by a Brownian motion, the distribution of S(t) 
does not need to be log-normal because a(t) and a(t) are allowed to be time
varying and random. If a and a are constant , we have the usual geometric 
Brownian motion model, and the distribution of S(t) is log-normal. 

In the case of constant a and a, ( 4.4.26) becomes 

S(t) = S(O) exp { aW(t) + (a - �a2) t } · (4.4.28) 

One can incorrectly argue from this formula that since Brownian motion is a 
martingale (i .e. , it has no overall tendency to rise or fall) , the mean rate of 
return for S(t) must be a - !a2 . The error in this argument is that although 
W(t) is a martingale, S(O)euW(t) is not. The convexity of the function eux 
imparts an upward drift to S(O)euW(t) . In order to correct for this, one must 
subtract !a2t in the exponential ; the process S(O) exp { aW(t) - !a2t } is a 
martingale (see Theorem 3.6. 1 ) .  If we now add at in the exponential , we get 
S(t) , a process with mean rate of return a. 

The lt6-Doeblin formula automatically keeps track of these effects , even 
when a and a are time-varying and random. If a = 0, then ( 4.4.27) yields 

dS(t) = a(t)S(t) dW(t) . 
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Integration of both sides yields 

8(t) = 8(0) + lot 
a(s)8(s) dW (s ) .  

The right-hand side i s  the nonrandom constant 8(0) plus an Ito integral, 
which is a martingale, and hence (in the case a =  0) 

(4.4.29) 

is a martingale. In other words, the term a(t)8(t) dW(t) on the right-hand 
side of (4.4.27) contributes no drift, just pure volatility, to the asset price. 

When a(t) is a nonzero random process, (4.4.27) shows that it plays the 
role of the mean rate of return. In the case of time-varying and random a(t) , 
we will call this the instantaneous mean rate of return since it depends on the 
time (and the sample path) where it is evaluated. 0 

The preceding example supplies the heart of the proof of the following 
theorem. 

Theorem 4.4.9 (Ito integral of a deterministic integrand) .  Let W(s) , 
s 2: 0, be a Brownian motion, and let Ll( s) be a nonrandom function of time. 
Define 1(t) = J� Ll(s) dW(s ) .  For each t 2: 0, the random variable 1(t) is 
normally distributed with expected value zero and variance J� Ll2 (s) ds . 

PROOF: The mean and variance of 1(t) are easy to determine. Since 1(t) is 
a martingale and 1(0) = 0, we must have IE1(t) = 1(0) = 0. Ito's isometry 
(Theorem 4.3. 1 (v) ) implies that 

Var1(t) = IE12 (t) = lot 
Ll2 (s) ds. 

We do not need to take the expected value of J� Ll2 (s) ds on the right-hand 
side of this formula because Ll( s) is not random. 

The challenge is to show that 1(t) is normally distributed. We shall do 
this by establishing that 1(t) has the moment-generating function of a nor
mal random variable with mean zero and variance J� Ll2 (s ) ds , which is (see 
(3.2 . 13)) 

IEeuJ(t) = exp { �u2 lot 
Ll2 (s) ds } for all u E JR.. 

Because Ll( s) is not random, ( 4.4.30) is equivalent to 

!E exp { u1(t) - �u2 lot 
Ll2 (s ) ds} = 1 ,  

(4.4.30) 
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which may be rewritten as 

!E exp {lot uLl(s) dW(s) - � lot ( uLl(s) ) 2 ds} = 1 . 

But the process 

exp {lot uLl(s) dW(s) - � lot (uLl(s)) 2 ds } 

(4.4.31) 

is a martingale. Indeed, it is a generalized geometric Brownian motion with 
mean rate of return a =  0; see (4.4.29) with u(s) = uLl(s) .  Furthermore, this 
process takes the value 1 at t = 0, and hence its expectation is always 1 .  This 
gives us (4.4.31 ) .  0 

Note that (4.4.31) always holds, regardless of whether Ll(s) is random. 
However, we need to assume that Ll(s) is nonrandom in order to obtain the 
moment-generating function formula (4.4.30) from (4.4.31 ) .  When Ll(s) is 
random, there is no reason that the distribution of J; Ll(s) dW(s) should be 
normal. 

Example 4 .4 . 10 (Vasicek interest rate model). Let W(t) , t � 0, be a Brownian 
motion. The Vasicek model for the interest rate process R(t) is 

dR(t) = (a - {3R(t)) dt + u dW(t) , (4.4.32) 

where a, {3, and u are positive constants. Equation (4.4.32) is an example of a 
stochastic differential equation. It defines a random process, R(t) in this case, 
by giving a formula for its differential , and the formula involves the random 
process itself and the differential of a Brownian motion. 

The solution to the stochastic differential equation ( 4.4.32) can be deter
mined in closed form and is 

a 1t R(t) = e-f3t R(O) + - ( 1 - e-f3t ) + ue-f3t ef3s dW(s ) ,  {3 0 (4.4.33) 

a claim that we now verify. In particular, we compute the differential of the 
right-hand side of (4.4.33) . To do this , we use the ItO-Doeblin formula with 

f(t , x) = e-f3t R(O) + � ( 1 - e-f3t ) + ue-f3tx 

and X(t) = J; ef3s dW(s) . Then the right-hand side of (4.4.33) is f (t , X(t)) . 
The technique we are using is to separate the right-hand side into two parts: an 
ordinary function of two variables t and x, which has no randomness in it , and 
an Ito process X(t) ,  which contains all the randomness. For the It6-Doeblin 
formula, we shall need the following partial derivatives of f(t , x ) : 
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ft(t, x )  = -{3e-f3t R(O) + ae-f3t - a{3e-f3tx = a - {3f(t, x) , 
fx (t, x) = ae-f3t , 

fxx (t, x) = 0. 

We shall also need the differential of X(t) , which is dX(t) = ef3t dW(t) . We 
shall not need dX ( t) dX ( t) = e2f3t dt because f xx ( t, x) = 0. The ItO-Doeblin 
formula states that 

df (t, X(t) ) 
1 = ft (t, X(t) ) dt + fx (t , X (t) ) dX(t) + 2fxx (t , X (t) ) dX(t) dX(t) 

= (a - f3f (t , X(t) ) ) dt + a dW(t) . 

This shows that f (t, X (t) ) satisfies the stochastic differential equation (4.4.32) 
that defines R(t) . Moreover, f (O, X (O)) = R(O) . Because f (t , X (t) ) satisfies 
the equation defining R(t) and has the same initial condition as R(t) , it must 
be the case that f(t , X (t)) = R(t) for all t � 0. 

Theorem 4.4.9 implies that the random variable J� ef3s dW(s) appearing 
on the right-hand side of (4.4.33) is normally distributed with mean zero and 
variance 1t 

e2f3s ds = _.!:._ ( e2f3t - 1) . 
0 2{3 

Therefore, R(t) is normally distributed with mean e-f3t R(O) + � ( 1 - e-f3t ) and 
variance �;(1 - e-2f3t ) . In particular, no matter how the parameters a > 0, 
{3 > 0, and a > 0 are chosen, there is positive probability that R(t) is negative, 
an undesirable property for an interest rate model. 

The Vasicek model has the desirable property that the interest rate is 
mean-reverting. When R(t) = � , the drift term (the dt term) in (4.4.32) is 
zero. When R(t) > � ,  this term is negative, which pushes R(t) back toward 
l When R(t) < � ,  this term is positive, which again pushes R(t) back 
toward � - If R(O) = � ,  then lER(t) = � for all t � 0. If R(O) =/= � '  then 
limt--+00 lER(t) = � · 0 

Example 4 .4 . 1 1  (Cox-Ingersoll-Ross (CIR) interest rate model}. Let W(t) , 
t � 0, be a Brownian motion. The Cox-Ingersoll-Ross model for the interest 
rate process R( t) is 

dR(t) = (a - {3R(t)) dt + aJR[i} dW(t) , (4.4.34) 

where a, {3, and a are positive constants. Unlike the Vasicek equation (4.4.32) , 
the CIR equation (4.4.34) does not have a closed-form solution. The advantage 
of (4.4.34) over the Vasicek model is that the interest rate in the CIR model 
does not become negative. If R(t) reaches zero, the term multiplying dW(t) 
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vanishes and the positive drift term a dt in equation ( 4.4.34) drives the interest 
rate back into positive territory. Like the Vasicek model , the CIR model is 
mean-reverting. 

Although one cannot derive a closed-form solution for (4.4.34) , the dis
tribution of R(t) for each positive t can be determined. That computation 
would take us too far afield. We instead content ourselves with the derivation 
of the expected value and variance of R(t) . To do this, we use the function 
f(t, x) = ef3tx and the ItO-Doeblin formula to compute 

d( ef3t R(t)) 
= df (t , R(t) } 

1 = It (t , R(t) } dt + fx (t, R(t) } dR(t) + ?Jxx (t, R(t)} dR(t) dR(t) 

= {3ef3t R(t) dt + ef3t (a - {3R(t)) dt + ef3taJR[iJ dW(t) 
= aef3t dt + ae!3tJR[iJ dW(t) . (4.4.35) 

Integration of both sides of (4.4.35) yields 

Recalling that the expectation of an Ito integral is zero, we obtain 

or, equivalently, 

ef3tJER(t) = R(O) + � (ef3t - 1} {3 

This is the same expectation as in the Vasicek model. 

(4.4.36) 

To compute the variance of R(t) , we set X(t) = ef3t R(t) , for which we have 
already computed 

dX ( t) = aef3t dt + aef3t JR(iJ dW ( t) = aef3t dt + ae '¥ v'x(t) dW ( t) 

and lEX(t) = R(O) + � (ef3t - 1) .  According to the ltO-Doeblin formula (with 
f(x) = x2 , f' (x) = 2x, and f" (x) = 2) ,  

d(X2 (t) )  = 2X(t) dX(t) + dX(t) dX(t) 
= 2aef3t X(t) dt + 2ae'¥ x! (t) dW(t) + a2ef3t X (t) dt . (4.4.37) 

Integration of ( 4.4.37) yields 
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Taking expectations, using the fact that the expectation of an Ito integral is 
zero and the formula already derived for lEX(t) , we obtain 

JEX2 (t) = X2(0) + (2a + u2) lot e.BuJEX(u) du 

= R2(0) + (2a + u2) lot e,Bu ( R(O) + � (e.Bu - 1) ) du 
= R2(0) + 2a ; u2 ( R(O) - �) (e.Bt - 1) + 2a 2; u2 0 � (e2.Bt - 1 ) 0 

Therefore, 

lER2(t) = e-2.BtJEX2(t) 

Finally, 

= e-2,Bt R2 (0) + 2a ; u2 ( R(O) - �) (e-.Bt - e-2.Bt ) a (2a + u2) ( _2.Bt ) + 2(32 1 - e 0 

Var(R(t)) = lER2(t) - (1ER(t)) 2 

= e-2.Bt R2 (0) + 2a ; u2 ( R(O) - �) (e-.Bt - e-2.Bt ) 

+ a (2�(3� u2) ( 1 - e-2.Bt) - e-2,Bt R2 (0) 

- 2; R(O) (e-.Bt - e-2.Bt ) - �: ( 1 - e-.Bt ) 2 

2 2 
= � R(O) ( e-.Bt - e-2.Bt) + �;2 (1 - 2e-,Bt + e-2.Bt) 0 

In particular, 
au2 lim Var(R(t)) = 2a2 o t-+oo fJ 

4. 5 Black-Scholes-Merton Equation 

(4.4o38) 

The addition of Merton's name to what has traditionally been called the 
Black-Scholes equation is explained in the Notes, Section 4o9o 
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In this section, we derive the Black-Scholes-Merton partial differential 
equation for the price of an option on an asset modeled as a geometric Brow
nian motion. The idea behind this derivation is the same as in the binomial 
model of Chapter 1 of Volume I, which is to determine the initial capital 
required to perfectly hedge a short position in the option. 

4.5. 1 Evolution of Portfolio Value 

Consider an agent who at each time t has a portfolio valued at X(t) .  This 
portfolio invests in a money market account paying a constant rate of interest 
r and in a stock modeled by the geometric Brownian motion 

dS(t) = o:S(t) dt + uS(t) dW(t) . (4.5. 1 )  

Suppose at each time t, the investor holds L\(t) shares of stock. The position 
L\(t) can be random but must be adapted to the filtration associated with 
the Brownian motion W(t) , t � 0. The remainder of the portfolio value, 
X(t) - L\(t)S(t) , is invested in the money market account . 

The differential dX(t) for the investor's portfolio value at each time t is 
due to two factors, the capital gain L\(t) dS(t) on the stock position and the 
interest earnings r (X (t) - L\(t)S(t) ) dt on the cash position. In other words, 

dX(t) = L\(t) dS(t) + r (X(t) - L\(t)S(t) ) dt 
= L\(t) (o:S(t) dt + uS(t) dW(t) ) + r (X (t) - L\(t)S(t) ) dt 
= rX(t) dt + L\(t) (o: - r)S(t) dt + L\(t)uS(t) dW(t) . (4.5.2) 

The three terms appearing in the last line of (4.5.2) can be understood as 
follows: 
(i) an average underlying rate of return r on the portfolio, which is reflected 

by the term r X ( t) dt , 
(ii) a risk premium o: - r for investing in the stock, which is reflected by the 

term L\(t) (o: - r)S(t) dt, and 
(iii) a volatility term proportional to the size of the stock investment , which 

is the term L\(t)uS(t) dW(t) . 
The discrete-time analogue of equation (4.5.2) appears in Chapter 1 of 

Volume I as ( 1 .2 . 12) : 

Xn+l = L\nSn+l + (1 + r)(Xn - L\nSn) · 
We may rearrange terms in this equation to obtain 

(4.5 .3) 

which is analogous to the first line of (4.5 .2) , except in (4.5.3) time steps for
ward one unit at a time, whereas in (4.5 .2) time moves forward continuously. 
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See Exercise 4. 10 for additional discussion of the rationale for equation ( 4.5.2) 
in option pricing. 

We shall often consider the discounted stock price e-rts(t) and the dis
counted portfolio value of an agent , e-rt X(t) .  According to the ItO-Doeblin 
formula with f(t, x) = e-rtx, the differential of the discounted stock price is 

d(e-rts(t)) 
= df (t, S(t)) 

1 = ft (t, S(t)) dt + fx (t, S(t)) dS(t) + ?Jxx (t, S(t)) dS(t) dS(t) 
= -re-rt S(t) dt + e-rt dS(t) 
= (a - r)e-rts(t) dt + ae-rts(t) dW(t) , 

and the differential of the discounted portfolio value is 

d(e-rtx(t)) 
= df (t , X (t)) 

(4.5.4) 

1 = ft (t, X(t)) dt + fx (t, X (t)) dX(t) + ?Jxx (t, X (t)) dX(t) dX(t) 

= -re-rt X(t) dt + e-rt dX(t) 
= Ll(t) (a - r)e-rt S(t) dt + Ll(t)ae-rt S(t) dW(t) 
= Ll(t) d(e-rts(t) ) .  (4.5.5) 

Discounting the stock price reduces the mean rate of return from a, the term 
multiplying S(t) dt in (4.5. 1 ) ,  to a - r, the term multiplying e-rtS(t) dt in 
(4.5.4) . Discounting the portfolio value removes the underlying rate of return 
r; compare the last line of (4.5.2) to the next-to-last line of (4.5.5) . The last 
line of (4.5.5) shows that change in the discounted portfolio value is solely due 
to change in the discounted stock price. 

4.5.2 Evolution of Option Value 

Consider a European call option that pays (S(T) -Kt at time T. The strike 
price K is some nonnegative constant . Black, Scholes, and Merton argued that 
the value of this call at any time should depend on the time (more precisely, 
on the time to expiration) and on the value of the stock price at that time, 
and of course it should also depend on the model parameters r and a and the 
contractual strike price K. Only two of these quantities, time and stock price, 
are variable. Following this reasoning, we let c( t, x) denote the value of the call 
at time t if the stock price at that time is S(t) = x. There is nothing random 
about the function c(t, x) . However, the value of the option is random; it is 
the stochastic process c (t, S(t)) obtained by replacing the dummy variable x 
by the random stock price S(t) in this function. At the initial time, we do not 
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know the future stock prices S(t) and hence do not know the future option 
values c (t, S(t) ) . Our goal is to determine the function c(t, x) so we at least 
have a formula for the future option values in terms of the future stock prices. 

We begin by computing the differential of c ( t, S ( t)) . According to the ltO
Doeblin formula, it is 

dc (t, S(t)) 
1 = Ct (t, S(t)) dt + Cx (t, S(t)) dS(t) + 2Cxx (t, S(t)) dS(t) dS(t) 

= Ct (t, S(t)) dt + cx (t, S(t)) (aS(t) dt + uS(t) dW(t)) 
1 +2Cxx (t, S(t) )u2 S2 (t) dt 

= [ct (t , S(t)) + aS(t) cx (t, S(t)) + �u2S2 (t) cxx (t, S(t)) ] dt 
+uS(t)cx (t, S(t)) dW(t) . (4.5.6) 

We next compute the differential of the discounted option price e-rtc (  t, S( t) ) .  
Let f(t, x) = e-rtx. According to the ltO-Doeblin formula, 

d(e-rtc(t , S(t) ) ) 
= df (t, c(t, S(t) ) ) 
= ft ( t , c(t, S(t) ) ) dt + fx ( t , c(t, S(t) ) ) dc(t, S(t)) 

1 +2fxx ( t, c(t, S(t) ) )  dc(t, S(t)) dc(t, S(t)) 
= -re-rtc(t, S(t) ) dt + e-rt dc(t, S(t)) 

= e-rt [ -rc(t, S(t)) + Ct (t , S(t) ) + aS(t)cx (t , S(t)) 

+�u2S2 (t)cxx (t , S(t) )] dt + e-rtuS(t)cx (t, S(t))dW(t) . (4.5 .7) 

4.5.3 Equating the Evolutions 

A (short option) hedging portfolio starts with some initial capital X(O) and 
invests in the stock and money market account so that the portfolio value 
X(t) at each time t E [0, T] agrees with c(t, S(t) ) .  This happens if and only if 
e-rt X(t) = e-rtc(t, S(t) ) for all t. One way to ensure this equality is to make 
sure that 

d(e-rt X(t)) = d(e-rtc(t, S(t) ) ) for all t E [0 , T) (4.5.8) 
and X(O) = c(O, S(O) ) .  Integration of (4.5.8) from 0 to t then yields 

e-rt X(t) - X(O) = e-rtc(t, S(t)) - c(O, S(O) ) for all t E [0, T) . (4.5.9) 
If X(O) = c(O, S(O) ) ,  then we can cancel this term in (4.5 .9) and get the 
desired equality. 
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Comparing (4.5.5) and (4.5 .7) , we see that (4.5.8) holds if and only if 

Ll(t) (a - r)S(t) dt + Ll(t)aS(t) dW(t) 

= [ -rc(t, S(t)) + Ct (t , S(t)) + aS(t)cx (t , S(t) ) + �a2S2 (t)cxx (t, S(t) )] dt 
+aS(t)cx (t , S(t)) dW(t) . (4.5. 10) 

We examine what is required in order for ( 4.5. 10) to hold. 
We first equate the dW(t) terms in (4.5. 10) , which gives 

Ll(t) = cx (t , S(t)) for all t E [0, T) . (4.5. 1 1 ) 

This is called the delta-hedging rule. At each time t prior to expiration, the 
number of shares held by the hedge of the short option position is the partial 
derivative with respect to the stock price of the option value at that time. 
This quantity, cx (t, S(t) ) ,  is called the delta of the option. 

We next equate the dt terms in (4.5. 10) , using (4.5. 1 1 ) ,  to obtain 

(a - r)S(t)cx (t, S(t)) 
1 = -rc(t, S(t)) + Ct (t , S( t)) + aS(t)cx (t , S(t)) + 2a

2 S2 (t)cxx (t, S(t)) 
for all t E [O, T) . (4.5 . 12) 

The term aS(t)cx (t , S(t) ) appears on both sides of (4.5. 12) , and after canceling 
it, we obtain 

1 rc(t, S(t)) = Ct (t , S(t)) + rS(t)cx (t , S(t) ) + 2a
2S2 (t)cxx (t , S(t) ) 

for all t E [0, T) . (4.5. 13) 

In conclusion, we should seek a continuous function c( t, x) that is a solution 
to the Black-Scholes-Merton partial differential equation 

1 Ct (t, x) + rxcx (t, x) + 2a
2x2cxx (t, x) = rc(t, x) for all t E [0, T) , x 2:: 0, 

(4.5 . 14) 
and that satisfies the terminal condition 

c(T, x) = (x - K)+ . (4.5 . 15) 

Suppose we have found this function. If an investor starts with initial capital 
X(O) = c(O, S(O) ) and uses the hedge Ll(t) = cx (t, S(t) ) ,  then (4.5 . 10) will 
hold for all t E [0, T) . Indeed, the dW(t) terms on the left and right sides 
of (4.5 .10) agree because Ll(t) = cx (t , S(t) ) ,  and the dt terms agree because 
(4.5. 14) guarantees (4.5 .13) . Equality in (4.5. 10) gives us (4.5.9) . Canceling 
X(O) = c(O, S(O)) and e-rt in this equation, we see that X(t) = c(t, S(t) ) for 
all t E [0, T) . Taking the limit as t t T and using the fact that both X(t) and 
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c(t , S(t) )  are continuous, we conclude that X(T) = c(T, S(T)) = (S(T)-Kt. 
This means that the short position has been successfully hedged. No matter 
which of its possible paths the stock price follows, when the option expires, 
the agent hedging the short position has a portfolio whose value agrees with 
the option payoff. 

4.5.4 Solution to the Black-Scholes-Merton Equation 

The Black-Scholes-Merton equation (4.5 . 14) does not involve probability. It is 
a partial differential equation, and the arguments t and x are dummy variables, 
not random variables. One can solve it by partial differential equation meth
ods. In this section, however, rather than showing how to solve the equation, 
we shall simply present the solution and check that it works. In Subsection 
5.2 .5 , we present a derivation of this solution based on probability theory. 

We want the Black-Scholes-Merton equation to hold for all x 2: 0 and 
t E [0, T) so that (4.5. 14) will hold regardless of which of its possible paths 
the stock price follows. If the initial stock price is positive, then the stock price 
is always positive, and it can take any positive value. If the initial stock price 
is zero, then subsequent stock prices are all zero. We cover both of these cases 
by asking (4.5. 14) to hold for all x 2: 0. We do not need (4.5. 14) to hold at 
t = T, although we need the function c(t , x ) to be continuous at t = T. If the 
hedge works at all times strictly prior to T, it also works at time T because 
of continuity. 

Equation (4.5. 14) is a partial differential equation of the type called back
ward parabolic. For such an equation, in addition to the terminal condition 
(4.5. 15) , one needs boundary conditions at x = 0 and x = oo in order to 
determine the solution. The boundary condition at x = 0 is obtained by sub
stituting x = 0 into (4.5 . 14) , which then becomes 

Ct (t, 0) = rc(t , 0) . (4.5. 16) 

This is an ordinary differential equation for the function c(t, 0) of t, and the 
solution is 

c(t, 0) = ertc(O, 0) . 

Substituting t = T into this equation and using the fact that c(T, 0) = (0 -
K)+ = 0, we see that c(O, 0) = 0 and hence 

c(t, 0) = 0 for all t E [0, T] . (4.5 . 17) 

This is the boundary condition at x = 0. 
As x ---+ oo, the function c( t, x) grows without boq.nd. In such a case, we 

give the boundary condition at x = oo by specifying the rate of growth. One 
way to specify a boundary condition at x = oo for the European call is 

lim [c(t , x) - (x - e-r(T-t)K) ]  = 0 for all t E [O, T] . 
X -+ 00  

(4.5 . 18) 
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In particular, c(t, x) grows at the same rate as x as x ---+ oo . Recall that c(t, x) 
is the value at time t of a call on a stock whose price at time t is x. For large x, 
this call is deep in the money and very likely to end in the money. In this case, 
the price of the call is almost as much as the price of the forward contract 
discussed in Subsection 4.5.6 below (see (4.5.26 ) ) .  This is the assertion of 
(4.5 . 18) . 

The solution to the Black-Scholes-Merton equation (4.5 .14) with terminal 
condition (4.5 .15) and boundary conditions (4.5 . 17) and (4.5. 18) is 

c(t, x) = xN(d+ (T - t , x) } - Ke-r(T-t)N (d- (T - t , x) } , 0 ::; t < T, x > 0, 
(4.5 . 19) 

where 
d± (r, x) = a� [log ; + (r ±  �2 ) r] , 

and N is the cumulative standard normal distribution 

N(y) = � jy 

e-� dz = � 100 e-� dz. 
V 27r -oo V 27r - y  

We shall sometimes use the notation 

BSM(r, x; K, r, a) = xN(d+ (r, x)} - Ke-rr N (d- (r, x)) , 

(4.5.20) 

(4.5.21 ) 

(4.5.22) 
and call BSM(r, x; K, r, a) the Black-Scholes-Merton function. In this formula, 
T and x denote the time to expiration and the current stock price, respectively. 
The parameters K, r, and a are the strike price, the interest rate, and the 
stock volatility, respectively. 

Formula (4.5.19) does not define c(t, x) when t = T (because then T = T 
t = 0 and this appears in the denominator in ( 4.5 .20) ) , nor does it define c( t, x) 
when x = 0 (because log x appears in (4.5.20) , and log O is not a real number) . 
However, (4.5.19) defines c{t, x) in such a way that limt-tr c(t, x) = (x - K)+ 
and limx.).O c( t, x) = 0. Verification of all of these claims is given as Exercise 
4.9. 

4.5.5 The Greeks 

The derivatives of the function c(t , x) of (4.5 .19) with respect to various vari
ables are called the Greeks. Two of these are derived in Exercise 4.9, namely 
delta, which is 

cx (t , x) = N(d+ (T - t, x) ) , (4.5.23) 
and theta, which is 

Ct (t , x) = -rKe-r(T-t )N (d- (T- t, x) } - �N' (d+ (T- t, x) } . (4.5.24) 
2 T - t 

Because both N and N' are always positive, delta is always positive and theta 
is always negative. Another of the Greeks is gamma, which is 
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Cxx (t , x) = N' (d+ (T - t , x) ) 8
8 d+ (T - t , x) = �N'(d+ (T - t, x)) . x ax T - t 

(4.5.25) 
Like delta, gamma is always positive. 

In order to simplify notation in the following discussion, we sometimes 
suppress the arguments ( t, x) of c( t, x) and (T - t, x) of d± (T - t, x) . If at 
time t the stock price is x, then the short option hedge of (4.5. 1 1 )  calls for 
holding ex ( t, x) shares of stock, a position whose value is xcx = xN ( d+ ) . The 
hedging portfolio value is c = xN(d+ ) -K e-r(T-t) N(d_ ) , and since xcx (t , x) 
of this value is invested in stock, the amount invested in the money market 
must be 

c(t , x) - xcx (t, x) = -Ke-r(T-t) N(d_ ) , 
a negative number. To hedge a short position in  a call option, one must borrow 
money. To hedge a long position in a call option, one does the opposite. In 
other words, to hedge a long call position one should hold -ex shares of stock 
(i.e. , have a short position in stock) and invest K e-r(T-t) N(d_ ) in the money 
market account . 

Because delta and gamma are positive, for fixed t, the function c(t , x) is 
increasing and convex in the variable x, as shown in Figure 4.5. 1 .  Suppose 
at time t the stock price is XI and we wish to take a long position in the 
option and hedge it. We do this by purchasing the option for c(t , xi ) ,  shorting 
cx (t , x i )  shares of stock, which generates income XI cx (t , XI ) ,  and investing the 
difference, 

M = X! Cx (t, XI ) - c(t, xi ) ,  
in the money market account. We wish to consider the sensitivity to stock 
price changes of the portfolio that has these three components: long option, 
short stock, and long money market account. The initial portfolio value 

is zero at the moment t when we set up these positions. 
If the stock price were to instantaneously fall to x0 as shown in Figure 4.5. 1 

and we do not change our positions in the stock or money market account , 
then the value of the option we hold would fall to c(t , x0 ) and the liability 
due to our short position in stock would decrease to xocx (t, x i ) · Our total 
portfolio value, including M in the money market account, would be 

c(t, xo ) - xocx (t, xl ) + M = c(t, xo ) - cx (t , xl ) (xo - xi ) - c(t, xl ) .  

This is the difference at xo between the curve y = c(t , x ) and the straight 
line y = cx (t , xl ) (x - xi ) + c(t , x i )  in Figure 4.5. 1 .  Because this difference is 
positive, our portfolio benefits from an instantaneous drop in the stock price. 

On the other hand, if the stock price were to instantaneously rise to x2 
and we do not change our positions in the stock or money market account, 
then the value of the option would rise to c(t , x2 ) and the liability due to our 
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short position in stock would increase to x2cx (t , xi ) . Our total portfolio value, 
including M in the money market account, would be 

This is the difference at x2 between the curve y = c( t, x) and the straight line 
y = cx (t , xl ) (x - x1 ) + c(t , xi ) in Figure 4.5. 1 .  This difference is positive, so 
our portfolio benefits from an instantaneous rise in the stock price. 

Option 

value 

Xt 
Fig. 4.5.1 .  Delta-neutral position. 

x2 Stock price 

The portfolio we have set up is said to be delta-neutral and long gamma. 
The portfolio is long gamma because it benefits from the convexity of c(t, x) 
as described above. If there is an instantaneous rise or an instantaneous fall in 
the stock price, the value of the portfolio increases. A long gamma portfolio 
is profitable in times of high stock volatility. 

"Delta-neutral" refers to the fact that the line in Figure 4.5. 1 is tangent 
to the curve y = c(t, x) . Therefore, when the stock price makes a small move, 
the change of portfolio value due to the corresponding change in option price 
is nearly offset by the change in the value of our short position in the stock. 
The straight line is a good approximation to the option price for small stock 
price moves. If the straight line were steeper than the option price curve at the 
starting point x1 , then we would be short delta; an upward move in the stock 
price would hurt the portfolio because the liability from the short position 
in stock would rise faster than the value of the option. On the other hand, a 
downward move would increase the portfolio value because the option price 
would fall more slowly than the rate of decrease in the liability from the short 
stock position. Unless a trader has a view on the market , he tries to set up 
portfolios that are delta-neutral. If he expects high volatility, he would at the 
same time try to choose the portfolio to be long gamma. 

The portfolio described above may at first appear to offer an arbitrage 
opportunity. When we let time move forward, not only does the long gamma 
position offer an opportunity for profit , but the positive investment in the 
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money market account enhances this opportunity. The drawback is that theta, 
the derivative of c( t, x) with respect to time, is negative. As we move forward 
in time, the curve y = c( t, x) is shifting downward. Figure 4.5. 1 is misleading 
because it is drawn with t fixed. In principle, the portfolio can lose money 
because the curve c(t , x) shifts downward more rapidly than the money market 
investment and the long gamma position generate income. The essence of the 
hedging argument in Subsection 4.5.3 is that if the stock really is a geometric 
Brownian motion and we have determined the right value of the volatility 
u, then so long as we continuously rebalance our portfolio, all these effects 
exactly cancel! 

Of course, assets are not really geometric Brownian motions with constant 
volatility, but the argument above gives a good first approximation to reality. 
It also highlights volatility as the key parameter. In fact , the mean rate of 
return a of the stock does not appear in the Black-Scholes-Merton equation 
(4.5. 14) . From the point of view of no-arbitrage pricing, it is irrelevant how 
likely the stock is to go up or down because a delta-neutral position is a 
hedge against both possibilities. What matters is how much volatility the 
stock has, for we need to know the amount of profit that can be made from 
the long gamma position. The more volatile stocks offer more opportunity for 
profit from the portfolio that hedges a long call position with a short stock 
position, and hence the call is more expensive. The derivative of the option 
price with respect to the volatility u is called vega, and it is positive. As 
volatility increases, so do option prices in the Black-Scholes-Merton model. 

4.5.6 Put-Call Parity 

A forward contract with delivery price K obligates its holder to buy one share 
of the stock at expiration time T in exchange for payment K. At expiration, 
the value of the forward contract is S(T) - K. Let f(t, x) denote the value of 
the forward contract at earlier times t E [0 , T] if the stock price at time t is 
S(t) = X. 

We argue that the value of a forward contract is given by 

f(t, x) = x - e-r(T-t) K. (4.5 .26) 

If an agent sells this forward contract at time zero for f(t , S(O) ) = S(O) -
e-rT K, he can set up a static hedge, a hedge that does not trade except 
at the initial time, in order to protect himself. Specifically, the agent should 
purchase one share of stock. Since he has initial capital S(O) - e-rT K from 
the sale of the forward contract, this requires that he borrow e-rT K from the 
money market account . The agent makes no further trades. At expiration of 
the forward contract, he owns one share of stock and his debt to the money 
market account has grown to K, so his portfolio value is S(T) - K, exactly the 
value of the forward contract. Because the agent has been able to replicate the 
payoff of the forward contract with a portfolio whose value at each time t is 
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S(t) - e-r(T-t) K, this must be the value at each time of the forward contract. 
This is f(t , S(t) ) ,  where f(t, x) is defined by (4.5.26) .  

The forward price of a stock at time t i s  defined to be the value of K that 
causes the forward contract at time t to have value zero (i .e. , it is the value 
of K that satisfies the equation S(t) - e-r(T-t) K = 0) . Hence, we see that in 
a model with a constant interest rate, the forward price at time t is 

For(t) = er(T-t)S(t) .  (4.5.27) 

Note that the forward price is not the price (or value) of a forward contract . 
For 0 � t � T, the forward price at time t is the price one can lock in at time 
t for the purchase of one share of stock at time T, paying the price (settling) 
at time T. No money changes hands at the time the price is locked in. 

Let us consider this situation at time t = 0. At that time, one can lock 
in a price For(O) = errs(O) for purchase of the stock at time T. Let us do 
this , which means we set K = erTS(O) in (4.5.26) . The value of this forward 
contract is zero at time t = 0, but as soon as time begins to move forward, 
the value of the forward contract changes. Indeed, its value at time t is 

f(t, S(t)) = S(t) - ert 8(0) . 

Finally, let us consider a European put, which pays off (K - S(T) )+ at 
time T. We observe that for any number x, the equation 

x - K = (x - K)+ - (K - x)+ (4.5 .28) 

holds. Indeed, if x ;:::: K, then (x - K)+ = x - K and (K - x)+ = 0. On the 
other hand, if x � K, then (x - K)+ = 0 and -(K -x)+ = - (K -x) = x - K. 
In either case, the right-hand side of (4.5.28) equals the left-hand side. We 
denote by p(t, x) the value of the European put at time t if the time-t stock 
price is S(t) = x. Similarly, we denote by c(t, x) the value of the European 
call expiring at time T with strike price K and by f(t , x) the value of the 
forward contract for the purchase of one share of stock at time T in exchange 
for payment K. Equation (4.5.28) implies 

f(T, S(T) ) = c(T, S(T) ) - p(T, S(T) ) ;  

the payoff of the forward contract agrees with the payoff of a portfolio that 
is long one call and short one put. Since the value at time T of the forward 
contract agrees with the value of the portfolio that is long one call and short 
one put, these values must agree at all previous times: 

f(t , x) = c(t, x) - p(t, x) , x ;::: O, O � t � T. (4.5.29) 
If this were not the case, one could at some time t either sell or buy the 
portfolio that is long the forward, short the call, and long the put , realizing 
an instant profit , and have no liability upon expiration of the contracts. The 
relationship ( 4.5 .29) is called put-call parity. 
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Note that we have derived the put-call parity formula (4.5 .29) without ap
pealing to the Black-Scholes-Merton model of a geometric Brownian motion 
for the stock price and a constant interest rate. Indeed, without any assump
tions on the prices except sufficient liquidity that permits one to form the 
portfolio that is long one call and short one put, we have put-call parity. If 
we make the assumption of a constant interest rate r, then f(t , x) is given by 
(4.5 .26) . If we make the additional assumption that the stock is a geometric 
Brownian motion with constant volatility a > 0, then we have also the Black
Scholes-Merton call formula (4.5. 19) .  We can then solve (4.5.29) to obtain the 
Black-Scholes-Merton put formula 

p(t, x) = x (N(d+ (T - t, x) )  - 1) - Ke-r(T-t) (N(d- (T - t, x) ) - 1) 
= Ke-r(T-t) N( -d_ (T - t, x)) - xN( -d+ (T - t, x) ) ,  (4.5.30) 

where d± (T - t , x) is given by (4.5.20) . 

4.6 Multivariable Stochastic Calculus 

4.6 .1  Multiple Brownian Motions 

Definition 4.6 .1 .  A d-dimensional Brownian motion is a process 

W(t) = (WI (t) , . . .  , Wd(t) )  

with the following properties. 
{i} Each Wi (t) is a one-dimensional Brownian motion. 
{ii} If i f.  j, then the processes Wi (t) and Wj (t) are independent. 
Associated with a d-dimensional Brownian motion, we have a filtration :F(t) ,  
t � 0, such that the following holds. 
{iii} (Information accumulates) For 0 � s < t, every set in :F(s) is also in 

:F(t) . 
{iv} (Adaptivity) For each t � 0, the random vector W(t) is :F(t) -measurable. 
(v) (Independence of future increments) For 0 � t < u, the vector of 

increments W(u) - W(t) is independent of :F(t) . 

Although we have defined a multidimensional Brownian motion to be a 
vector of independent one-dimensional Brownian motions, we shall see in Ex
ample 4.6.6 how to build correlated Brownian motions from this. 

Because each component Wi of a d-dimensional Brownian motion is a 
one-dimensional Brownian motion, we have the quadratic variation formula 
[Wi ,  Wi] (t) = t, which we write informally as 
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However, if i f. j ,  we shall see that independence of Wi and Wi implies 
[Wi , Wi] (t) = 0, which we write informally as 

We justify this claim. 
Let II =  {t0 , . • .  , tn } be a partition of [0, T] . For i f. j ,  define the sampled 

cross variation of Wi and Wi on [0, T] to be 
n- 1 

Crr = L [Wi (tk+I ) - Wi (tk )] [Wi (tk+ I ) - Wj (tk )] . 
k=O 

The increments appearing on the right-hand side of the equation above are 
all independent of one another and all have mean zero. Therefore, IECrr = 0. 

We compute Var(Crr) .  Note first that 
n- 1 

c'fr = :L [wi (tk+I ) - wi (tk )] 2 [wj (tk+d - wj (tk )] 2 
k=O 

n- 1 

l<k 

All the increments appearing in the sum of cross-terms are independent of 
one another and all have mean zero. Therefore, 

n- 1 
Var(Crr) = IECfr = IE  L [Wi (tk+I ) - Wi (tk )] 2 [Wi (tk+I ) - Wj (tk )t 

k=O 

But [Wi (tk+1 ) - Wi (tk )] 2 and [Wi (tk+I ) - Wj (tk )] 2 are independent of one 
another, and each has expectation (tk+1 - tk ) · It follows that 

n-1 n- 1 
Var(Crr) = L(tk+l - tk )2 � I III I I · L(tk+1 - tk ) = I III I I · T. 

k=O k=O 
As I I II I I  --+ 0, we have Var( Crr) --+ 0, so Crr converges to the constant IECrr = 
0. 

4.6.2 ltO-Doeblin Formula for Multiple Processes 

To keep the notation as simple as possible, we write the Ito formula for two 
processes driven by a two-dimensional Brownian motion. In the obvious way, 
the formula generalizes to any number of processes driven by a Brownian 
motion of any number (not necessarily the same number) of dimensions. 
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Let X(t) and Y(t) be Ito processes, which means they are processes of the 
form 

X(t) = X(O) + 1t 81 (u) du +  1t uu (u) dW1 (u) + 1t 0'12 (u) dW2 (u) ,  

Y(t) = Y(O) + 1t 82 (u) du + 1t 0'21 (u) dW1 (u) + 1t 0'22 (u) dW2 (u) .  

The integrands 8i (u) and O'i; (u) are assumed to  be  adapted processes. In 
differential notation, we write 

dX(t) = 81 (t) dt + uu (t) dW1 (t) + u12 (t) dW2 (t) , 
dY(t) = 82 (t) dt + u21 (t) dW1 {t) + u22 (t) dW2 (t) . 

(4 .6 . 1 ) 
{4.6.2) 

The Ito integral J� u1 1 ( u) dW1 ( u) accumulates quadratic variation at rate 
u�1 (t) per unit time, and the Ito integral J� u12 (u) dW2 (u) accumulates 
quadratic variation at rate u�2 (t) per unit time. Because both of these in
tegrals appear in X(t) , the process X(t) accumulates quadratic variation at 
rate u�1 (t) + u�2 {t) per unit time: 

[X, X] {t) = 1t (u�1 (u) + u�2 (u)) du. 

We may write this equation in differential form as 

(4.6.3) 

One can informally derive (4.6.3) by squaring (4.6 . 1 ) and using the multipli
cation rules 

In a similar way, we may derive the differential formulas 

dY(t) dY(t) = (u�1 {t) + u�2 {t)) dt , 
dX(t) dY(t) = (uu (t)u21 (t) + 0'12 (t)u22 (t) ) dt. 

Equation {4.6.5) says that , for every T � 0, 

[X, Y] (T) = 1T (uu (t)u21 (t) + 0'12 (t)u22 (t)) dt. 

{4.6.4) 
(4.6.5) 

{4.6.6) 

The term [X, Y] (T) on the left-hand side is defined as follows. Let II = 
{to , t1 , . . .  , tn } be a partition of [0, T) (i .e. , 0 = to < t1 < · · · < tn = T) 
and set up the sampled cross variation 

n-1 
L [X(tk+l ) - X(tk )] [Y(tk+I ) - Y(tk )] .  (4.6.7) 
k=O 
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Now let the number of partition points n go to infinity as the length of the 
longest subinterval 1 117 1 1  = maxo<k<n- I (tk+1 - tk ) goes to zero. The limit of 
the sum in (4 .6 .7) is [X, Y] (T) .  This limit is given by the right-hand side of 
(4.6.6) .  The proof of this assertion is similar to the proof of Lemma 4.4.4, 
with the additional feature that we must use the fact that [WI , W2] (t) = 0. 
We omit the details. 

The following theorem generalizes the It6-Doeblin formula of Theorem 
4.4.6. The justification, which we omit , is similar to that of Theorem 4.4.6. 

Theorem 4.6.2 (Two-dimensional ItO-Doeblin formula) . Let l(t, x, y) 
be a function whose partial derivatives ft , lx , ly , lxx , lxy 1  lyx 1 and IYY are 
defined and are continuous. Let X(t) and Y(t) be Ito processes as discussed 
above. The two-dimensional lt6-Doeblin formula in differential form is 

dl (t, X(t) , Y(t) ) 
=ft (t, X(t) ,  Y(t) ) dt + lx (t, X(t) ,  Y(t) ) dX(t) + ly (t, X (t) ,  Y(t) ) dY(t) 

1 +2lxx (t , X(t) , Y(t)} dX(t) dX(t) + lxy (t , X(t) , Y(t)} dX(t) dY(t) 
1 

+"21yy (t, X(t) , Y(t) ) dY(t) dY(t) . (4.6.8) 

Before discussing formula (4.6.8) , we rewrite it, leaving out t wherever 
possible, to obtain the same formula in the more compact notation 

dl(t, X, Y) = It dt + lx dX + ly dY 
1 1 

+2,lxx dX dX + lxy dX dY + 2,IYY dY dY. (4.6.9) 
The right-hand side of (4.6.9) is the Taylor series expansion of I out to sec
ond order. The full expansion would have the additional second-order terms 
Itt dt dt, ! ltx dt dX, and � lty dt dY, but dt dt , dt dX, and dt dY are zero. The 
Taylor series expansion actually has two mixed partial terms, �lxy dX dY and 
�lyx dY dX. For functions I whose second partial derivatives exist and are 
continuous, lxy = lyx , and so we have combined these terms into the single 
term lxy dX dY in (4.6.9) . 

The differentials dX, dY, dX dX, dX dY, and dY dY appearing in (4.6.9) 
are given by (4.6. 1 )-(4.6.5) .  Making these substitutions and then integrating 
(4.6.9) , we obtain the It6-Doeblin formula in integral form: 

l(t, X(t) , Y(t)) - I(O, X(O) , Y(O) ) 

= lot 
[au (u)lx (u, X(u) , Y( u)) + <121 (u)ly (u, X(u) , Y(u)) J dW1 (u) 

+ 1
t 
[a12 (u)lx (u, X(u) , Y(u) ) + <T22 (u)ly (u, X(u) , Y(u) )] dW2 (u) 
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+lot 
[!t(u, X(u) , Y(u) ) 

+6ll (u)fx (u, X (u) , Y(u) ) + 6l2 (u)jy (u, X(u) , Y(u)) 
1 2 2 +2 (uu (u) + u12 (u) )fxx (u, X( u) , Y(u)) 

+ (uu (u)u21 (u) + D"12 (u)u22 (u) )/xy (u, X(u) , Y(u)) 
1 2 2 ] +2 (u21 (u) + u22 (u) )/yy (u, X(u) , Y(u)) du. (4.6. 10) 

The right-hand side of this equation has one ordinary (Lebesgue) integral with 
respect to du and two Ito integrals, one with respect to dW1 (u) and the other 
with respect to dW2(u) . All terms have precise mathematical meanings. This 
equation demonstrates why it is preferable to work with differential notation, 
such as in (4.6.9) . 

Corollary 4.6.3 (Ito product rule) . Let X(t) and Y(t) be Ito processes. 
Then 

d(X(t)Y(t) ) = X(t) dY(t) + Y(t) dX(t) + dX(t) dY(t) . 

PROOF: In (4.6.9) ,  take f(t, x, y) = xy, so that ft = 0, fx = y, /y = x, 
fxx = 0, fxy = 1 , and /yy = 0. 0 

4.6.3 Recognizing a Brownian Motion 

A Brownian motion W(t) is a martingale with continuous paths whose 
quadratic variation is [W, W] (t) = t. It turns out that these conditions char
acterize Brownian motion in the sense of the following theorem. 

Theorem 4.6.4 (Levy, one dimension) .  Let M(t) , t ;::: 0, be a martin
gale relative to a filtration :F(t) , t 2:: 0. Assume that M(O) = 0, M(t) has 
continuous paths, and [M, M] (t) = t for all t ;::: 0. Then M(t) is a Brownian 
motion. 

IDEA OF THE PROOF : A Brownian motion is a martingale whose increments 
are normally distributed. The surprising feature of Levy's Theorem is that 
the assumptions do not say anything about normality, and yet implicit in the 
conclusion is the assertion that M(t) is normally distributed. 

The method used to establish normality is to first check that in the deriva
tion of the ltO-Doeblin formula, Theorem 4.4. 1 , for Brownian motion, the only 
properties of Brownian motion that were used are assumed in this theorem: a 
continuous process with quadratic variation [M, M] (t) = t. Therefore, the ltO
Doeblin formula may be applied to M with the result that, for any function 
f(t, x) whose derivatives exist and are continuous, 

1 df(t , M(t)) = ft(t, M(t)) dt + fx (t, M(t) ) dM(t) + 2fxx (t, M(t) ) dt. (4 .6 . 1 1 ) 
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The last term uses the fact that dM(t) dM(t) = dt . In integrated form, (4.6. 1 1 )  
is 

f(t, M(t)) = f(O, M(O)) + 1
t 
[ft (s ,  M(s)) + �fxx (s , M(s))] ds 

+ 1
t 
fx (s, M(s)) dM(s) . (4.6. 12) 

Because M ( t) is a martingale, the stochastic integral J� f x ( s ,  M ( s)) dM ( s) is 
also. (See Exercise 4. 1 for the case of a simple integrand; the general case 
follows from this exercise upon passage to the limit . )  At t = 0, this stochastic 
integral takes the value zero, and so its expectation is always zero. Taking 
expectations in (4.6. 12) ,  we obtain 

t 1 JEf(t, M(t)) = f(O, M(O)) + IE  Jo [ft (s, M(s)) + 2fxx (s, M(s))] ds . (4.6. 13) 

We fix a number u and define 

f(t, x) = exp { ux - �u2t } · 

Then ft (t, x) = - �u2f(t, x) , fx (t, x) = uf(t, x) , and fxx (t, x) = u2f(t, x) . In 
particular, 

1 ft (t, x) + 2fxx (t, x) = 0. 

For this function f(t, x) , the second term on the right-hand side of (4.6. 13) is 
zero, and that equation becomes 

JE exp { uM(t) - �u2t} = 1 .  
In  other words, we have the moment-generating function formula 

JEeuM(t) = e�u2 t .  

This is the moment-generating function for the normal distribution with mean 
zero and variance t (see (3 .2 . 13) ) .  Hence, that is the distribution that M(t) 
must have. 0 

The idea used to justify Theorem 4.6.4 can be combined with the two
dimensional It6-Doeblin formula used to show independence. In particular, 
we have the following two-dimensional version of Levy's Theorem. 
Theorem 4.6.5 (Levy, two dimensions) .  Let M1 (t) and M2(t) , t � 0, 
be martingales relative to a filtration F(t) , t � 0 .  Assume that for i = 1 , 2 ,  
we have Mi (O) = 0, Mi (t) has continuous paths, and [Mi ,  Mi] (t) = t for all 
t � 0. If, in addition, [M1 , M2] (t) = 0 for all t � 0, then M1 (t) and M2 (t) are 
independent Brownian motions. 
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IDEA OF THE PROOF: The one-dimensional Levy Theorem, Theorem 4.6.4, 
implies that M1 and M2 are Brownian motions. To show independence, we 
examine the joint moment-generating function. 

Let f(t, x , y) be a function whose derivatives are defined and continuous. 
The two-dimensional ItO-Doeblin formula implies that 

df(t, M1 , M2) = ft dt + fx dM1 + /y dM2 
1 +?Jxx dM1 dM1 + /xy dM1 dM2 + /yy dM2 dM2 

1 1 = ft dt + fx dM1 + /y dM2 + ?Jxx dt + ?.IYY dt, 

where we have used the assumptions [MI > MI ] (t) = t, [M2 , M2] (t) = t , and 
[MI > M2] (t) = in their equivalent form dM1 (t) dM1 (t) = dt, dM2 (t) dM2 (t) = 
dt, and dM1 (t) dM2 (t) = 0. We integrate both sides to obtain 

J(t, M1 (t ) ,  M2 (t)) 

= f(O, M1 (0) , M2 (0) ) + 1t [!t (s , M1 (s) , M2 (s)) + �fxx (s, M1 (s) , M2 (s)) 

+�/yy (s, M1 (s) ,  M2 (s))] ds 

+ 1t 
fx (s, M1 (s) , M2 (s) )  dM1 (s) + 1t 

/y (x, M1 (s) ,  M2 (s) ) dM2 (s) . 

The last two terms on the right-hand side are martingales, starting at zero at 
time zero, and hence having expectation zero. Therefore, 

'Ef(t, M1 (t ) ,  M2 (t)) 

= /(0, M1 (0) ,  M2 (0) )  + 'E 1t [tt (s, M1 (s) , M2 (s)) + �fxx (s, M1 (s) , M2 (s)) 

+�/yy (s, M1 (s) ,  M2 (s))] ds. (4.6. 14) 

We now fix numbers u1 and u2 and define 

f ( t, X, y) = exp { U1X + U2Y - � ( U� + un t} . 
Then ft (t, x, y) = -H u� + uDJ(t, x, y) , fx (t, x, y) = ud(t, x, y) , /y (t, x, y) = 
u2f(t , x, y) .  fxx (t, x, y) = uU(t, x, y) , and /yy (t, x, y) = u�f (t, x, y) .  For this 
function f(t, x, y) ,  the second term on the right-hand side of (4.6. 14) is zero. 
We conclude that 

'E exp {u1M1 (t) + u2M2 (t) - � (u� + u�) t} = 1 , 

which gives us the moment-generating function formula 
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Because the joint moment-generating function factors into the product of 
moment-generating functions, M1 (t) and M2(t) must be independent. 0 
Example 4 . 6. 6  (Correlated stock prices). Suppose 

dS1 (t) 
81 (t) 

= a1 dt + u1 dW1 (t) , 

dS2 (t) [ r.;--:;; ] s2 (t) 
= a2 dt + u2 p dW1 (t) + v 1 - p2 dW2(t) , 

where W1 ( t) and W2 ( t) are independent Brownian motions and u1 > 0, u2 > 0 
and -1 � p � 1 are constant. To analyze the second stock price process , we 
define 

W3(t) = pW1 (t) + V1 - p2 W2(t) . 
Then W3(t) is a continuous martingale with W3(0) = 0, and 

dW3 (t) dW3 (t) = p2 dW1 (t) dW1 (t) + 2pV1 - p2 dW1 (t) dW2(t) 
+ (1 - p2) dW2(t) dW2(t) 

= l dt + ( 1 - p2) dt = dt . 

In other words, [W3 , W3] (t) = t. According to the one-dimensional Levy The
orem, Theorem 4.6.4 , W3 (t) is a Brownian motion. Because we can write the 
differential of S2 (t) as 

dS2 (t) 
S2 (t) 

= a2 dt + u2 dW3 (t) , 

we see that S2 (t) is a geometric Brownian motion with mean rate of return 
a2 and volatility 0"2 . 

The Brownian motions W1 (t) and W3(t) are correlated. According to Ito's 
product rule (Corollary 4.6.3) , 

d (W1 (t)W3 (t) ) = W1 (t) dW3(t) + W3 (t) dW1 (t) + dW1 (t) dW3(t) 
= W1 (t) dW3(t) + W3 (t) dW1 (t) + p dt . 

Integrating, we obtain 

W1 (t)W3(t) = 1t W1 (s) dW3(s) + 1t W3(s) dW1 (s) + pt. 

The Ito integrals on the right-hand side have expectation zero, so the covari
ance of W1 (t) and W3(t) is 

1E [W1 (t)W3 (t)] = pt. 

Because both W1 (t) and W3(t) have standard deviation v'f,, the number p is 
the correlation between W1 ( t) and W3 ( t) . The case of non constant correlation 
p is presented in Exercise 4.17. 0 
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4. 7 Brownian Bridge 

We conclude this chapter with a the discussion of the Brownian bridge. This 
is a stochastic process that is like a Brownian motion except that with prob
ability one it reaches a specified point at a specified positive time. We first 
discuss Gaussian processes in general, the class to which the Brownian bridge 
belongs, and we then define the Brownian bridge and present its properties. 
The primary use for the Brownian bridge in finance is as an aid to Monte 
Carlo simulation. We make no use of it in this text . 

4.7. 1 Gaussian Processes 

Definition 4.7.1 .  A Gaussian process X(t) , t � 0, is a stochastic process 
that has the property that, for arbitrary times 0 < h < t2 < · · · < tn , the 
random variables X(t1 ) ,  X(t2 ) ,  . . .  X(tn) are jointly normally distributed. 

The joint normal distribution of a set of vectors is determined by their 
means and covariances. Therefore, for a Gaussian process, the joint distribu
tion of X (h ) ,  X ( t2 ) ,  • • .  , X ( tn ) is determined by the means and covariances of 
these random variables. We denote the mean of X(t) by m(t) , and, for s � 0, 
t � 0, we denote the covariance of X(s) and X(t) by c(s , t) ; i.e. , 

m(t) = JEX(t) , c(s , t) = lE [ (X(s) - m(s) ) (X(t) - m(t)} ] . 

Example 4. 7. 2 (Brownian motion). Brownian motion W(t) is a Gaussian pro
cess. For 0 < h < t2 < · · · < tn , the increments 

h = W(h ) ,  !2 = W(t2 ) - W(h ) ,  . . .  , In = W(tn ) - W(tn-d 

are independent and normally distributed. Writing 

2 n 
W(h ) = h , W(t2 ) = L lj , . . .  , W(tn ) = L lj , 

j=l j=l 

we see that the random variables W ( t 1 ) , W ( t2 ) ,  . . .  , W ( tn ) are jointly normally 
distributed. These random variables are not independent . It is the increments 
of Brownian motion that are independent. Of course, the mean function for 
Brownian motion is 

m(t) = JEW(t) = 0. 
We may compute the covariance by letting 0 � s � t be given and noting that 

c(s , t) = lE [W(s)W(t)] = lE [W(s) (W(t) - W(s) + W(s) } ] 
= lE [W(s) (W(t) - W(s) } ] + lE [W2(s) ] . 
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Because W ( s) and W ( t) - W ( s) are independent and both have mean zero, 
we see that IE [W(s) (W(t) - W(s) ) ] = 0. The other term, IE [W2 (s)] , is the 
variance of W(s) ,  which is s. We conclude that c(s , t) = s when 0 � s � t. 
Reversing the roles of s and t, we conclude that c(s, t) = t when 0 � t � s. In 
general, the covariance function for Brownian motion is then 

c(s, t) = s l\ t, 

where s 1\ t denotes the minimum of s and t . 0 
Example 4 .  7.3 (Ito integml of a deterministic integmnd). Let Ll(t) be a non
random function of time, and define 

I(t) = 1t 
Ll(s) dW(s) , 

where W(t) is a Brownian motion. Then J(t) is a Gaussian process, as we now 
show. 

In the proof of Theorem 4.4.9 , we showed that , for fixed u E JR., the process 

is a martingale. We used this fact to argue that 

1 = Mu (O) = IEMu (t) = e- !u2 f� <l2 (s) ds . lEeui(t) , 

and we thus obtained the moment-generating function formula 

(4.7. 1 )  

The right-hand side i s  the moment generating function for a normal random 
variable with mean zero and variance J� Ll2 ( s) ds . Therefore, this is the dis
tribution of I(t ) .  

Although we have shown that J(t) i s  normally distributed, verification 
that the process is Gaussian requires more. We must verify that , for 0 < h < 
t2 < · · · < tn , the random variables J(ti ) ,  I(t2 ) ,  . . .  , I(tn ) are jointly normally 
distributed. It turns out that the increments 

I(t! ) - 1(0) = I( h ) ,  I(t2 ) - I( h ) ,  . . .  , I(tn) - I(tn- l ) 

are normally distributed and independent , and from this the joint normality 
of I( h ) ,  I(t2 ) ,  . . .  , I(tn ) follows by the same argument as used in Example 
4.7.2 for Brownian motion. 

We show that , for 0 < t 1 < t2 , the two random increments J(ti ) - 1(0) = 
I(tt ) and J(t2 ) - I(h )  are normally distributed and independent . The ar
gument we provide can be iterated to prove this result for any number of 
increments. For fixed u2 E JR., the martingale property of Mu2 implies that 
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Now let u1 E JR. be fixed. Because �"1 (c!I )) is F(h )-measurable, we may mul-"2 I tiply the equation above by this quotient to obtain 

We now take expectations 

1 = Mu1 (0) 
= IEMu1 (h ) 

= IE  [exp { u1I(t1 ) + u2 (I(t2) - I(tl ) ) - �u� 1t1 ..12 (s) ds 

- �u� 1t2 ..12(s) ds }] 2 t ! 

where we have used the fact that ..12(s) is nonrandom to take the integrals 
of ..12(s) outside the expectation on the right-hand side. This leads to the 
moment-generating function formula 

The right-hand side is the product of the moment-generating function for 
a normal random variable with mean zero and variance J�1 ..12(s) ds and the 
moment-generating function for a normal random variable with mean zero and 
variance ft

t12 ..12(s) ds. It follows that I(t 1 ) and I(t2) - I(t 1 ) must have these 
distributions, and because their joint moment-generating function factors into 
this product of moment-generating functions, they must be independent. 

The covariance of I(t1 )  and I(t2 ) can be computed using the same trick 
as in Example 4. 7.2 for the covariance of Brownian motion. We have 
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For the general case where s 2:: 0 and t 2:: 0 and we do not know the relationship 
between s and t, we have the covariance formula t"t c(s , t) = lo Ll2(u) du. 0 

4. 7.2 Brownian Bridge as a Gaussian Process 

Definition 4.7.4. Let W(t) be a Brownian motion. Fix T  > 0. We define the 
Brownian bridge from 0 to 0 on [0, T] to be the process 

X(t) = W(t) - � W(T) , 0 ::;  t ::; T. (4.7.2) 

Note that �W(T) as a function of t is the line from (0, 0) to (T, W(T)) . 
In (4.7.2) , we have subtracted this line away from the Brownian motion W(t) , 
so that the resulting process X(t) satisfies 

X(O) = X(T) = 0. 

Because W(T) enters the definition of X(t) for 0 ::; t ::; T, the Brownian 
bridge X(t) is not adapted to the filtration :F(t) generated by W(t) . We shall 
later obtain a different process that has the same distribution as the process 
X(t) but is adapted to this filtration. 

For 0 < t1 < t2 < · · · < tn < T, the random variables 

are jointly normal because W(h ) ,  . . .  , W(tn ) ,  W(T) are jointly normal. Hence, 
the Brownian bridge from 0 to 0 is a Gaussian process. Its mean function is 
easily seen to be 

m(t) = JEX(t) = lE [W(t) - �W(T)] = 0. 
For s , t E (0, T) , we compute the covariance function 
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c(s ,  t) 

= lE [ (w(s) - fW(T)) (w(t) - �W(T)) ] 
= lE [W(s)W(t)) - �lE [W(s)W(T)) - flE [W(t)W(T)) + ;;JEW2(T) 

2st st st = s l\ t - T + T = s l\ t - T . (4.7.3) 

Definition 4.7.5. Let W(t) be a Brownian motion. Fix T > 0, a E JR., and 
b E  JR.. We define the Brownian bridge from a to b on [0, T] to be the process 

(b - a)t xa-+b(t) = a + T + X(t) , 0 :::; t :::; T, 

where X(t) = X0-+0 is the Brownian bridge from 0 to 0 of Definition 4. 1.4 .  

The function a + (b;,a)t , as a function of t , is the line from (0, a) to (T, b) . 
When we add this line to the Brownian bridge from 0 to 0 on [0, T] , we 
obtain a process that begins at a at time 0 and ends at b at time T. Adding a 
nonrandom function to a Gaussian process gives us another Gaussian process. 
The mean function is affected: 

(b - a)t ma-+b(t) = lEXa-+b(t) = a + T . 

However, the covariance function is not affected: 

4. 7.3 Brownian Bridge as a Scaled Stochastic Integral 

We cannot write the Brownian bridge as a stochastic integral of a deterministic 
integrand because the variance of the Brownian bridge, 

2 t2 t(T - t) lEX (t) = c(t, t) = t - T = T , 

increases for 0 :::; t :::; � and then decreases for � :::; t :::; T. In Example 4.7.3, 
the variance of I(t) = J; Ll(u) dW(u) is J; Ll2(u) du, which is nondecreasing 
in t. However, we can obtain a process with the same distribution as the 
Brownian bridge from 0 to 0 as a scaled stochastic integral. In particular , 
consider 

The integral 

1t 1 
Y(t) = (T - t) -T dW(u) , 0 :::; t < T. 

0 - u 

1t 1 I(t) = -T dW(u) 
o - u  

(4.7.4) 
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is a Gaussian process of the type discussed in Example 4.7.3, provided t < T 
so the integrand is defined. For 0 < h < t2 < · · · < tn < T, the random 
variables 

Y(tt ) = (T - tt )I(t t ) ,  Y(t2) = (T - t2 )I(t2 ) ,  . . .  , Y(tn) = (T - tn )I(tn ) 

are jointly normal because I(tt ) ,  I(t2 ) ,  . . .  , I(tn ) are jointly normal. In partic
ular, Y is a Gaussian process. 

The mean and covariance functions of I are 
m1 (t) = 0, 

r"t 1 1 1 c1 (8 , t) = Jo (T _ u)2 du = T _ 8 /\ t - T for all 8, t E [0, T) . 

This means that the mean function for Y is mY ( t) = 0. To compute the 
covariance function for Y, we assume for the moment that 0 � 8 � t < T so 
that 

Then 

1 1 1 8 c (8, t) = T - 8 - T = T(T - 8) " 

cy (8 , t) = lE [(T - 8) (T - t)l(8)I(t) ] 
8 = (T - 8) (T - t) T(T _ 8) 

(T - t)8 
T 
8t = 8 - r · 

If we had taken 0 � t � 8 < T, the roles of 8 and t would have been reversed. 
In general, 

y 8t c (8 , t) = 8 /\ t - T for all 8, t E [0, T) . (4.7.5) 

This is the same covariance formula (4.7.3) we obtained for the Brownian 
bridge. Because the mean and covariance functions for a Gaussian process 
completely determine the distribution of the process, we conclude that the 
process Y has the same distribution as the Brownian bridge from 0 to 0 on 
[O, T) .  

We now consider the variance 
2 y t(T - t) lEY (t) = c (t, t) = T , 0 < t < T. 

Note that , as t t T, this variance converges to 0. In other words, as t t 
T, the random process Y(t) , which always has mean zero, has a variance 
that converges to zero. We did not initially define Y(T) , but this observation 
suggests that it makes sense to define Y(T) = 0. If we do that , then Y(t) 
is continuous at t = T. We summarize this discussion with the following 
theorem. 
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Theorem 4. 7 .6. Define the process 

Y(t) = { (T - t) f� T�u dW(u) for 0 ::;  t < T, 
0 for t =  T. 

Then Y(t) is a continuous Gaussian process on [0 , T) and has mean and co
variance functions 

my (t) = 0, t E [O, T) ,  
st 

cy (s, t) = s 1\ t - T for all s , t E [0, T) . 

In particular, the process Y(t) has the same distribution as the Brownian 
bridge from 0 to 0 on [0, T) {Definition 4. 7. 5) . 

We note that the process Y(t) is adapted to the filtration generated by the 
Brownian motion W(t) .  It is interesting to compute the stochastic differential 
of Y(t) , which is 1t 

1 1t 
1 dY(t) = -T dW(u) · d(T - t) + (T - t) · d -T dW(u) 

o - u  o - u  1t 
1 = - -T dW(u) · dt + dW(t) 

o - u  

= _ T
Y(t) dt + dW(t) . - t 

If Y ( t) is positive as t approaches T, the drift term - � �� dt becomes large 
in absolute value and is negative. This drives Y(t) toward zero. On the other 
hand, if Y(t) is negative, the drift term becomes large and positive, and this 
again drives Y(t) toward zero. This strongly suggests, and it is indeed true, 
that as t t T the process Y ( t) converges to zero almost surely. 

4.7.4 Multidimensional Distribution of the Brownian Bridge 

We fix a E lR and b E  lR and let xa-tb(t) denote the Brownian bridge from a 
to b on [0, T) . We also fix 0 = to <  t1 < t2 < · · · < tn < T. In this section, we 
compute the joint density of xa-tb(tl ) ,  . . .  , xa-tb (tn ) · 

We recall that the Brownian bridge from a to b has the mean function 

a-tb ( ) (b - a)t (T - t)a bt m t = a + = + -T T T 
and covariance function 

st c(s , t) = s l\ t -
r · 

When s ::; t, we may write this as 
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8t 8(T - t) c(8 ,  t) = 8 - T = T , 0 ::;  8 ::;  t ::;  To 

To simplify notation, we set Tj = T - tj so that To = To We define random 
variables 

xa-+b(t · ) xa-+b(t . ) Z . - J - J- 1 
J - 0 Tj Tj- 1 

Because xa-+b(tt ) ,  0 0 0 , xa-+b (tn ) are jointly normal, so are Z (t t ) , 0 0 0 , Z(tn ) o  
We compute 

Furthermore, 

1 xa-+b( ) 1 xa-+b( ) JEZj = 7 _ JE tj - 7 _ JE tj+ 1 
J J 

a bti a btj- 1 = - + - - - - --T TTj T TTj- 1 
_ bti (T - ti-d - btj- 1 (T - ti )  

TTjTj- 1 

= b(tj - tj-d 

- tj - tj- 1 
TjTj- 1 

TjTj- 1 

Finally, we compute the covariance of Zi and Zj when i < j 0 We obtain 

1 1 1 Cov(Zi , Zj ) = -c(ti , tj ) - --c(ti , tj-d - --c(ti- 1 , tj ) TiTj TiTj- 1 Ti- 1Tj 
1 

+ c(ti- 1 , ti-d Ti- 1Tj- 1 
_ ti (T - tj ) ti (T - tj-d ti- 1 (T - tj ) ti- 1 (T - ti-d - - - + -----'------"-----'-
= Oo 

TTiTj TTiTj- 1 TTi- 1Tj TTi- 1Tj- 1 
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We conclude that the normal random variables Z1 , . . .  , Zn are independent, 
and we can write down their joint density, which is 

t, -t] - 1 
Tj Tj - 1 

(z · _ b(t; -t; - 1 > ) 2 } 
J Tj Tj - 1  

{ ( b(t; -t · - 1 ) ) 2 } n z · - 3 n 
= ex - �  � J r; r; - 1 . IT 1 . p 2 � tJ -tJ - 1 . t3 -t] - 1 J=1 TjTj - 1 J=1 J21r TjTj - 1 

We make the change of variables 
Xj Xj- 1 Zj = - - -- , j = 1 , . . .  , n, 
Tj Tj- 1 

where Xo = a, to find the joint density for xa-tb (h ) ,  0 0 0 ' xa-tb(tn ) ·  We work 
first on the sum in the exponent to see the effect of this change of variables. 
We have 

n (z · - b(tJ -tJ -d ) 2 

� J Tj Tj - 1 
� tJ -tJ - 1 
j=1 Tj Tj- 1 

= t TjTj- 1 (Xj _ Xj- 1 _ b(tj - tj- 1 ) 2 
j=1 tj - tj- 1 Tj Tj- 1 TjTj- 1 
n 

= � TjTj- 1 � t · - t · - 1 j=1 J J 

� [ 
XJ (1 + Tj- 1 - Tj ) + XJ- 1 (1 _ Tj- 1 - Tj ) = � t · - t · 1 TJ· tJ· - tJ·- 1 TJ·- 1 j=1 J J -

- 2XjXj- 1 l + b2 t (_!_ _ _ 1_) _ 2b t (Xj _ Xj- 1 ) . 
tj - tj- 1 j=1 Tj Tj- 1 j=1 Tj Tj- 1 
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Tj- 1 - Tj = (T - tj-d - (T - tj ) = tj - tj- 1 ,  
and so this last expression is equal to t [XJ - 2XjXj- 1 + XJ_ 1 ] + t (XJ _ XJ_ 1 ) 

j=1 tj - tj- 1 j=1 Tj Tj- 1 

+b2t (� - _1 ) - 2b t (Xj - Xj- 1 ) 
j=1 Tj Tj- 1 j=1 Tj Tj- 1 

= � (xj - Xj- 1 )2 + ____5_ _ a2 + b2 (-1- _ �) L....J 
t · - t ·_ 1 T - t  T T - t  T j=1 J J n n 

-2b (� - �) 
T - tn T 

� (xj - Xj- 1 }2 (b - Xn)2 = L....J + _;____ _ ____;._ 
j= 1 tj - tj- 1 T - tn 

(b - a)2 
T 

In conclusion, when we change variables from Zj to Xj , we have the equation 

1 "'\" J Tj Tj - 1 

{ n (z ·  _ b(t1 -t1 - 1 ) ) 2 } 
exp - 2 L....J � j= 1 Tj Tj - l  

{ 1 L
n (x · - x ·_ 1 )2 (b - Xn )2 (b - a)2 } = exp - - 1 1 - + . 2 t · - t · 1 2 (T - t ) 2T j= 1 J J- n 

To change a density, we also need to account for the Jacobian of the change 
of variables. In this case, we have 

8z · 1 1 - J· - 1 n -8 - - ,  - , . . .  , ' Xj Tj 8z ·  1 1 - J· - 2 n -8-- - --- , - , . . .  , ' Xj- 1 Tj- 1 
and all other partial derivatives are zero. This leads to the Jacobian matrix 

J =  

[ ..1.. 0 . . .  0 l _:.1_ _!_ • • •  0 
T1 T2 0 0 • ' . . . . . . 
0 0 ...!... 

Tn 

whose determinant is I1j=1 -!:; · Multiplying /z(t , ) , . . .  ,Z(t,. ) (Zt , . . .  , Zn ) by this 
determinant and using the change of variables worked out above, we obtain 
the density for xa--+b(t t ) , . . .  ' xa--+b(tn ) ,  
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where 
p(r, x, y) = � exp {- (y ;

T
x)2 } 

is the transition density for Brownian motion. 

4. 7.5 Brownian Bridge as a Conditioned Brownian Motion 

(4.7.6) 

The joint density (4.7.6) for xa-+b(h ) ,  . . .  , xa-+b(tn ) permits us to give one 
more interpretation for the Brownian bridge from a to b on [0, T] . It is a 
Brownian motion W(t) on this time interval, starting at W(O) = a and 
conditioned to arrive at b at time T (i.e. , conditioned on W(T) = b) . 
Let 0 = t0 < t1 < t2 < · · · < tn < T be given. The joint density of 
W(h ) ,  . . .  , W(tn ) ,  W(T) is 

n 
fw(t. ) , . . .  ,W(tn ) ,W(T) (x� , . . .  , Xn , b) = p(T - tn , Xn ,  b) II p(tj - tj- 1 1 Xj- 1 1 Xj ) ,  j=1 

(4.7.7) 
where W(O) = xo = a. This is because p(t1 - to , xo, xi )  = p(t1 , a, x i )  is the 
density for the Brownian motion going from W(O) = a  to W(tl ) = x1 in the 
time between t = 0 and t = t1 • Similarly, p(t2 - t1 , x1 , x2 ) is the density for 
going from W(tl ) = x1 to W(t2 ) = x2 between time t = t1 and t = t2 . The 
joint density for W(ti ) and W(t2) is then the product 

p(t1 , a, xl )p(t2 - t1 , x1 , x2) . 

Continuing in this way, we obtain the joint density (4.7.7) . The marginal 
density of W(T) is p(T, a, b) . The density of W(h ) , . . .  , W(tn ) conditioned on 
W(T) = b is thus the quotient 
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and this is f xa.-+b (t i ) , . . .  ,X .. -+b (tn )  (x1 , . . . , Xn ) of ( 4. 7.6) . 
Finally, let us define 

to be the maximum value obtained by the Brownian bridge from a to b on 
[0, T] . This random variable has the following distribution. 

Corollary 4.7.7. The density of Ma-+b (T) is 

2(2y - b - a) 2 ( )( b) fMa.-+b (T) (Y) = T e - T' y-a y- , y > max{a, b} . (4.7.8) 

PROOF: Because the Brownian bridge from 0 to w on [0, T] is a Brownian 
motion conditioned on W (T) = w, the maximum of X0-+w on [0, T] is the 
maximum of W on [0 , T] conditioned on W(T) = w. Therefore, the density 
of M0-+w (T) was computed in Corollary 3. 7.4 and is 

2(2m - w) 2m(m-w) 
fMo-+w (T) (m) = T e T , w < m, m > 0. (4.7.9) 

The density of fMa.-+b (T) (Y) can be obtained by translating from the initial 
condition W(O) = a to W(O) = 0 and using (4.7.9) . In particular, in (4.7.9) 
we replace m by y - a and replace w by b - a. This results in (4.7.8) . 0 

4.8 Summary 

Let W (t) be a Brownian motion and Ll(t) a stochastic process adapted to the 
filtration of the Brownian motion. The Ito integral 

I (t) = lo
t 
Ll (u) dW(u) (4.8. 1 ) 

is a martingale. Because it is zero at time t = 0, its expectation is zero for all 
t. Its variance is given by Ito 's isometry 

(4 .8 .2) 

The quadratic variation accumulated by the Ito integral up to time t is 

(4 .8 .3) 
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These assertions appear in Theorem 4.3. 1 .  Note that the quadratic variation 
(4.8.3) is computed path-by-path and the result may depend on the path, 
whereas the variance (4.8.2) is an average over all paths. In differential nota
tion, we write (4.8. 1 )  as 

dl(t) = Ll(t) dW(t) 
and ( 4.8.3) as 

dl(t) dl(t) = Ll2 (t) dW(t) dW(t) = Ll2 (t) dt. 

An Ito process (Definition 4.4.3) is a process of the form 

X(t) = X(O) + 1t Ll(u) dW(u) + 1t e(u) du, (4.8.4) 

where X(O) is nonrandom and Ll(u) and e(u) are adapted stochastic pr<r 
cesses . According to Lemma 4.4.4, the quadratic variation accumulated by X 
up to time t is 

(X, X] (t) = 1t Ll2(u) du. (4.8.5) 
In differential notation, we write (4.8.4) as 

dX(t) = Ll(t) dW(t) + e(t) dt 

and ( 4.8.5) as 

dX(t) dX(t) = (Ll(t) dW(t) + e(t) dt) 2 

= Ll2 (t) dW(t) dW(t) + 2Ll(t) e(t) dW(t) dt + e2(t) dt dt 
= Ll2 (t) dt, 

where we have used the multiplication table 

dW(t) dW(t) = dt , dW(t) dt = dt dW(t) = 0, dt dt = 0. 

Suppose X and Y are Ito processes with differentials 

dX(t) = e1 (t) dt + uu (t) dWt (t) + u12 (t) dW2 (t) , 
dY(t) = e2 (t) dt + u21 (t) dWt (t) + u22 (t) dW2 (t) , 

where WI and w2 are independent Brownian motions. Then 

dX(t) dX(t) = (u�1 (t) + u�2 (t) ) dt, 
dX(t) dY(t) = (uu (t)u2t (t) + O't2 (t)u22 (t) ) dt , 
dY(t) dY(t) = (u�1 (t) + u�2 (t) ) dt. 

(4.8.6) 
(4.8.7) 

(4.8.8) 
(4.8.9) 

(4.8 . 10) 

Equations (4.8.8)-(4.8 . 10) can be obtained by multiplying the equations 
(4.8 .6) and (4.8 .7) for dX(t) and dY(t) and using the multiplication table 
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dW; (t) dW; (t) = dt, dWi (t) dt = dt dW; (t) = 0, dt dt = 0, 

(4.8 . 1 1 )  
Equation ( 4.8 . 1 1 )  holds for independent Brownian motions. I f  instead we had 

for a constant p E [- 1 ,  1 ] , then p would be the correlation between W1 (t) and 
W2(t) (i .e . , IE[W1 (t)W2 (t)] = pt) . 

Now suppose f(t, x, y) is a function of the time variable t and two dummy 
variables x and y. The multidimensional ItO-Doeblin formula (Theorem 4.6.2) 
says 

df (t, X(t) , Y(t) ) = ft (t, X(t) ,  Y(t) ) dt + fx (t , X(t) , Y(t) ) dX(t) + /y (t , X(t) ,  Y(t) ) dY(t) �fxx (t , X(t) ,  Y(t) ) dX(t) dX(t) + /xy (t , X(t) , Y(t) ) dX(t) dY(t) 
1 

+"2/yy (t, X(t) , Y(t) ) dY(t) dY(t) . (4.8 . 12) 

Replacing all the differentials on the right-hand side of ( 4.8 . 12) by their formu
las (4.8.6)-(4.8. 10) and integrating, one obtains a formula for the stochastic 
process f(t, X(t) , Y(t)) as the sum of / (0, X (O) ,  Y(O) ) ,  an ordinary integral 
with respect to time, an Ito integral with respect to dW1 , and an Ito integral 
with respect to dW2 . 

There are two important special cases of (4.8. 12) . If the second process 
Y is not present , (4.8 . 12) reduces to the ItO-Doeblin formula for one process 
(Theorem 4.4.6) : 

1 
df (t, X(t) ) = ft (t, X(t) ) dt + fx (t, X(t) ) dX(t) + 2/xx (t, X(t) ) dX(t) dX (t) .  

If both X and Y are present and f (t , x , y) = xy, then (4.8 .12) gives us Ito 's 
product rule (Corollary 4.6.3) : 

d(X(t)Y(t) ) = X(t) dY(t) + Y(t) dX(t) + dX(t) dY(t) . 

Using the ItO-Doeblin formula, we can derive the Black-Scholes-Merton 
partial differential equation. This was done in Section 4.5, and that section is 
summarized here. Let the stock price S(t) be a geometric Brownian motion: 

dS(t) = aS(t) dt + aS(t) dW(t) . 

Let c(t, S(t)) be the price at time t E [0 , T] of a European call paying (S(T) 
K)+ at expiration time T. Suppose we sell this call for X (O) = c(O, S(O) )  at 
time zero and, starting with initial capital X (O) , invest in a stock and a money 



186 4 Stochastic Calculus 

market account paying a constant rate of interest r. If Ll(t) is the number of 
shares of stock held by the portfolio at time t, then 

dX(t) = Ll(t) dS(t) + r (X(t) - Ll(t)S(t) ) dt . 

We compute the differential of the discounted portfolio value e-rt X(t) , the 
differential of the discounted call price e-rtc(t, S(t) ) ,  and set these two equal. 
This results in the delta-hedging rule (4.5. 1 1 ) ,  

Ll(t) = Cx (t , S(t) ) ,  

and the Black-Scholes-Merton partial differential equation (4.5. 14) ,  

1 2 2 Ct (t, x) + rxcx (t, x) + 20' X Cxx (t , x) = rc(t, x) . 

(4.8. 13) 

In addition to satisfying this partial differential equation, the function c( t, x) 
must satisfy the boundary conditions 

c(T, x) = (x - K)+ , c(t, O) = O, lim [c(t, x) - (x - e-r(T-t)K) ]  = 0. 
X-+00 

The function satisfying these conditions is (see (4.5 . 19) )  
c(t, x) = xN(d+ (T - t, x) ) - Ke-r(T-t) N (d- (T - t, x)) , (4.8. 14) 

where 
d± (T, x) = u� [log ; + (r ± �2 ) T] . 

Using the function given by (4.8. 14) , if one starts with initial capital 
X(O) = c(O, S(O) ) and uses the delta-hedging rule (4.8. 13) , then at every 
time t, X(t) = c(t, S(t) ) .  In particular, at the final time, the value of the 
hedging portfolio is X(T) = c(T, S(T) ) = (S(T) - K)+ almost surely. The 
short position in the European call has been hedged. 

Levy's Theorem, Theorem 4.6.4, says that if M(t) is a continuous mar
tingale starting at M(O) = 0 and if [M, M] (t) = t (i .e . ,  dM(t) dM(t) = dt) , 
then M(t) is a Brownian motion. If M1 (t) and M2(t) are two such processes 
and [M1 , M2] (t) = 0 (i .e . ,  dM1 (t) dM2 (t) = 0) , then M1 (t) and M2(t) are 
independent Brownian motions (Theorem 4.6.5) . One can use this theorem to 
construct independent Brownian motions from correlated Brownian motions 
and vice versa (see Exercise 4.13) . 

A Gaussian process X(t) is one for which X(tt ) ,  X(t2 ) ,  . . .  X(tn) are jointly 
normally distributed whenever 0 < t1 < t2 < · · · < tn (Definition 4.7. 1 ) . 
Because the joint distribution of jointly normal random variables is deter
mined by means, variances, and covariances, the distribution of a Gaussian 
process is determined by its mean function m(t) = JEX(t) and covariance 
function c(s , t) = Cov(X(s ) , X(t) ) . Brownian motion is a Gaussian process 
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with m(t) = 0 and c(s , t) = s 1\ t (Example 4.7.2) . If Ll(u) is nonran
dom, then I(t) = J; Ll(u) dW(u) is a Gaussian process with m(t) = 0 and 
c(s , t) = Jt't Ll2 (u) du (Example 4.7.3) . The Brownian bridge from a to b 
on [0, T] is a Gaussian process with m(t) = (T-�a+bt for t E [0, T] and 
c(s , t) = s 1\ t - ¥ for s, t E [0, T] (see Subsection 10.7.2) . The Brownian 
bridge from a to b on [0 , T] is the process one obtains by starting a Brownian 
motion at a at time t = 0 and conditioning on W(T) = b (see Subsection 
10.7.5) . 

4.9 Notes 

The modern theory of stochastic calculus developed from the work of Ito 
[92] . Not only did Ito define the integral with respect to Brownian motion, 
but he also developed the change-of-variable formula commonly called Ito 's 
rule or Ito 's formula. As demonstrated in this chapter, this formula is at the 
heart of a wide range of useful calculations. An amazing twist to the story of 
stochastic calculus has recently emerged. In February 1940, the French Na
tional Academy of Sciences received a document from W. Doeblin, a French 
soldier on the German front . Doeblin died shortly thereafter, and the doc
ument remained sealed until May 2000. When it was opened, the document 
was found to contain a construction of the stochastic integral slightly different 
from Ito's and a clear statement of the change-of-variable formula. Doeblin's 
work [52] , Yor's [166] analysis of the work, and a detailed history by Bru [24] 
of the context of the work appeared in the December 2000 issue of Comptes 
Rendus de L 'Academie des Sciences. An English translation of this material 
is [25] . Because of this remarkable development , in this text the change-of
variable formula is called the lt6-Doeblin formula. 

We have defined the Ito integral for Ll2(t) dW(t) under the condition 

(4 .3 . 1 ) 

The integral can be defined under the weaker condition 

for 
Ll2(t) < oo almost surely 

but then is not guaranteed to be a martingale. It is still a local martingale, a 
topic discussed in advanced books on stochastic calculus (e.g. , [101] ) . In this 
text, we do not consider local martingales . We work only under the condition 
(4.3 . 1) ,  and every Ito integral we encounter is a martingale. 

Brownian motion was introduced to finance by Bachelier [6] . Samuelson 
[143] , [145] presents the argument that geometric Brownian motion is a good 
model for stock prices. The application of stochastic calculus to finance began 
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with the work of Merton [121] . (The paper [ 121] and many other papers by 
Merton that use stochastic calculus in finance are collected in Merton [124] . ) 
The Black-Scholes-Merton formula is based on the geometric Brownian motion 
model for stock prices. However, no-arbitrage pricing theory has now moved 
far beyond this assumption. As seen in this and subsequent chapters, this 
theory and the accompanying risk-neutral pricing formula can be applied in 
the presence of a time-varying random volatility, a time-varying random mean 
rate of return, and a time-varying random interest rate. 

Many finance books, including (in order of increasing mathematical diffi
culty) Hull [87] , Dothan [54] , and Duffie [56] , include sections on Ito's integral 
and the lt6-Doeblin formula. Some other books on dynamic models in finance 
are Cox and Rubinstein [43] , Huang and Litzenberger [86] , Ingersoll [91] , and 
Jarrow [97] . A comprehensive text is Wilmott [164] . Some good references for 
practitioners are Baxter and Rennie [8] (reviewed in [134] ) ,  Bjork [ 1 1] (re
viewed in [135] ) ,  and Musiela and Rutkowski [126] (reviewed in [134] ) .  More 
mathematical texts on stochastic calculus with applications to finance are 
Lamberton and Lapeyre [ 105] (reviewed in [134] ) and Steele [150] (reviewed 
in [136] ) .  Other texts on stochastic calculus are Chung and Williams [36] , 
Karatzas and Shreve [101] , 0ksendal [129] , and Protter [ 133] . Karatzas and 
Shreve [102] is a sequel to [101] that focuses on finance. Protter [ 133] is the 
easiest place to learn about stochastic calculus for processes with jumps, and 
this is not at all easy. We introduce this topic in Chapter 1 1 .  

No-arbitrage pricing theory and the accompanying risk-neutral pricing for
mula is predicated on the assumption that there is no arbitrage in the market . 
An arbitrage is defined to be a trading strategy which begins with zero capi
tal and at a later time has positive capital with positive probability without 
having any risk of loss . Absence of arbitrage is similar to but different from 
the efficient market hypothesis, which asserts that technical analysis of stock 
prices is of no value. This hypothesis asserts that patterns in stock prices may 
be useful to estimate the parameters of the distribution of future returns, 
but they do not provide clues to whether the next price movement will be 
up or down. In particular, technical analysis does not permit one to outper
form the market . This hypothesis could be violated in a way which permits 
one to outperform the market with high probability without actually admit
ting arbitrage because there is still a nonzero probability of underperforming 
the market . This is sometimes called statistical arbitmge. An empirical study 
supporting the efficient market hypothesis is Fama [64] , which also discusses 
distributions that fit stock prices better than geometric Brownian motion. A 
criticism of the efficient market hypothesis is provided by LeRoy [106] , and a 
recent paper that finds long-range dependence (but not much) in stock price 
data is Willinger, Taqqu, and Teverovsky [ 163] . A provocative article on the 
source of stock price movements is Black [ 14] . 

Geometric fractional Brownian motion has been proposed as an alternative 
model for stock prices because it has fatter tails than geometric Brownian 
motion. One can assume such a model and compute the prices of derivative 
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securities as their expected discounted payoffs, but the model is inconsistent 
with the usual delta-hedging formula. Indeed, geometric fractional Brownian 
motion violates the efficient market hypothesis so strongly that it admits 
arbitrage (not just "statistical arbitrage" but actual arbitrage) . An example of 
this is provided by Rogers [138] . Further examples of arbitrage and a market
trading restriction that prevents arbitrage in such markets are provided by 
Cheridito [33] . 

The Vasicek model of Example 4.4. 10 is taken from [154] . The Cox
Ingersoll-Ross model of Example 4.4. 1 1  is due to [41] , where the distribution 
of the interest rate process in the model is provided. 

The derivation of the Black-Scholes-Merton formula in Section 4.5 is sim
ilar to that originally given by Black and Scholes [17] but also relies heavily 
on the no-arbitrage idea appearing in Merton [122] . It is well-documented 
that the three men cooperated on development of the option-pricing formula, 
and in recognition of this the 1997 Nobel Prize in Economics was awarded 
to Scholes and Merton. (Black died in 1995, and the prize is not awarded 
posthumously) .  In this text, the role of all three men is acknowledged by the 
terminology Black-Scholes-Merton option-pricing formula. Even though ge
ometric Brownian motion is a less than perfect model for stock prices , the 
Black-Scholes-Merton pricing formula for vanilla options (i .e . , European calls 
and puts) seems not to be terribly sensitive to deficiencies in the model. 

The passage from discrete to continuous time in the model of evolution of 
the portfolio value, which is touched upon in Subsection 4.5 . 1 , is given a more 
detailed treatment by Duffie and Protter [60] ; see also Exercise 4. 10. 

4. 10 Exercises 

Exercise 4. 1 .  Suppose M(t) , 0 � t � T, is a martingale with respect to some 
filtration :F(t) , 0 � t � T. Let Ll(t) , 0 � t � T, be a simple process adapted to 
:F(t) (i .e . ,  there is a partition II =  {to ,  t1 , . . .  , tn } of [0 , T] such that , for every 
j, Ll(tj ) is :F(t3 )-measurable and Ll(t) is constant in t on each subinterval 
[tj , tJ+1 ) ) .  For t E [tk , tk+ I ) ,  define the stochastic integral 

k- 1 
I(t) = L Ll(tj ) [M(tj+ I ) - M(tj ) ] + Ll(tk ) [M(t) - M(tk )] . 

j=O 

We think of M(t) as the price of an asset at time t and Ll(t3 ) as the number 
of shares of the asset held by an investor between times t3 and tj+ I · Then I(t) 
is the capital gains that accrue to the investor between times 0 and t . Show 
that I(t) , 0 � t � T, is a martingale. 

Exercise 4.2. Let W(t) , 0 � t � T, be a Brownian motion, and let :F(t) , 
0 � t � T, be an associated filtration. Let Ll(t) , 0 � t � T, be a nonmndom 
simple process (i .e . ,  there is a partition II = { t0 , t 1 ,  . . .  , tn } of [0, T] such that 
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for every j ,  Ll(tj ) is a nonrandom quantity and Ll(t) = Ll(tj ) is constant in t 
on the subinterval [tj , ti+ I ) ) .  For t E  [tk , tk+ l ] ,  define the stochastic integral 

k- 1 
I(t) = L ..1(tj ) [W(tj+ 1 ) - W(tj )] + Ll(tk ) [W(t) - W(tk ) ] .  

j=O 

(i) Show that whenever 0 :::; s < t :::; T, the increment I(t) - I(s) is inde
pendent of :F(s) . (Simplification: If s is between two partition points, we 
can always insert s as an extra partition point. Then we can relabel the 
partition points so that they are still called to , t 1 , . . .  , tn , but with a larger 
value of n and now with s = tk for some value of k. Of course, we must set 
Ll(s) = ..1(tk_ 1 ) so that ..1 takes the same value on the interval [s , tk+1 ) 
as on the interval [tk_ 1 , s ) .  Similarly, we can insert t as an extra parti
tion point if it is not already one. Consequently, to show that I(t) - I(s) 
is independent of :F( s) for all 0 :::; s < t :::; T, it suffices to show that 
I(tk ) - I(tt ) is independent of :F(tt ) whenever tk and tt are two partition 
points with tt < tk . This is all you need to do. ) 

(ii) Show that whenever 0 ::=; s < t ::=; T, the increment I(t) - I(s) is a normally 
distributed random variable with mean zero and variance J: ..12(u) du. 

(iii) Use (i) and (ii) to show that I(t) , 0 :::; t :::; T, is a martingale. 
(iv) Show that I2 (t) - J� ..12 (u) du, 0 ::=; t ::=; T, is a martingale. 

Exercise 4.3. We now consider a case in which Ll(t) in Exercise 4.2 is simple 
but random. In particular, let to = 0, t1 = s, and t2 = t, and let ..1(0) 
be nonrandom and Ll(s) = W(s ) .  Which of the following assertions is true? 
Justify your answers. 
(i) I(t) - I(s) is independent of :F(s) . 
(ii) I(t) - I(s) is normally distributed. (Hint : Check if the fourth moment is 

three times the square of the variance; see Exercise 3.3 of Chapter 3. ) 
(iii) IE[I(t) I:F(s) ] = I(s) . 
(iv) IE [I2 (t) - J� ..12(u) du j :F(s)] = I2 (s) - J; ..12(u) du. 

Exercise 4.4 (Stratonovich integral) .  Let W(t) , t � 0, be a Brownian 
motion. Let T be a fixed positive number and let II =  {t0 , t1 , . . .  , tn } be a 
partition of [0, T] (i.e . ,  0 = t0 < t1 < · · · < tn = T) . For each j ,  define 
tj = t1+�1+1 to  be  the midpoint of  the interval [tj , ti+ 1 l · 
(i) Define the half-sample quadratic variation corresponding to II to be 

n- 1 
QII/2 = L (W(tj ) - W(tj )t 

j=O 

Show that Qn;2 has limit �T as I III I I  --+ 0. (Hint: It suffices to show that 
lEQn;2 = �T and limiiiiii-+O Var(Qn;2 ) = 0. ) 
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(ii) Define the Stratonovich integral of W(t) with respect to W(t) to be 

T n- 1 
f W(t) o dW(t) = lim L W(tj ) (W(t3+d - W(tj ) ) .  

Jo 1 111 11-+0 i=O 
(4. 10. 1 ) 

In contrast to the Ito integral J0T W(t) dW(t) = � W2(T) - �T of (4.3.4) , 
which evaluates the integrand at the left endpoint of each subinterval 
[tj , ti+1 ] ,  here we evaluate the integrand at the midpoint tj . Show that 

(Hint : Write the approximating sum in (4 .10 . 1 ) as the sum of an approx
imating sum for the Ito integral J0T W(t) dW(t) and Q11;2 • The approxi
mating sum for the Ito integral is the one corresponding to the partition 
0 = to <  t0 < t1 < ti < · · · < t�_ 1 < tn = T, not the partition II. )  

Exercise 4 .5 (Solving the generalized geometric Brownian motion 
equation) . Let S(t) be a positive stochastic process that satisfies the gener
alized geometric Brownian motion differential equation (see Example 4.4.8) 

dS(t) = a(t)S(t) dt + a(t)S(t) dW(t) , (4. 10.2) 

where a(t) and a(t) are processes adapted to the filtration :F(t) , t 2:: 0, asso
ciated with the Brownian motion W(t) , t 2:: 0. In this exercise, we show that 
S(t) must be given by formula (4.4.26) (i .e . ,  that formula provides the only 
solution to the stochastic differential equation (4. 10.2) ) . In the process, we 
provide a method for solving this equation. 
(i) Using (4. 10.2) and the ltO-Doeblin formula, compute d log S(t) . Simplify 

so that you have a formula for d log S(t) that does not involve S(t) . 
(ii) Integrate the formula you obtained in (i) , and then exponentiate the an-

swer to obtain (4.4.26) . 
Exercise 4.6. Let S(t) = S(O) exp {aW(t) + (a - �a2) t} be a geometric 
Brownian motion. Let p be a positive constant. Compute d ( SP ( t) ) ,  the differ
ential of S(t) raised to the power p. 

Exercise 4.7. (i) Compute dW4 (t) and then write W4 (T) as the sum of an 
ordinary (Lebesgue) integral with respect to time and an Ito integral. 

(ii) Take expectations on both sides of the formula you obtained in (i) ,  use 
the fact that IEW2(t) = t, and derive the formula IEW4(T) = 3T2 • 

(iii) Use the method of (i) and (ii) to derive a formula for IEW6(T) . 

Exercise 4.8 (Solving the Vasicek equation) . The Vasicek interest rate 
stochastic differential equation ( 4.4.32) is 
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dR(t) = (a - ,BR(t)) dt + u dW(t) , 
where a, ,B, and u are positive constants. The solution to this equation is 
given in Example 4.4. 10. This exercise shows how to derive this solution. 
(i) Use (4.4.32) and the Ito-Doeblin formula to compute d(e.Bt R(t) ) . Simplify 

it so that you have a formula for d(e.Bt R(t)) that does not involve R(t) . 
(ii) Integrate the equation you obtained in (i) and solve for R(t) to obtain 

(4.4.33) . 

Exercise 4.9. For a European call expiring at time T with strike price K, 
the Black-Scholes-Merton price at time t , if the time-t stock price is x, is 

c(t, x) = xN (d+ (T - t, x) ) - Ke-r(T-t) N (d- (T - t, x) ) , 
where 

d+ (r, x) = 17� [log ; + (r +  �u2) r] , 
d_ (r, x) = d+ (r, x) - u..;T, 

and N(y) is the cumulative standard normal distribution 

N(y) = � jy e-4-dz = � 100 e-4-dz . 
v 271" -00 v 271" - y 

The purpose of this exercise is to show that the function c satisfies the Black
Scholes-Merton partial differential equation 

1 2 2 Ct (t , x) + rxcx (t , x) + 217 x Cxx (t, x) = rc(t, x) ,  0 :::; t < T, x > 0, (4. 10.3) 

the terminal condition 
lim c(t, x) = (x - K)+ , x > O, x  =/: K, ttT 

and the boundary conditions 
(4. 10.4) 

lim c(t, x) = O, lim [c(t , x) - (x - e-r(T-t)K) ] = O, O :S t < T. (4. 10.5) x.j.O x-+oo 
Equation ( 4 .10.4) and the first part of ( 4. 10.5) are usually written more simply 
but less precisely as 

c(T, x) = (x - K)+ , x � 0 
and 

c(t , 0) = 0, 0 :::; t :::; T. 
For this exercise, we abbreviate c(t, x) as simply c and d± (T - t, x) as 

simply d± . 
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(i) Verify first the equation 

Ke-r(T-t)N'(d- ) = xN'(d+ ) ·  (4. 10.6) 

(ii) Show that Cx = N(d+ ) ·  This is the delta of the option. (Be careful! Re
member that d+ is a function of x. ) 

(iii) Show that 

c = -rKe-r(T-t) N(d_ ) - ax N'(d ) .  t 2Jr - t + 
This is the theta of the option. 

(iv) Use the formulas above to show that c satisfies (4. 10.3) . 
(v) Show that for x > K, limttr d± = oo, but for 0 < x < K, limttr d± = 

-oo. Use these equalities to derive the terminal condition (4. 10.4) . 
(vi) Show that for 0 ::;  t < T, limx.l-0 d± = -oo. Use this fact to verify the first 

part of boundary condition (4. 10.5) as x .!.  0. 
(vii) Show that for 0 ::; t < T, limx-HX> d± = oo. Use this fact to verify the 

second part of boundary condition (4 .10 .5) as x --+  oo. In this verification, 
you will need to show that 

lim N(d+ ) - 1 = 0. x-+oo x- 1 
This is an indeterminate form § ,  and L'Hopital's rule implies that this 
limit is 

. f [N(d+ ) - 1) hm x . x-+oo ..f!...x- 1 dx 
Work out this expression and use the fact that 

x = K exp { aJT - t d+ - (T - t) (r + �a2) } 
to write this expression solely in terms of d+ (i .e . ,  without the appearance 
of any x except the x in the argument of d+ (T - t, x) ) .  Then argue that 
the limit is zero as d+ --+ oo. 

Exercise 4.10 (Self-financing trading) . The fundamental idea behind no
arbitrage pricing is to reproduce the payoff of a derivative security by trading 
in the underlying asset (which we call a stock) and the money market account. 
In discrete time, we let Xk denote the value of the hedging portfolio at time 
k and let Llk denote the number of shares of stock held between times k and 
k + 1. Then, at time k, after rebalancing (i.e . ,  moving from a position of Llk- 1 
to a position Llk in the stock) , the amount in the money market account is 
Xk - SkLlk . The value of the portfolio at time k + 1 is 

(4. 10.7) 
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This formula can be rearranged to become 

(4. 10.8) 

which says that the gain between time k and time k + 1 is the sum of the 
capital gain on the stock holdings, Llk(Sk+l - Sk ) ,  and the interest earnings 
on the money market account, r(Xk - LlkSk) · The continuous-time analogue 
of ( 4. 10.8) is 

dX(t) = Ll(t) dS(t) + r (X(t) - Ll(t)S(t) ) dt . (4. 10.9) 

Alternatively, one could define the value of a share of the money market 
account at time k to be 

and formulate the discrete-time model with two processes, Llk as before and 
rk denoting the number of shares of the money market account held at time 
k after rebalancing. Then 

(4. 10. 10) 

so that ( 4. 10. 7) becomes 

(4 .10. 1 1 ) 

Subtracting (4. 10.10) from (4.10. 1 1 ) ,  we obtain in place of (4.10.8) the equa
tion 

(4. 10. 12) 
which says that the gain between time k and time k + 1 is the sum of the 
capital gain on stock holdings, Llk (Sk+l - Sk ) ,  and the earnings from the 
money market investment , Fk (Mk+l - Mk ) · 

But Llk and rk cannot be chosen arbitrarily. The agent arrives at time 
k + 1 with some portfolio of Llk shares of stock and rk shares of the money 
market account and then rebalances. In terms of Llk and rk , the value of the 
portfolio upon arrival at time k + 1 is given by (4.10. 1 1 ) . After rebalancing, 
it is 

xk+l = Llk+lsk+l + rk+lMk+l · 
Setting these two values equal, we obtain the discrete-time self-financing con
dition 

(4. 10. 13) 
The first term is the cost of rebalancing in the stock, and the second is the 
cost of rebalancing in the money market account . If the sum of these two 
terms is not zero, then money must either be put into the position or can 
be taken out as a by-product of rebalancing. The point is that when the two 
processes Llk and n are used to describe the evolution of the portfolio value 
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xk , then two equations, (4. 10 . 12 )  and (4. 10. 13) , are required rather than the 
single equation (4. 10.8) when only the process Llk is used. 

Finally, we note that we may rewrite the discrete-time self-financing con
dition ( 4. 10. 13) as 

Sk (Llk+ l - Llk )  + (Sk+t - Sk ) (Llk+ l - Llk) 
+Mk(rk+ I - rk )  + (Mk+l - Mk) (rk+l - rk )  = o. (4. 10.14) 

This is suggestive of the continuous-time self-financing condition 

S(t) dLl(t) + dS(t) dLl(t) + M(t) dF(t) + dM(t) dT(t) = 0, (4. 10. 15) 

which we derive below. 
(i) In continuous time, let M(t) = ert be the price of a share of the money 

market account _at time t, let Ll(t) denote the number of shares of stock 
held at time t, and let F(t) denote the number of shares of the money 
market account held at time t, so that the total portfolio value at time t 
is 

X(t) = Ll(t)S(t) + F(t)M(t) . (4. 10. 16) 
Using (4. 10. 16) and (4. 10.9) ,  derive the continuous-time self-financing con
dition (4. 10. 15) . 
A common argument used to derive the Black-Scholes-Merton partial dif

ferential equation and delta-hedging formula goes like this . Let c(t, x) be the 
price of a call at some time t if the stock price at that time is S(t) = x. Form 
a portfolio that is long the call and short Ll(t) shares of stock, so that the 
value of the portfolio at time t is N(t) = c (t , S(t)} - Ll(t)S(t) . We want to 
choose Ll(t) so this is "instantaneously riskless," in which case its value would 
have to grow at the interest rate. Otherwise, according to this argument, we 
could arbitrage this portfolio against the money market account. This means 
we should have dN(t) = rN(t) dt. We compute the differential of N(t) and 
get 

dN(t) = Ct (t , S(t) ) dt + cx (t , S(t) ) dS(t) 
1 +2cxx (t , S(t)) dS(t) dS(t) - Ll(t) dS(t) 

= [cx (t , S(t) ) - Ll(t)] dS(t) 

+ [ct (t, S(t) } + �a2S2 (t)cxx (t, S(t) )] dt. (4. 10. 17) 

In order for this to be instantaneously riskless, we must cancel out the dS(t) 
term, which contains the risk. This gives us the delta-hedging formula Ll(t) = 
Cx ( t, S ( t) } . Having chosen Ll ( t) this way, we recall that we expect to have 
dN(t) = rN(t) dt , and this yields 
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But 

N(t) = c (t , S(t) ) - Ll(t)S(t) = c (t , S(t) ) - S(t)cx (t, S(t) ) , 

(4. 10 .18) 

(4. 10. 19) 

and substitution of (4. 10. 19) into (4. 10. 18) yields the Black-Scholes-Merton 
partial differential equation 

1 Ct (t , S(t)) + rS(t)c8 (t , S(t) ) + 2u282 (t)c88 (t , S(t) ) = rc(t, S(t) ) . (4. 10.20) 

One can question the first step of this argument , where we failed to use 
Ito's product rule (Corollary 4.6.3) on the term Ll(t)S(t) when we differenti
ated N(t) in (4. 10. 17) . In discrete time, we hold Llk fixed for a period and let 
S move, computing the capital gain according to the formula Llk (Sk+l - Sk ) ,  
and in (4. 10. 17) we are attempting something analogous to that in contin
uous time. However, as soon as we set Ll(t) = cx (t , S(t) ) , then Ll(t) moves 
continuously in time and the differential of N(t) is really 

1 dN(t) = Ct (t , S(t) ) dt + cx (t , S(t) ) dS(t) + 2Cxx (t , S(t) ) dS(t) dS(t) 

-Ll(t) dS(t) - S(t) dLl(t) - dLl(t) dS(t) (4. 10.21 ) 
rather than the expression in ( 4. 10. 17) . 

This exercise shows that the argument is correct after all . At least, equation 
(4.10 .18 ) is correct , and from that the Black-Scholes-Merton partial differen
tial equation (4. 10.20) follows. 

Recall from Subsection 4.5.3 that if we take X(O) = c (O, 8(0) ) and at each 
time t hold Ll ( t) = ex ( t, S ( t) ) shares of stock, borrowing or investing in the 
money market as necessary to finance this, then at each time t we have a 
portfolio of stock and a money market account valued at X(t) = c(t, S(t) ) . 
The amount invested in the money market account at each time t is 

X(t) - Ll(t)S(t) = c(t , S(t) ) - Ll(t)S(t) = N(t) , 

and so the number of money market account shares held is 

N(t) r(t) = M(t) . 

(ii) Now replace (4. 10. 17) by its corrected version (4. 10.21 ) and use the 
continuous-time self-financing condition you derived in part ( i) to derive 
(4. 10. 18) . 

Exercise 4. 11 .  Let 

c(t , x) = xN(d+ (T - t, x) ) - Ke-r(T-t) N(d- (T - t, x) )  
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denote the price for a European call, expiring at time T with strike price K, 
where 

This option price assumes the underlying stock is a geometric Brownian mo
tion with volatility a1 > 0. For this problem, we take this to be the market 
price of the option. 

Suppose, however, that the underlying asset is really a geometric Brownian 
motion with volatility a2 > a1 ,  i .e. , 

dS(t) = o:S(t) dt + a2S(t) dW(t) . 

Consequently, the market price of the call is incorrect. 
We set up a portfolio whose value at each time t we denote by X(t) . We 

begin with X(O) = 0. At each time t, the portfolio is long one European call, 
is short cx (t , S(t) ) shares of stock, and thus has a cash position 

X(t) - c(t, S(t)) + S(t)cx (t, S(t) ) ,  

which is invested at the constant interest rate r. We also remove cash from 
this portfolio at a rate ! (a� - a?}S2 (t)cxx (t , S(t ) ) . Therefore, the differential 
of the portfolio value is 

dX(t) = dc(t, S(t) ) - Cx (t , S(t)) dS(t) 
+r [X(t) - c(t, S(t) ) + S(t)cx (t, S(t)) ) dt 

1 2 2 2 - 2 (a2 - adS (t)cxx (t, S(t)) dt, 0 :::; t :::; T. 

Show that X(t) = 0 for all t E [0, T] . In particular, because Cxx (t, S(t) ) > 0 
and a2 > a1 , we have an arbitrage opportunity; we can start with zero initial 
capital , remove cash at a positive rate between times 0 and T, and at time T 
have zero liability. (Hint : Compute d(e-rtx(t) ) . ) 

Exercise 4.12.  (i) Use formulas (4.5.23)-(4.5.25) , (4.5.26) ,  and (4.5 .29) to 
determine the delta Px (t , x) , the gamma Pxx (t, x) , and the theta Pt (t, x) 
of a European put . 

(ii) Show that an agent hedging a short position in the put should have a 
short position in the underlying stock and a long position in the money 
market account. 

(iii) Show that f (t, x) of (4.5.26) and p(t , x ) satisfy the same Black-Scholes-
Merton partial differential equation ( 4.5 . 14) satisfied by c(t, x) . 

Exercise 4. 13 (Decomposition of correlated Brownian motions into 
independent Brownian motions) .  Suppose B1 (t) and B2 (t) are Brownian 
motions and 
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where p is a stochastic process taking values strictly between - 1 and 1 .  Define 
processes W1 (t) and W2(t) such that 

B1 (t) = W1 (t) , 

B2 (t) = lot 
p(s) dW1 (s) +lot 

J1 - p2 (s ) dW2 (s ) ,  

and show that W1 (t) and W2(t) are independent Brownian motions. 

Exercise 4.14. In the derivation of the ltO-Doeblin formula, Theorem 4.4. 1 , 
we considered only the case of the function f(x) = !x2 , for which f" (x) = 1 . 
This made it easy to determine the limit of the last term, 

n- 1 
� L f"(W(tj ) ) [W(tj+l ) - W(tj )] 2 , 

j=O 

appearing in (4.4.5) . Indeed, 
n- 1 n- 1 

lim L /"(W(ti ) )  [W(tH1 ) - W(tj )] 2 = lim L [W(ti+l ) - W(ti )] 2 1 111 1 1--.0 j=O 1 111 11--.0 j=O 
= [W, W] (T) = T 

= loT 
f"(W(t) ) dt. 

If we had been working with an arbitrary function f(x) , we could not 
replace f" (W(ti ) )  by 1 in the argument above. It is tempting in this case to 
just argue that [W(ti+t ) - W(tj )] 2 is approximately equal to (tH1 - tj ) ,  so 
that n- 1 

L f" (W(tj ) )  [W(ti+l ) - W(tj )] 2 
j=O 

is approximately equal to 
n- 1 
L f" (W(tj ) ) (tj+ l - tj ) ,  
j=O 

and this has limit f0T f"(W(t) ) dt as 1 111 1 1  --+ 0. However, as discussed in 
Remark 3.4.4, it does not make sense to say that [W(ti+l ) - W(tj )] 2 is 
approximately equal to (ti+ 1 - ti ) . In this exercise, we develop a correct 
explanation for the equation 

n- 1 T 
lim L f"(W(tj ) ) [W(tj+l ) - W(tj )] 2 = f f" (W(t)) dt . (4. 10.22) 1 1 11 1 1--.o i=O lo 
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so that 
n- 1 n-1 n- 1 
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:E /"(W(tj ) )  [W{tj+1 ) - W(tj )] 2 = :E Zj + L /"(W(tj ) ) (tj+1 - tj ) · 
j=O j=O i=O 

(i) Show that Zi is F(ti+ I )-measurable and 
{4. 10.23) 

E[Zi iF(ti )J = 0, E[ZJ IF(t3 )] = 2 [/"(W(ti ) ) ] 2 (ti+1 - ti )2 • 

It remains to show that n- 1 
lim L zi = o. {4. 10.24) 

l lll ll-+0 j=O 
This will cause us to obtain {4. 10.22) when we take the limit in (4. 10.23) . 
Prove (4. 10.24) in the following steps. 
(ii) Show that E Ej�� Zi = 0. 
(iii) Under the assumption that E f0T [f"(W(t)) ]2 dt is finite, show that 

[n- 1 l 
lim Var L Zi = 0. 

ll ll ll-+0 i=O 

(Warning: The random variables Z1 o Z2 , . . .  , Zn_ 1 are not independent. )  

From (iii ) ,  we conclude that Ej�� Zi converges to its mean, which by (ii) is 
zero. This establishes (4. 10.24) . 

Exercise 4.15 (Creating correlated Brownian motions from indepen
dent ones) . Let (W1 ( t) , . . .  , Wd( t)) be a d-dimensional Brownian motion. 
In particular, these Brownian motions are independent of one another. Let 
(uij (t) ) i= 1 , . . .  ,m;j=1 , . . . ,d be an m x d matrix-valued process adapted to the fil
tration associated with the d-dimensional Brownian motion. For i =  1 ,  . . .  , m, 
define 

1 

ui (t) = [t u;i (t)l 2 
, 

]=1 
and assume this is never zero. Define also �1t Uij (u) Bi (t) = Li -- ( -) dW3 (u) . 

j= 1 0 u, u 

(i) Show that , for each i, Bi is a Brownian motion. 
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(ii) Show that dBi (t) dBk (t) = Pik (t) , where 

Exercise 4.16 (Creating independent Brownian motions to repre
sent correlated ones) . Let B1 (t) , . . .  , Bm (t) be m one-dimensional Brow
nian motions with 

dBi (t) dBk (t) = Pik (t) dt for all i, k = 1 ,  . . .  , m, 

where Pik (t) are adapted processes taking values in {- 1 , 1 )  for i =1- k and 
Pik (t) = 1 for i =  k. Assume that the symmetric matrix 

C(t) = 

[ Pn (t) P12 (t) · · · Plm (t) l 
P21 (t) P22 {t) · · · P2m (t) 

. . . . . . . . . 
Pml (t) Pm2 (t) · · · Pmm (t) 

is positive definite for all t almost surely. Because the matrix C(t) is symmetric 
and positive definite, it has a matrix square root. In other words, there is a 
matrix [ au (t) a12 (t) · · · alm (t) l 

a21 (t) a22 (t) · · · a2m (t) 
A(t) = : : : 

. . . 
aml (t) am2 (t) · · · amm(t) 

such that C(t) = A(t)Atr (t) , which when written componentwise is 
m 

Pik (t) = L aii (t)aki (t ) for all i, k = 1 ,  . . .  , m. 
j=l 

{4. 10.25) 

This matrix can be chosen so that its components aik (t) are adapted processes. 
FUrthermore, the matrix A(t) has an inverse 

which means that 

A-1 (t) = . . . , 

[ au (t) a12 (t) · · · alm (t) l 
a21 (t) a22 (t) · · · a2m (t) 

. . . . . . 
aml (t) am2 (t) · · · amm(t) 

m m 
L aii (t)aik (t) = L aii (t )aik (t) = 8ik , 
i=l j=l 

(4. 10.26) 
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where we define { 1 if i = k, 0ik = 0 if i -1- k, 

to be the so-called Kronecker delta. Show that there exist m independent 
Brownian motions W1 (t) ,  . . .  , Wm(t) such that 

m t Bi (t) = L Jo aij (u) dWj (u) for all i = 1 ,  . . .  , m. 
j=l 0 

Exercise 4.17 (Instantaneous correlation) . Let 

X1 (t) = X1 (0) + lot 
81 (u) du + lot 

u1 (u) dB1 (u) , 

X2 (t) = X2(0) + lot 
82 (u) du + lot 

u2 (u) dB2 (u) , 

(4 . 10 .27) 

where B1 (t) and B2 (t) are Brownian motions satisfying dB1 (t) dB2 (t) = p(t) 
and p(t ) ,  6l1 (t) , 82 (t) , u1 (t) , and u2 (t) are adapted processes. Then 

We call p(t) the instantaneous correlation between X1 (t) and X2(t) for the 
reason explained by this exercise. 

We first consider the case when p, 6!1 , 82 , u1 , and u2 are constant . Then 

X1 (t) = X1 (0) + 6l1t + u1B1 (t ) ,  
X2 (t) = X2(0) + 82t + u2B2 (t) . 

Fix to > 0, and let f > 0 be given. 
(i) Use Ito's product rule to show that 

(ii) Show that , conditioned on :F(t0 ) ,  the pair of random variables 

has means, variances, and covariance 

Mi(f) = IE  [Xi (to + f) - Xi (to ) l :F(to)] = 6lif for i =  1 ,  2, (4. 10.28) 

l/i(f) = IE  [ (Xi (to + f) - Xi (to) ) 2 1 :F(to )] - M'f(f) 

= u?f for i =  1 ,  2, (4. 10.29) 
C(f) = IE [ (xl (to +  f) - xl (to ) ) (X2 (to + f) - X2 (to ) ) I :F(to )] 

-Ml (f)M2 (f) = PD"ID"2f · (4. 10 .30) 
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In particular, conditioned on :F(to ) ,  the correlation between the incre
ments X1 (to + f) - X1 (to ) and X2(to + f) - X2(to ) is 

C(f) 

---r.;=::=;=
�

::::;==;= 
- p 

y'V1 (f)V2 (f) -
. 

We now allow p(t ) ,  81 (t) , 82 (t) , a1 (t) , and a2 (t) to be continuous adapted 
processes, assuming only that there is a constant M such that 

IB1 (t) l :::; M, la1 (t) l :::; M, IB2 (t) l :::; M, la2 (T) I :::; M, lp(t) l :::; M 
(4. 10.31) 

for all t � 0 almost surely. We again fix to � 0. 
(iii) Show that, conditioned on :F(t0 ) ,  we have the conditional mean formulas 

Mi(f) = E [Xi (to + f) - Xi (to ) l  :F(to )) = Bi (to)f + o( f) for i = 1 ,  2 , 
(4. 10.32) 

where we denote by o(f) any quantity that is so small that limdo o�e) = 0. 
In other words, show that 

lim �Mi (f) = Bi (to ) for i =  1 , 2. e.(.O f 
(Hint: First show that 

(4. 10.33) 

(4. 10.34) 

The Dominated Convergence Theorem, Theorem 1 .4.9, works for condi
tional expectations as well as for expectations in the following sense. Let 
X be a random variable. Suppose for every f > 0 we have a random vari
able X (f) such that lime.(.O X (f) = X almost surely. Finally, suppose there 
is another random variable Y such that lEY < oo and IX(f) l :::; Y almost 
surely for every f > 0. Then 

lim!E[X(f) I:F(to) ) = IE[X I:F(to )) .  e.(.O 

Use this to obtain (4. 10.33) from (4. 10.34) . )  
(iv) Show that Di1 (f) defined by 

Dij (f) = IE  [ (Xi (to + f) - Xi (to ) ) (X3 (to + f) - Xj (to) ) J :F(to )] 
-Mi (f)Mj (f) 

for i = 1 , 2 and j = 1, 2 satisfies 

(4. 10.35) 

where we set Pu (t) = P22 (t) = 1 and P12 (t) = p21 (t) = p(t) . (Hint: You 
should define the martingales 
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so you can write 

Dij (f) = IE [ ( Yi(to + f) - Yi(to ) + 1:o+£ 8i (u) du) 
. ( lj(to + f) - lj (to) + l:o+£ ej (u) du) l .r(to)] 

-Mi (f)Mj (f) . (4. 10.36) 

Then expand the expression on the right-hand side of (4. 10.36) . You 
should use Ito's product rule to show that the first term in the expan
sion is 

IE [ (Yi (to + f) - Yi(to )) (lj (to + f) - lj (to) ) I F( to )) 

= IE [l:o+£ Pij ( u)ui ( u)uj ( u) du , F(to)] . 
This equation is similar to (4. 10.34) , and you can use the Dominated 
Convergence Theorem as stated in the hint for (iii) to conclude that 

lim �IE [ (Yi (to + f) - Yi(to) ) (lj (to + f) - lj (to ) ) I F( to )) €.).0 f 
To handle the other terms that arise from expanding (4. 10.36) , you will 
need (4. 10.31) and the fact that 

lim iE [ IYi (to + f) - YI (to ) I IF(to )) = 0. 

£-l-0 
(4. 10.37) 

You may use (4. 10.37) without proving it . 
(v) Show that, conditioned on F(to) , the pair of random variables 

has variances and covariance 

Vi(  f) = IE [ (Xi (to + f) - Xi (to ) ) 2 j F(to )] - Ml{f) 

= a-r (to)f + O(f) for i =  1 ,  2 , (4. 10.38) 
C(f) = IE [ (X1 (to + f) - XI (to ) ) (X2 (to + f) - X2(to) ) I F(to )] 

-M1 (f)M2 (f) (4. 10.39) 
= p(to )al (to )a2 (to )f + o(f ) . 
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(vi) Show that 
(4. 10.40) 

In other words, for small values of € > 0, conditioned on :F( to ) ,  the corre
lation between the increments X1 (to + €) - X1 (to ) and X2(to + €) - X2(to ) 
is approximately equal to p(to ) ,  and this approximation becomes exact as 
€ t 0. 

Exercise 4.18. Let a stock price be a geometric Brownian motion 

dS(t) = aS(t) dt + aS(t) dW(t) ,  

and let r denote the interest rate. We define the market price of risk to be 
a - r 0 = -

(1 

and the state price density process to be 

((t) = exp { - OW(t) - (r + �o2) t } · 

(i) Show that 
d( (t) = -O( (t) dW (t) - r((t) dt. 

(ii) Let X denote the value of an investor's portfolio when he uses a portfolio 
process Ll (t) . From (4.5.2) , we have 

dX (t) = r X (t) dt + Ll (t) (a - r)S(t) dt + Ll(t)aS(t) dW(t) . 

Show that ( (t)X (t) is a martingale. (Hint : Show that the differential 
d (( (t)X (t) )  has no dt term. ) 

(iii) Let T > 0 be a fixed terminal time. Show that if an investor wants to 
begin with some initial capital X (O) and invest in order to have portfolio 
value V(T) at time T, where V(T) is a given :F(T)-measurable random 
variable, then he must begin with initial capital 

X (O) = IE[((T)V(T)] . 

In other words, the present value at time zero of the random payment 
V(T) at time T is IE[((T)V(T)] . This justifies calling ( (t) the state price 
density process. 

Exercise 4.19.  Let W(t) be a Brownian motion, and define 

where 

B(t) = lot sign(W(s) )  dW (s) , 

. ( ) { 1 if X � 0, Sign X = -1 if X < 0. 
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(i) Show that B(t) is a Brownian motion. 
(ii) Use Ito's product rule to compute d [B(t)W(t)] . Integrate both sides of 

the resulting equation and take expectations. Show that lE [B(t)W(t)] = 0 
(i.e. , B(t) and W(t) are uncorrelated) .  

(iii) Verify that 
dW2(t) = 2W(t) dW(t) + dt. 

(iv) Use Ito's product rule to compute d [B(t)W2(t)] . Integrate both sides of 
the resulting equation and take expectations to conclude that 

Explain why this shows that , although they are uncorrelated normal ran
dom variables, B(t) and W(t) are not independent. 

Exercise 4.20 (Local time) . Let W(t) be a Brownian motion. The ItO
Doeblin formula in differential form says that 

df (W(t) ) = f' (W(t) ) dW(t) + �f" (W(t) ) dt . (4. 10.41) 

In integrated form, this formula is 

f (W(T)) = f (W(O) ) + {T 
f' (W(t) ) dW(t) + � {T 

f" (W(t) ) dt . (4. 10.42) 
lo 2 Jo 

The usual statement of this formula assumes that the function !" ( x) is defined 
for every x E lR and is a continuous function of x. In fact, the formula still 
holds if there are finitely many points x where f" (x) is undefined, provided 
that f' (x) is defined for every x E lR and is a continuous function of x (and 
provided that l f" (x) l is bounded so that the integral J0T f" (W(t)) dt is de
fined) . However, if f' (x) is not defined at some point, naive application of the 
ItO-Doeblin formula can give wrong answers, as this problem demonstrates. 
(i) Let K be a positive constant , and define f(x) = (x - K)+ . Compute f' (x) 

and f" (x) . Note that there is a point x where f' (x) is not defined, and 
note also that f" (x) is zero everywhere except at this point , where f"(x) 
is also undefined. 

(ii) Substitute the function f(x) = (x - K)+ into (4. 10.42) , replacing the term 
� J: f" (W(t) ) dt by zero since !" is zero everywhere except at one point, 
where it is not defined. Show that the two sides of this equation cannot 
be equal by computing their expected values. 

(iii) To get some idea of what is going on here, define a sequence of functions 
{! n } ;::'= 1 by the formula 

{ 0 if x < K - ..1.. - 2n ' 
f (x) = !! (x - K)2 + .! (x - K) + ..1.. if K - ..1.. < x < K + ..1.. n 2 2 8n 2n - - 2n ' X - K if X � K + 2� .  
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Show that { 0  if x < K - ...!... - 2n ' l� (x) = n(x - K) + � if K - 2� :::; x :::; K + 2� ,  
1 if X ;::: K + 2� · 

In particular, because we get the same value for I� ( K - 2� ) regardless of 
whether we use the formula for x :::; K - 2� or the formula for K - 2� :::; 
x :::; K + 2� ,  the derivative I' ( K - 2� ) is defined. By the same argument , 
I� ( K + 2� )  is also defined. Verify that 

{ O if x < K - 2� ,  
!" (x) = n if K - ...!... < x < K + ...!... n � � '  0 if X <  K + 2� · 

The second derivative f"(x) is not defined when x = K ± 2� because the 
formulas above disagree at those points. 

(iv) Show that 

for every x E lR and 

lim ln (x) = (x - K)+ n-+oo 

{ 0 if X <  K, 
lim l� (x) = � if x = K, n-+oo 1 if X > K. 

The value of limn-+oo I� ( x) at a single point will not matter when we 
integrate in part (v) below, so instead of using the formula just derived, 
we will replace limn-+oo l� (x) by 

n (x) = { 0 if X :::; K, {K,oo) 1 if X > K, 

in (4.10 .44) below. The two functions limn-+oo l� (x) and H(K,oo) (x) agree 
except at the single point x = K. 
For each n, the ItO-Doeblin formula applies to the function In because 

l� (x) is defined for every x and is a continuous function of x, l:: (x) is defined 
for every x except the two points x = K ± 2� , and I!" ( x) I is bounded above 
by n. In integrated form, the ItO-Doeblin formula applied to In gives 

ln (W(T) ) = ln (W(O)) + 1T I� (W(t)) dW(t) + 1T I:: (W(t)) dt . (4. 10.43) 
If we now let n ---+ oo in this formula, we obtain 

(W(T) - K) + = (W(O) - K) + + loT H(K,oo) (W(t)) dW(t) 

+ lim n {T H(K-.L K+i. ) (W(t) ) dt . (4. 10.44) n--+-oo }0 2n ' 2n 
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Let us define the local time of the Brownian motion at K to be 

T LK (T) = lim n f ll(K- .1... K+.l... ) (W(t)) dt . n�oo }0 2n ' 2n 

(This formula is sometimes written as 

where 6 K is the so-called "Dirac delta function" at K.) For a fixed n, the 
expression J:[ ll(K _ .1... K + .1... ) ( W ( t)) dt measures how much time between time 2n ' 2n 
0 and time T the Brownian motion spends in the band of length � centered at 
K. As n --+  oo, this has limit zero because the width of the band is approaching 
zero. However, before taking the limit , we multiply by n, and now it is not 
clear whether the limit will be zero, +oo, or something in between. The limit 
will ,  of course, be random; it depends on the path of the Brownian motion. 

(v) Show that if the path of the Brownian motion stays strictly below K on 
the time interval [0, T] , we have LK (T) = 0. 

(vi) We may solve (4. 10.44) for LK (T) , using the fact that W(O) = 0 and 
K > 0, to obtain 

LK (T) = (W(T) - K) + - 1T ll(K,oo) (W(t) ) dW(t) . (4. 10.45) 

From this, we see that LK (T) is never +oo. Show that we cannot have 
LK (T) = 0 almost surely. In other words, for some paths of the Brownian 
motion, we must have LK (T) > 0. (It turns out that the paths that reach 
level K are those for which LK (T) > 0. ) 

Exercise 4.21 (Stop-loss start-gain paradox) . Let S(t) be a geometric 
Brownian motion with mean rate of return zero. In other words, 

dS(t) = aS(t) dW(t) , 

where the volatility a is constant. We assume the interest rate is r = 0. 
Suppose we want to hedge a short position in a European call with strike 

price K and expiration date T. We assume that the call is initially out of the 
money (i .e. , S(O) < K). Starting with zero capital (X(O) = 0) , we could try 
the following portfolio strategy: own one share of the stock whenever its price 
strictly exceeds K, and own zero shares whenever its price is K or less . In 
other words, we use the hedging portfolio process 

Ll(t) = ll(K,oo) (S(t) ) . 
The value of this hedge follows the stochastic differential equation 
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dX(t) = Ll(t) dS(t) + r (X(t) - Ll(t)X(t) ) dt, 

and since r = 0 and X(O) = 0, we have 

X(T) = a 1T H(K,oo) (S(t) )S(t) dW(t) . (4. 10.46) 

Executing this hedge requires us to borrow from the money market to 
buy a share of stock whenever the stock price rises across level K and sell 
the share, repaying the money market debt, when it falls back across level 
K. (Recall that we have taken the interest rate to be zero. The situation 
we are describing can also occur with a nonzero interest rate, but it is more 
complicated to set up. ) At expiration, if the stock price S(T) is below K, 
there would appear to have been an even number of crossings of the level 
K, half in the up direction and half in the down direction, so that we would 
have bought and sold the stock repeatedly, each time at the same price K, 
and at the final time have no stock and zero debt to the money market. In 
other words, if S(T) < K, then X(T) = 0. On the other hand, if at the final 
time S(T) is above K, we have bought the stock one more time than we sold 
it , so that we end with one share of stock and a debt of K to the money 
market. Hence, if S(T) > K, we have X(T) = S(T) - K. If at the final time 
S(T) = K, then we either own a share of stock valued at K and have a money 
market debt K or we have sold the stock and have zero money market debt. 
In either case, X(T) = 0. According to this argument , regardless of the final 
stock price, we have X(T) = (S(T) - K)+ . This kind of hedging is called a 
stop-loss start-gain strategy. 
(i) Discuss the practical aspects of implementing the stop-loss start-gain 

strategy described above. Can it be done? 
(ii) Apart from the practical aspects , does the mathematics of continuous

time stochastic calculus suggest that the stop-loss start-gain strategy can 
be implemented? In other words, with X(T) defined by (4. 10.46) ,  is it 
really true that X(T) = (S(T) - K) +? 
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Risk-Neutral Pricing 

5. 1  Introduction 

In the binomial asset pricing model of Chapter 1 of Volume I ,  we showed 
how to price a derivative security by determining the initial capital required 
to hedge a short position in the derivative security. In a two-period model, 
this method led to the six equations ( 1 .2 .2 ) ,  ( 1 .2 .3) , and ( 1 .2 .5)-( 1 .2 .8) in six 
unknowns in Volume I. Three of these unknowns were the position the hedge 
should take in the underlying asset at time zero, the position taken by the 
hedge at time one if the first coin toss results in H, and the position taken 
by the hedge at time one if the first coin toss results in T. The three other 
unknowns were the value of the derivative security at time zero, the value of 
the derivative security at time one if the first coin toss results in H, and the 
value of the derivative security at time one if the first coin toss results in T. 
The solution to these six equations provides both the value of the derivative 
security at all times and the hedge for the short position at all times, regardless 
of the outcome of the first coin toss . 

In Theorem 1.2 .2 of Volume I, we discovered a clever way to solve these six 
equations in six unknowns by first solving for the derivative security values 
Vn using the risk-neutral probabilities p and ij in ( 1 .2 . 16) and then computing 
the hedge positions from (1 .2 . 17) .  Equation ( 1 .2 . 16) says that under the risk
neutral probabilities, the discounted derivative security value is a martingale. 

In Section 4.5 of this volume, we repeated the first part of this program. To 
determine the value of a European call , we determined the initial capital re
quired to set up a portfolio that with probability one hedges a short position 
in the derivative security. Subsection 4.5.3, in which we equated the evolu
tion of the discounted portfolio value with the evolution of the discounted 
option value, provides the continuous-time analogue of solving the six equa
tions ( 1 .2 .2) , ( 1 .2.3) , and ( 1 .2.5)-( 1 .2.8) of Volume I. From that process, we 
obtained the delta-hedging rule (4.5 . 1 1 )  and we obtained the Black-Scholes
Merton partial differential equation (4.5. 14) for the value of the call. 
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Now we execute the second part of the program. In this chapter, we dis
cover a clever way to solve the partial differential equation (4.5. 14) using 
a risk-neutral probability measure. After solving this equation, we can then 
compute the short option hedge using ( 4.5. 1 1 ) .  

To accomplish this second part of the program, we show in  Section 5.2 
how to construct the risk-neutral measure in a model with a single underlying 
security. This step relies on Girsanov's Theorem, which is presented in Sec
tion 5.2 . Risk-neutral pricing is a powerful method for computing prices of 
derivative securities , but it is fully justified only when it is accompanied by a 
hedge for a short position in the security being priced. In Section 5.3, we pro
vide the conditions under which such a hedge exists in a model with a single 
underlying security. Section 5.4 generalizes the ideas of Sections 5.2 and 5.3 to 
models with multiple underlying securities. Furthermore, Section 5.4 provides 
conditions that guarantee that such a model does not admit arbitrage and 
that every derivative security in the model can be hedged. 

5 . 2  Risk-Neutral Measure 

5.2.1 Girsanov's Theorem for a Single Brownian Motion 

In Theorem 1 .6 . 1 ,  we began with a probability space (il, :F, IP') and a nonnega
tive random variable Z satisfying IEZ = 1 .  We then defined a new probability 
measure lP by the formula 

JP(A) = l Z(w) dP(w) for all A E :F. (5 .2 . 1 ) 

Any random variable X now has two expectations, one under the original 
probability measure_!, which we denot� lEX, and the other under the new 
probability measure IP', which we denote lEX. These are related by the formula 

EX = IE[XZ] . (5.2 .2) 
If IP'{Z > 0} = 1 , then IP' and lP agree which sets have probability zero and 
(5.2 .2) has the companion formula 

(5 .2 .3) 

We say Z is the Radon-Nikodym derivative of lP with respect to IP', and we 
write diP' 

z = diP' " 
This is supposed to remind us that Z is like a ratio of these two probability 
measures. The reader may wish to review Section 3 . 1  of Volume I, where 
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this concept is discussed in a finite probability model. In  the case of a finite 
probability model , we actually have 

JP(w) Z(w) = JP(w) " (5.2.4) 

If we multiply both sides of (5.2 .4) by JP(w) and then sum over w in a set A, 
we obtain 

JP(A) = L Z(w)P(w) for all A c n. (5.2.5) 
wE A 

In a general probability model , we cannot write (5.2 .4) because JP(w) is typi
cally zero for each individual w, but we can write an analogue of (5.2 .5) . This 
is (5.2 . 1 ) .  

Example 1 .6.6 shows how we can use this change-of-measure idea to move 
the mean of a normal random variable. In particular, if X is a standard normal 
random variable on a probability space ( n, F, JP) ,  () is a constant , and we define 

Z = exp {-OX - �()2 } , 
then under the probability measure lP given_by (5.2. 1 ) ,  the random variable 
Y = X  +0 is standard normal . In par..ticular, lEY = 0, whereas lEY = lEX +0 = 
0. By changing the probability measure, we have changed the expectation of 
Y. 

In this section, we perform a similar change of measure in order to change 
a mean, but this time for a whole process rather than for a single random 
variable. To set the stage, suppose we have a probability space (n, F, JP) and 
a filtration F(t) ,  defined for 0 � t � T, where T is a fixed final time. Suppose 
further that Z is an almost surely positive random variable satisfying IEZ = 1 ,  
and we define lP by (5.2 . 1 ) .  We can then define the Radon-Nikodym derivative 
process 

Z(t) = IE[Z IF(t) ] ,  0 � t � T. (5.2.6) 
This process in discrete time is discussed in Section 3.2 of Volume I . The 
Radon-Nikodym derivative process (5.2.6) is a martingale because of iterated 
conditioning (Theorem 2.3 .2(iii ) ) :  for 0 � s � t � T, 

IE[Z(t) IF(s)] = IE [IE[Z IF(t)J IF(s)] = IE[Z IF(s)] = Z(s) . (5 .2 .7) 

Furthermore, it has the properties presented in the following two lemmas, 
which are continuous-time analogues of Lemmas 3.2 .5 and 3.2.6 of Volume I . 

Lemma 5.2. 1 .  Let t satisfying 0 � t � T be given and let Y be an F(t ) 
measurable random variable. Then 

lEY =  IE[YZ(t)] . (5 .2 .8) 
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PROOF: We use (5.2.2) , the unbiasedness of conditional expectations (2.3.25) , 
the property "taking out what is known" (Theorem 2.3.2(ii) ) ,  and the defini
tion of Z(t) to write 

fEy = IE[YZ] = IE [IE[YZj.F(t)l ] = IE [YIE[ZIF(t)l ] = IE[YZ(t)] . D 
Lemma 5.2.2. Let s and t satisfying 0 � s � t � T be given and let Y be an 
F(t) -measurable random variable. Then 

- 1 IE[Y IF(s)] = Z(s) IE[YZ(t) j.F(s)] . (5.2.9) 

PROOF: It is clear that z(s) IE [YZ(t) j.F(s)] is .F(s)-measurable. We must check 
the partial-averaging property (Definition 2.3. 1 (ii) ) ,  which in this case is 

L Z�s) lE[YZ(t) iF(s)] dP = L Y dP for all A E F(s) .  (5.2. 10) 

Note that because we are claiming that the right-hand side of (5.2.9) is the 
conditional expectation of Y under the JP probability measure, we must inte
grate with respect to the measure JP in the statement of the partial-averaging 
property (5.2. 10) . We may write the left-hand side of (5.2 . 10) as 

fE [nA Z�s) IE[YZ(t) j.F(s)J] 
and then use Lemma 5.2 . 1 for F(s)-measurable random variables, use "taking 
out what is known," use the unbiasedness of conditional expectations (2.3 .25) , 
and finally use Lemma 5.2. 1 for F(t)-measurable random variables to write 

fE [nA Z�s) IE[YZ(t) j.F(s)J] = IE [HAIE[YZ(t) j.F(s)l ] 

= IE [IE[HAYZ(t) j.F(s)l ]  
= IE[HAYZ(t)] 
= JE[HAY] 
= L Y dP. 

This verifies (5 .2 .10) ,  which in turn proves (5.2.9) . 0 
Theorem 5.2.3 (Girsanov, one dimension) . Let W(t) , 0 � t � T, be a 
Brownian motion on a probability space (!l, F, IP') ,  and let F(t) , 0 � t � T, 
be a filtration for this Brownian motion. Let B(t) , 0 � t � T, be an adapted 
process. Define 

Z(t) = exp {- lot B(u) dW(u) - � lot 82 (u) du} , 

W(t) = W(t) + lot B(u) du , 

(5 .2 . 1 1 )  

(5 .2 . 12) 
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and assume that1 
(5 .2 . 13) 

Set Z = Z(T) . Then IEZ = 1 and under the probability measure JP given by 
(5.2. 1}, the process W(t) , 0 :::; t :::; T, is a Brownian motion. 
PROOF: We use Levy's Theorem, Theorem 4.6.4, which says that a martingale 
starting at zero at time zero, with continuous paths and with quadratic varia
tion equal to t at each time t, is a Brownian motion. The process W starts at 
zero at time zero and is continuous. Furthermore, [W, W] (t) = [W, W] (t) = t 
because the term J� 6l(u) du in the definition of W(t) contributes zero 
quadratic variation. In other words, 

dW(t) dW(t) = (dW(t) + 6l(t) dt) 2 = dW(t) dW(t) = dt . - -
It remains to show that W(t) is a martingale under IP'. We first observe 

that Z(t) is a martingale under IP'. With 

t 1 t X(t) = - lo 6l(u) dW(u) - 2 lo 6!2(�) du 

and f(x) = ex so that f' (x) = ex and f" (x) = ex , we have 

dZ(t) = df (X (t) ) 
= f' (X(t) ) dX(t) + � f" (X(t) ) dX(t) dX(t) 

= eX{t ) ( - 6l(t) dW(t) - �6l2 (t) dt) + � eX{t)6J2 (t) dt 
= -6l(t)Z(t) dW(t) . 

Integrating both sides of the equation above, we see that 

Z(t) = Z(O) - 1t 
6l(u)Z(u) dW(u) . (5.2. 14) 

Because Ito integrals are martingales, Z(t) is a martingale. In particular, 
lEZ = IEZ(T) = Z(O) = 1 .  

Because Z(t) i s  a martingale and Z = Z(T) , we have 

Z(t) = lE[Z(T) IF(t)] = IE[Z IF(t)] ,  0 :::; t :::; T. 

This shows that Z(t) , 0 :::; t :::; T, is a Radon-Nikodym derivative process as 
defined in (5.2 .6) , and Lemmas 5.2. 1 and 5.2 .2 apply to this situation. 
1 Condition (5.2. 13) is imposed to ensure that the Ito integral in (5.2. 14) is defined 

and is a martingale. This is ( 4.3. 1 )  imposed in the construction of Ito integrals. 
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We next show that W(t)Z(t) is a martingale under IP'. To see this, we 
compute the differential using Ito's product rule (Corollary 4.6.3) : 

d (W(t)Z(t) ) = W(t) dZ(t) + Z(t) dW(t) + dW(t) dZ(t) 
= -W(t)8(t)Z(t) dW(t) + Z(t) dW(t) + Z(t) 8(t) dt 

+ (dW(t) + 8(t) dt) ( - 8(t)Z(t) dW(t) ) 
= ( - W(t)8(t) + 1) Z(t) dW(t) . 

Because the final expression has no dt term, the process W(t)Z(t) is a mar
tingale under IP'. 

Now let 0 :::; s :::; t :::; T be given. Lemma 5.2 .2 and the martingale property 
for W(t)Z(t) under IP' imply 

- - 1 - 1 - -IE[W(t) jF(s)] = Z(s) lE[W(t)Z(t) jF(s)] = Z(s) W(s)Z(s) = W(s) . 

This shows that W(t) is a martingale under JP>. The proof is complete. 0 

The probability measures IP' and IP' in Girsanov's Theorem are equivalent 
(i .e. , they agree about which sets have probability zero and hence about which 
sets have probability one) . This is because IP'{ Z > 0} = 1 ; see Definition 1 .6.3 
and the discussion following it . In the remainder of this section, we set_ up 
an asset price model in which IP' is the actual probability measure and IP' is 
the risk-neutral measure. We want these probabilities to agree about what is 
possible and what is impossible, and they do. In the discrete-time binomial 
model of Volume I, the actual and risk-neutral probability measures agree 
about which moves are possible (i .e . ,  they both give positive probability to 
an up move, positive probability to a down move, and the sizes (but not the 
probabilities) of the up and down moves are the same whether we are working 
under the actual probability measure or the risk-neutral probability measure) . 
The set of possible asset price paths is a tree in the binomial model, and both 
the actual probability measure and the risk-neutral probability measure are 
based on the same tree. In the continuous-time model, there are infinitely 
many possible paths, and this agreement about what is possible and what is 
not possible is the equivalence of Definition 1 .6 .3 . 

5.2.2 Stock Under the Risk-Neutral Measure 

Let W(t) ,  0 :::; t :::; T, be a Brownian motion on a probability space (il, F, IP') , 
and let F(t) , 0 :::; t :::; T, be a filtration for this Brownian motion. Here T is a 
fixed final time. Consider a stock price process whose differential is 

dS(t) = a(t)S(t) dt + a(t)S(t) dW(t) , 0 :::; t :::; T. (5 .2 . 15) 

The mean rate of return a ( t) and the volatility a ( t) are allowed to be adapted 
processes. We assume that, for all t E [0, T] , a(t) is almost surely not zero. 
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This stock price is a generalized geometric Brownian motion (see Example 
4.4.8, in particular, (4.4.27) ) ,  and an equivalent way of writing (5 .2 . 15) is (see 
( 4.4.26) )  

S(t) = S(O) exp {1t a(s )  dW(s) + 1t ( a(s) - �a2 (s)) ds} . (5.2 . 16) 

In addition, suppose we have an adapted interest rate process R( t ) .  We 
define the discount process 

and note that 

D(t) = e- J� R(s) ds 

dD(t) = -R(t)D(t) dt . 

(5 .2 . 17) 

(5 .2 .18) 
To obtain (5 .2 .18) from (5.2 . 17) , we can define I(t) J; R(s) ds so that 
dl(t) = R(t) dt and dl(t) dl(t) = 0. We introduce the function f(x) = e-x , 
for which f' (x) = -f(x) , f"(x) = f(x) , and then use the Ito-Doeblin formula 
to write 

dD(t) = df (I(t)) 
= f' ( I(t) ) dl(t) + � f" ( I(t)) dl(t) dl(t) 
= -f (I(t))R(t) dt 
= -R(t)D(t) dt . 

Observe that although D(t) is random, it has zero quadratic variation. This 
is because it is "smooth." It has a derivative, namely D' (t) = -R(t)D(t) , and 
one does not need stochastic calculus to do this computation. The stock price 
S(t) is random and has nonzero quadratic variation. It is "more random" 
than D(t) . If we invest in the stock, we have no way of knowing whether the 
next move of the driving Brownian motion will be up or down, and this move 
directly affects the stock price. Hence, we face a high degree of uncertainty. 
On the other hand, consider a money market account with variable interest 
rate R(t) ,  where money is rolled over at this interest rate. If the price of 
a share of this money market account at time zero is 1 ,  then the price of 
a share of this money market account at time t is ef� R(s) ds = v(t) .  If we 
invest in this account , we know the interest rate at the time of the investment 
and hence have a high degree of certainty about what the return will be 
over a short period of time. Over longer periods, we are less certain because 
the interest rate is variable, and at the time of investment , we do not know 
the future interest rates that will be applied. However, the randomness in 
the model affects the money market account only indirectly by affecting the 
interest rate. Changes in the interest rate do not affect the money market 
account instantaneously but only when they act over time. (Warning: The 
money market account is not a bond. For a bond, a change in the interest 
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rate can have an instantaneous effect on price. ) Unlike the price of the money 
market account, the stock price is susceptible to instantaneous unpredictable 
changes and is , in this sense, "more random" than D(t) . Our mathematical 
model captures this effect because 8(t) has nonzero quadratic variation, while 
D(t) has zero quadratic variation. 

The discounted stock price process is 

D(t)8(t) = 8(0) exp {lot a(s)dW(s) + 1t ( a(s) - R(s) - �a2(s)) ds} , 
(5 .2 . 19) 

and its differential is 

d(D(t)8(t)) = (a(t) - R(t))D(t)8(t) dt + a(t)D(t)8(t) dW(t) 
= a(t)D(t)8(t) [B(t) dt + dW(t)] , (5 .2 .20) 

where we define the market price of risk to be 

.co ( ) = a(t) - R(t) 
0 t a(t) · (5.2 .21 ) 

One can derive (5.2 .20) either by applying the ItO-Doeblin formula to the 
right-hand side of (5.2 .19) or by using Ito's product rule and the formulas 
(5.2 .15) and (5.2 .18) . The first line of (5.2 .20) , compared with (5.2. 15) , shows 
that the mean rate of return of the discounted stock price is a(t) - R(t) ,  
which is the mean rate a(t) of the undiscounted stock price, reduced by the 
interest rate R(t) . The volatility of the discounted stock price is the same as 
the volatility of the undiscounted stock price. 

We introduce the probability measure JPi defined in Girsanov's Theorem, 
Theorem 5.2.3, which uses the �arket price of risk B(t) given by (5.2 .21 ) . In 
terms of the Brownian motion W(t) of that theorem, we may rewrite (5.2 .20) 
as 

d(D(t)8(t)) = a(t)D(t)8(t) dW(t) . (5.2.22) 
We call JPi, the measure defined in Girsanov's Theorem, the risk-neutral mea
sure because it is equivalent to the original measure lP' and it renders the dis
counted stock price D(t)8(t) into a martingale. Indeed, according to (5 .2 .22) , 

D(t)8(t) = 8(0) + 1t a(u)D(u)8(u) dW(u) , 

and under JPi the process J� a(u)D(u)8(u) dW(u) is an Ito integral and hence 
a martingale. 

The undiscounted stock price 8(t) has mean rate of return equal to the 
interest rate under JPi, as one can verify by making the replacement dW ( t) = 

-B(t) dt + dW(t) in (5 .2 .15) . With this substitution, (5 .2 .15) becomes 

d8(t) = R(t)8(t) dt + a(t)8(t) dW(t) . (5 .2 .23) 
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We can either solve this equation for S(t ) or simply replace the Ito integral 
J; a(s) dW(s) by its equivalent J; a(s) dW(s) - J; ( a (s ) - R(s)) ds in (5 .2 . 16) 
to obtain the formula 

(5 .2 .24) 

In discrete time, the change of measure does not change the binomial tree, 
only the probabilities on the branches of the tree. In continuous time, the 
change from the actual measure IP' to the risk-neutral measure Jiii changes the 
mean rate of return of the stock but not the volatility. The volatility tells 
us which stock price paths are possible-namely those for which the log of 
the stock price accumulates quadratic variation at rate a2 (t) per unit time. 
After the change of measure, we are still considering the same set of stock 
price paths, but we have shifted the probability on them. If a(t) > R(t) , as it 
normally is , then the change of measure puts more probability on the paths 
with lower return so that the overall mean rate of return is r�duced from a (t) 
to R(t) . 

5.2.3 Value of Portfolio Process Under the Risk-Neutral Measure 

Consider an agent who begins with initial capital X(O) and at each time t, 
0 :::; t :::; T, holds Ll(t) shares of stock, investing or borrowing at the interest 
rate R( t) as necessary to finance this. The differential of this agent 's portfolio 
value is given by the analogue of (4.5.2) for this case of random a(t) , a(t) , 
and R(t) ,  and this works out to be 

dX(t) = Ll(t) dS(t) + R(t) (X(t) - Ll(t)S(t) ) dt 
= Ll(t) (a(t)S(t) dt + a(t)S(t) dW(t) ) + R(t) (X(t) - Ll(t)S(t) ) dt 
= R(t)X(t) dt + Ll(t) (a(t) - R(t))S(t) dt + Ll(t)a(t)S(t) dW(t) 
= R(t)X(t) dt + Ll(t)a(t)S(t) [6l(t) dt + dW(t)] . (5.2.25) 

Ito's product rule, (5 .2 . 18) , and (5 .2 .20) imply 

d(D(t)X(t)) = Ll(t)a(t)D(t)S(t) [6l(t) dt + dW(t)] 
= Ll(t) d (D(t)S(t)) . (5.2 .26) 

Changes in the discounted value of an agent 's portfolio are entirely due to 
fluctuations in the discounted stock price. We may use (5.2 .22) to rewrite 
(5.2 .26) as 

d(D(t)X(t) ) = Ll(t)a(t)D(t)S(t) dW(t) . (5.2.27) 
Our agent has two investment options: (1 ) a money market account with 

rate of return R(t) , and (2) a stock with mean rate of return R(t) under Jiii. 
Regardless of how the agent invests, the mean rate of return for his portfolio 
will be R(t) under Jiii, and hence the discounted value of his portfolio, D(t)X(t) , 
will be a martingale. This is the content of (5 .2 .27) . 
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5.2.4 Pricing Under the Risk-Neutral Measure 

In Section 4.5, we derived the Black-Scholes-Merton equation for the value 
of a European call by asking what initial capital X(O) and portfolio process 
Ll(t) an agent would need in order to hedge a short position in the call (i .e . ,  
in order to have X(T) = (S(T) - K)+ almost surely) . In this section, we 
generalize the question. Let V(T) be an .F(T)-measurable random variable. 
This represents the payoff at time T of a derivative security. We allow this 
payoff to be path-dependent (i .e. , to depend on anything that occurs between 
times 0 and T) , which is what .F(T)-measurability means. We wish to know 
what initial capital X(O) and portfolio process Ll(t) ,  0 � t � T, an agent 
would need in order to hedge a short position in this derivative security, i.e. , 
in order to have 

X(T) = V(T) almost surely. (5 .2 .28) 
In Section 4.5 , the mean rate of return, volatility, and interest rate were con
stant . In this section, we do not assume a constant mean rate of return, 
volatility, and interest rate. 

Our agent wishes to choose initial capital X(O) and portfolio strategy Ll(t) ,  
0 � t � T, such that (5 .2 .28) holds. We shall see in the next section that this 
can be_done. Once it has been done, the fact that D(t)X(t) is a martingale 
under lP' implies 

D(t)X(t) = fE [D(T)X(T) iF(t)] = fE [D(T)V(T) IF(t)] . (5 .2 .29) 
The value X(t) of the hedging portfolio in (5 .2 .29) is the capital needed at 
time t in order to successfully complete the hedge of the short position in the 
derivative security with payoff V(T) . Hence, we can call this the price V(t) of 
the derivative security at time t, and (5 .2 .29) becomes 

D(t)V(t) = fE [D(T)V(T) IF(t)] , 0 � t � T. (5 .2 .30) 
This is the continuous-time analogue of the risk-neutral pricing formula 
(2 .4.10) in the binomial model of Volume I. Dividing (5 .2 .30) by D(t) , which 
is F(t)-measurable and hence can be moved inside the conditional expectation 
on the right-hand side of (5 .2 .30) , and recalling the definition of D(t) , we may 
write (5.2.30) as 

V(t) = fE [ e- It R(u) duV(T) I F(t)] , 0 � t � T. (5 .2 .31) 

This is the continuous-time analogue of (2.4. 1 1 )  of Volume I. We shall re
fer to both (5 .2 .30) and (5 .2 .31) as the risk-neutral pricing formula for the 
continuous-time model. 

5.2.5 Deriving the Black-Scholes-Merton Formula 

The addition of Merton's name to what has traditionally been called the 
Black-Scholes formula is explained in the Notes to Chapter 4, Section 4.9. 
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To obtain the Black-Scholes-Merton price of a European call , we assume a 
constant volatility u, constant interest rate r, and take the derivative security 
payoff to be V(T) = (S(T) - K)+ . The right-hand side of (5.2 .31) becomes 

Because geometric Brownian motion is a Markov process, this expression de
pends on the stock price S(t) and of course on the time t at which the condi
tional expectation is computed, but not on the stock price prior to time t . In 
other words, there is a function c( t, x ) such that 

(5.2 .32) 

We can compute c(t, x) using the Independence Lemma, Lemma 2.3.4. 
With constant u and r, equation (5.2.24) becomes 

S(t) = S(O) exp { uW(t) + (r - �u2
) t} , 

and we may thus write 

S(T) = S(t) exp { u (W(T) - W(t)) + (r - �u2
)r} 

= S(t) exp { -uJT Y + (r - �u2
)r} , 

where Y is the standard normal random variable 

y = _ W(T) - W(t) 
../T - t ' 

and T is the "time to expiration" T - t. We see that S(T) is the product of 
the F(t)-measurable random variable S(t) and the random variable 

which is independent of F(t ) .  Therefore, (5.2.32) holds with 

The integrand 
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is positive if and only if 

y < d_ (T, x) = a� [ log ; + (r - �a2
)T] . 

Therefore, 

where 

d+ (T, x) = d_ (T, x) + a/T = a� [ log ; + (r + �a2
) T] . 

For future reference, we introduce the notation 

(5 .2 .33) 

(5.2 .34) 

BSM(r, x; K, r, u) � E [e - n  (x exp { -u,/i' Y + (r - �u') 7} - K) +] , 

(5 .2 .35) 
where Y is a standard normal random variable under Jiii. We have just shown 
that 

BSM(T, x; K, r, a) = xN (d+ (T, x) ) - e - r-r KN (d- (T, x) ) . (5 .2 .36) 

In Section 4.5, we derived the Black-Scholes-Merton partial differential 
equation (4.5. 14) and then provided the solution in equation (4.5. 19) without 
explaining how one obtains this solution (although one can verify after the fact 
that (4.5. 19) does indeed solve (4 .5 .14) ;  see Exercise 4.9 of Chapter 4) . Here 
we have derived the solution by the device of switching to the risk-neutral 
measure. 
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5.3 Martingale Representation Theorem 

The risk-neutral pricing formula for the price (value) at time t of a derivative 
security paying V(T) at time T, equation (5.2 .31 ) ,  was derived under the 
assumption that if an agent begins with the correct initial capital, there is 
a portfolio process L\(t) , 0 � t � T, such that the agent's portfolio value 
at the final time T will be V(T) almost surely. Under this assumption, we 
determined the "correct initial capital" to be (set t = 0 in (5.2.31) )  

V(O) = fE [D(T)V(T)] , 

and the value of the hedging portfolio at every time t, 0 � t � T, to be V(t) 
given by (5.2.31 ) .  In this section, in the model with one stock driven by one 
Brownian motion, we verify the assumption on which the risk--neutral pricing 
formula (5 .2 .31) is based. We take up the case of multiple Brownian motions 
and multiple stocks in Section 5.4. 

5.3. 1 Martingale Representation with One Brownian Motion 

The existence of a hedging portfolio in the model with one stock and one 
Brownian motion depends on the following theorem, which we state without 
proof. 

Theorem 5.3.1 (Martingale representation, one dimension) . Let W(t) , 
0 � t � T, be a Brownian motion on a probability space ( n, F, IP') , and let 
F(t) , 0 � t � T, be the filtration generated by this Brownian motion. Let 
M ( t) , 0 � t � T, be a martingale with respect to this filtration (i. e. , for every 
t, M(t) is F(t) -measurable and for 0 � s � t � T, IE[M(t) j.F(s) ] = M(s)}. 
Then there is an adapted process r(u) , 0 � u � T, such that 

M(t) = M(O) + 1t r(u) dW(u) ,  0 � t � T. (5.3. 1 )  

The Martingale Representation Theorem asserts that when the filtration 
is the one generated by a Brownian motion (i.e . ,  the only information in .F(t) 
is that gained from observing the Brownian motion up to time t) , then every 
martingale with respect to this filtration is an initial condition plus an Ito in
tegral with respect to the Brownian motion. The relevance to hedging of this 
is that the only source of uncertainty in the model is the Brownian motion 
appearing in Theorem 5.3. 1 ,  and hence there is only one source of uncertainty 
to be removed by hedging. This assumption implies that the martingale can
not have jumps because Ito integrals are continuous. If we want to have a 
martingale with jumps, we will need to build a model that includes sources 
of uncertainty different from (or in addition to) Brownian motion. 

The assumption that the filtration in Theorem 5.3 .1 is the one generated 
by the Brownian motion is more restrictive than the assumption of Girsanov's 
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Theorem, Theorem 5.2 .3 , in which the filtration can be larger than the one 
generated by the Brownian motion. If we include this extra restriction in Gir
sanov's Theorem, then we obtain the following corollary. The first paragraph 
of this corollary is just a repeat of Girsanov's Theorem; the second part con
tains the new assertion. 

Corollary 5.3.2. Let W(t) , 0 :::; t :::; T, be a Brownian motion on a probability 
space (il, F, IP') , and let F(t) , 0 :::; t :::; T, be the filtration generated by this 
Brownian motion. Let B(t) , 0 :::; t :::; T, be an adapted process, define 

Z(t) = exp { - 1t B(u) dW(u) - � 1t 82(u) du} , 

W(t) = W(t) + 1t B(u) du, 

- T and assume that IE J0 82 (u)Z2 (u) du < oo. Set Z = Z(T) . Then IEZ = 1 ,  and 
under the probability measure lP given by {5.2. 1}, the process W(t) , 0 :::; t :::; T, 
is a Brownian motion. 

Now let M ( t) , 0 :::; t :::; T, be a martingale under lP. Then there is an 
adapted process T(u) , 0 :::; u :::; T, such that 

M(t) = M(O) + 1t T(u) dW(u) ,  0 :::; t :::; T. (5.3 .2) 

Corollary 5.3 .2 is not a trivial consequence of the Martingale Representa
tion Theorem, Theorem 5.3. 1 ,  with W(t) replacing W(t) because the filtration 
F(t) in this corollary is generated by the process W(t) , not the JP-Brownian 
motion W(t) . However, the proof is not difficult and is left to the reader as 
Exercise 5 .5 . 

5.3.2 Hedging with One Stock 

We now return to the hedging problem. We begin with the model of Subsection 
5.2 .2 , which has the stock price process (5 .2 .15) and an interest rate process 
R(t) that generates the discount process (5.2. 17) . Recall the assumption that , 
for all t E [0, T) , the volatility a(t) is almost surely not zero. We make the 
additional assumption that the filtration F(t) , 0 :::; t :::; T, is generated by the 
Brownian motion W(t) , 0 :::; t :::; T. 

Let V(T) be an F(T)-measurable random variable and, for 0 :::; t :::; T, 
define V(t) by the risk-neutral pricing formula (5.2 .31 ) .  Then, according to 
(5.2 .30) , 

D(t)V(t) = E [D(T)V(T) iF(t) ] . 
This is a JP-martingale; indeed, iterated conditioning implies that , for 0 :::; s :::; 
t :::; T, 
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iE [D(t)V(t) IF(s) ] = iE [iE[D(T) V(T) I.F(t) J I.F(s)] 
= E [D(T)V(T) i.F(s)] 
= D(s)V(s) . (5.3.3) 

Therefore, D(t)V(t) has a representation as (recall that D(O)V(O) = V(O) ) 

D(t)V(t) = V(O) + lot 
F(u) dW(u) , 0 � t � T. (5.3 .4) 

On the other hand, for any portfolio process Ll(t) , the differential of the 
discounted portfolio value is given by (5.2 .27) , and hence 

D(t)X(t) = X(O) + lot 
Ll(u)u(u)D(u)S(u) dW(u) , 0 � t � T. 

In order to have X(t) = V(t) for all t ,  we should choose 

X(O) = V(O) 

and choose Ll ( t) to satisfy 

Ll(t)u(t)D(t)S(t) = F(t) , 0 � t � T, 

which is equivalent to 

- f{t) < Ll(t) - u(t)D(t)S(t) ' O � t - T. 

(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.8) 
With these choices, we have a hedge for a short position in the derivative 
security with payoff V(T) at time T. 

There are two key assumptions that make the hedge possible. The first is 
that the volatility u(t) is not zero, so equation (5.3 .7) can be solved for Ll(t) . If 
the volatility vanishes, then the randomness of the Brownian motion does not 
enter the stock, although it may still enter the payoff V(T) of the derivative 
security. In this case, the stock is no longer an effective hedging instrument . 
The other key assumption is that .F(t) is generated by the underlying Brown
ian motion (i.e. , there is no randomness in the derivative security apart from 
the Brownian motion randomness, which can be hedged by trading the stock) . 
Under these two assumptions, every .F(T)-measurable derivative security can 
be hedged. Such a model is said to be complete. 

The Martingale Representation Theorem argument of this section justifies 
the risk-neutral pricing formulas (5.2 .30) and (5.2 .31 ) , but it does not provide 
a practical method of finding the hedging portfolio Ll(t) .  The final formula 
(5.3.8) for Ll(t) involves the integrand F(t) in the martingale representation 
(5.3.4) of the discounted derivative security price. While the Martingale Rep
resentation Theorem guarantees that such a process f exists and hence a 
hedge Ll(t) exists, it does not provide a method for finding f(t) .  We return 
to this point in Chapter 6 . 
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5.4 Fundamental Theorems of Asset Pricing 

In this section, we extend the discussions of Sections 5.2 and 5 .3 to the case 
of multiple stocks driven by multiple Brownian motions. In the process , we 
develop and illustrate the two fundamental theorems of asset pricing. In ad
dition to providing these theorems, in this section we give precise definitions 
of some of the basic concepts of derivative security pricing in continuous-time 
models 

5.4. 1 Girsanov and Martingale Representation Theorems 

The two theorems on which this section is based are the multidimensional 
Girsanov Theorem and the multidimensional Martingale Representation The
orem. We state them here. 

Throughout this section, 

W(t) = {W1 (t) , . . .  , Wd(t) ) 

is a multidimensional Brownian motion on a probability space ( .n, F, IP') . We 
interpret IP' to be the actual probability measure, the one that would be ob
serveed from empirical studies of price data. Associated with this Brownian 
motion, we have a filtration F(t) (see Definition 3.3.3) . We shall have a fixed 
final time T, and we shall assume that F = F(T) . We do not always assume 
that the filtration is the one generated by the Brownian motion. When that 
is assumed, we say so explicitly. 

Theorem 5.4.1 (Girsanov, multiple dimensions) . Let T  be a fixed pos
itive time, and let e(t) = ( el (t) , 0 0 0 ' ed (t) ) be a d-dimensional adapted pro
cess. Define 

Z(t) = exp { - 1t 8(u) · dW(u) - � 1t l l8(u) l l 2du} , 

W(t) = W(t) + 1t 8(u) du, 

and assume that 

(5.4. 1 ) 

(5.4.2) 

(5 .4.3) 

Set Z = Z(T) . Then lEZ = 1 ,  and under the probability measure Jiii given by 

P(A) = L Z(w) diP'(w) for all A E F, 

the process W(t) is a d-dimensional Brownian motion. 
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The Ito integral in (5.4. 1 )  is 

t t d d t Jo e(u) . dW(u) = lo L ej (u) dWj (u) = L lo ej (u) dWj (u) . 
0 0 j= l j= l 0 

Also, in (5.4. 1 ) ,  l l8(u) l l  denotes the Euclidean norm 

and (5.4.2) is shorthand notation for W(t) = (W1 (t) , . . .  , Wd (t) ) with 

Wj (t) = Wj (t) + 1t 
ej (u) du, j = 1 , . . .  , d. 

The remarkable thing about the conclusion of the multidimensional Gir
sanov _!heorem is that the component processes of W(t) are independent 
under IP'. This is part of what it means to be a d-dimensional Brownian mo
tion. The component processes of W(t) are independent under IP', but each of 
the ej (t) processes can depend in a path-dependent, adapted way on all of 
th�rownian motions W1 (t) , . . .  , Wd(t) . Therefore, under IP', the componen.!_s 
of W(t) can be far from independent. Yet, after the change to the measure IP', 
these components are independent . The proof of Theorem 5.4. 1 is like that of 
the one-dimensional Girsanov Theorem 5.2 .3, except it uses a d-dimensional 
version of Levy's Theorem. The proof for d = 2 based on the two-dimensional 
Levy Theorem, Theorem 4.6.5 , is left to the reader as Exercise 5.6 . 

Theorem 5.4.2 (Martingale representation, multiple dimensions) . 
Let T be a fixed positive time, and assume that :F(t) , 0 :::; t :::; T, is the 
filtration generated by the d-dimensional Brownian motion W(t) , 0 :::; t :::; T. 
Let M ( t) , 0 :::; t :::; T, be a martingale with respect to this filtration under lP'. 
Then there is an adapted, d-dimensional process F(u) = (n (u) , . . .  , rd (u)) , 
0 :::; u :::; T, such that 

M(t) = M(O) + lot 
F(u) · dW(u) ,  0 :::; t :::; T. (5.4.4) 

If, in addition, we assume the notation and assumptions of Theorem 5.4 . 1  and 
if M(t) , 0 :::; t :::; T, is a JP-martingale, then there is an adapted, d-dimensional 
process r( u) = (fl ( u) ,  . . .  ' fd ( u) )  such that 

M(t) = M(O) + 1
t 

F(u) · dW(u) ,  0 :::; t :::; T. (5.4.5) 
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5.4.2 Multidimensional Market Model 

We assume there are m stocks, each with stochastic differential 
d 

dSi (t) = ai (t)Si (t) dt + Si (t) L CTij (t) dWj (t) , i = 1 , . . .  , m. 
j=l 

(5.4.6) 

We assume that the mean rate of return vector (ai (t) ) i=l ,  . . .  ,m and the volatil
ity matrix (aij (t) ) i= l ,  . . .  ,m;j=l ,  . . . ,d are adapted processes. These stocks are 
typically correlated. To see the nature of this correlation, we set ai (t) }L-1=1 afi (t) , which we assume is never zero, and we define processes 

( � t (1 ij ( u) ( ) 0 Bi t) = � Jo ai (u) dWj u , z = 1 , . . .  , m. (5.4.7) 

Being a sum of stochastic integrals, each Bi (t) is a continuous martingale. 
Furthermore, 

According to Levy's Theorem, Theorem 4.6.4, Bi (t) is a Brownian motion. 
We may rewrite (5.4.6) in terms of the Brownian motion Bi (t) as 

(5.4.8) 

From this formula, we see that ai (t) is the volatility of Si (t) . 
For i =f. k, the Brownian motions Bi (t) and Bk (t) are typically not inde

pendent . To see this, we first note that 

(5.4.9) 

where 

(5.4. 10) 

Ito's product rule implies 

and integration of this equation yields 
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Taking expectations and using the fact that the expectation of an Ito integral 
is zero, we obtain the covariance formula 

(5.4. 12) 

If the processes O"ij (t) and aki (t) are constant (i .e. , independent of t and not 
random) , then so are ai (t) , ak (t) , and Pik (t) . In this case, (5.4. 12) reduces to 
Cov [Bi (t) , Bk (t) ] = Pikt . Because both Bi (t) and Bk (t) have standard devia
tion Vt, the correlation between Bi (t) and Bj (t) is simply Pik · When O"ij (t) 
and O"kj (t) are themselves random processes, we call Pik (t) the instantaneous 
correlation between Bi (t) and Bk (t) . At a fixed time t along a particular path, 
Pik (t) is the conditional correlation between the next increments of Bi and 
Bk over a "small" time interval following time t (see Exercise 4 .17 of Chapter 
4 with el = e2 = 0, 0"1 = 0"2 = 1 ) . 

Finally, we note from (5.4.8) and (5.4.9) that 

dSi (t) dSk (t) = ai (t)ak (t)Si (t)Sk (t) dBi (t) dBk (t) 
= Pik (t)ai (t)ak (t)Si (t)Sk (t) dt . 

Rewriting (5.4. 13) in terms of "relative differentials," we obtain 

(5.4. 13) 

The volatility processes ai (t) and ak (t) are the respective instantaneous stan
dard deviations of the relative changes in si and sk at time t ,  and the process 
Pik (t) is the instantaneous correlation between these relative changes. 

Mean rates of return are affected by the change to a risk-neutral measure 
in the next subsection. Instantaneous standard deviations and correlations are 
unaffected (Exercise 5 . 12 (ii) and (iii) ) . If the instantaneous standard devia
tions and correlations are not random, then ( noninstantaneous) standard de
viations and correlations are unaffected by the change of measure (see Exercise 
5 .12 (iv) for the case of correlations) . However, (noninstantaneous) standard 
deviations and correlations can be affected by a change of measure when the 
instantaneous standard deviations and correlations are random (see Exercises 
5 . 12 (v) and 5 . 13 for the case of correlations) . 

We define a discount process 

D(t) = e- f� R(u) du . (5.4. 14 ) 

We assume that the interest rate process R(t) is adapted. In addition to stock 
prices, we shall often work with discounted stock prices. Their differentials 
are 



228 5 Risk-Neutral Pricing 

d(D(t)Si (t) ) = D(t) [dSi (t) - R(t)Si (t) dt] 
d 

= D(t)Si (t) [ (ai (t) - R(t) ) dt + L:Uij (t) dWi (t)] 
j=l 

= D(t)Si (t) [ (ai(t) - R(t) } dt + ai (t) dBi (t) ] , i = 1 ,  . . .  , m. 

(5.4. 15) 

5.4.3 Existence of the Risk-Neutral Measure 

Definition 5.4.3. A probability measure iP is said to be risk-neutral if 
(i} iP and lP are equivalent (i. e . ,  for every A E :F, JP(A) = 0 if and only if 

P(A) = 0}, and 
(ii}under iP, the discounted stock price D(t)Si (t) is a martingale for every 

i = 1 ,  . . .  , m .  

In order to make discounted stock prices be martingales, we would like to 
rewrite (5.4. 1 5) as 

d 
d (D(t)Si (t) ) = D(t)Si (t) L O"ij (t) [6lj (t) dt + dWj (t)] . 

j=l 
(5.4 . 16) 

If we can find the market price of risk processes 6lj (t) that make (5.4 . 16) 
hold, with one such process for each source of uncertainty Wj (t) , we can 
then use the multidimensional Girsanov Theorem to construct an equivalent 
probability measure iP under which W(t) given by (5.4.2) is a d-dimensional 
Brownian motion. This permits us to reduce (5.4 .16) to 

d 
d (D(t)Si (t) ) = D(t)Si (t) L O"ij (t) dWj (t) , (5.4. 1 7) 

j=l 
and hence D(t)Si (t) is a martingale under iP. The problem of finding a risk
neutral measure is simply one of finding processes 6lj (t) that make (5.4. 15) 
and (5.4. 16) agree. Since these equations have the same coefficient multiplying 
each dWi ( t) , they agree if and only if the coefficient multiplying dt is the same 
in both cases, which means that 

d 
ai (t) - R(t) = L O"ij (t)6lj (t) , i = 1 ,  . . .  , m. 

j=l 
(5.4. 18) 

We call these the market price of risk equations. These are m equations in the 
d unknown processes el (t) , 0 0 0 ' ed(t) . 

If one cannot solve the market price of risk equations, then there is an 
arbitrage lurking in the model; the model is bad and should not be used for 
pricing. We do not give the detailed proof of this fact. Instead, we give a 
simple example to illustrate it . 
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Example 5.4 .4 - Suppose there are two stocks (m = 2) and one Brownian mo
tion ( d = 1 ) ,  and suppose further that all coefficient processes are constant. 
Then, the market price of risk equations are 

01 - r = a10, 
02 - r = a20. 

These equations have a solution (} if and only if 

(5.4. 19) 
(5.4.20) 

If this equation does not hold, then one can arbitrage one stock against the 
other. Suppose, for example, that 

and define 

01 - r 02 - r -- > --
(11 (12 

01 - r 02 - r JL = -- - -- > 0. 
(11 (12 

Suppose that at each time an agent holds Ll1 (t) = s. c!)o-1 shares of stock one 
and Ll2 ( t) = - 82 d))o-2 shares of stock two, borrowing or investing as necessary 
at the interest rate r to set up and maintain this portfolio. The initial capital 
required to take the stock positions is ...!.. - ...!.. , but if this is positive we borrow lfl lT2 
from the money market account , and if it is negative we invest in the money 
market account, so the initial capital required to set up the whole portfolio, 
including the money market position, is X(O) = 0. The differential of the 
portfolio value X ( t) is 

dX(t) 
= Ll1 (t) dS1 (t) + Ll2 (t) dS2 (t) + r (X(t) - Ll1 (t)S1 (t) - Ll2 (t)S2 (t) ) dt 

01 - r o2 - r = -- dt + dW(t) - -- dt - dW(t) + rX(t) dt (11 (12 
= JL dt + rX(t) dt . 

The differential of the discounted portfolio value is 

d (D(t)X (t) ) = D(t) (dX(t) - rX(t) dt) = JLD(t) dt . 

The right-hand side JLD(t) is strictly positive and nonrandom. Therefore, this 
portfolio will make money for sure and do so faster than the interest rate r 
because the discounted portfolio value has a nonrandom positive derivative. 
We have managed to synthesize a second money market account with rate of 
return higher than r ,  and now the arbitrage opportunities are limitless. D 
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When there is no solution to the market price of risk equations, the ar
bitrage in the model may not be as obvious as in Example 5.4.4, but it does 
exist . If there is a solution to the market price of risk equations, then there 
is no arbitrage. To show this, we need to introduce some notation and ter
minology. In the market with stock prices Si (t) given by (5.4.6) and interest 
rate process R(t) , an agent can begin with initial capital X(O) and choose 
adapted portfolio processes L\i (t) ,  one for each stock Si (t) . The differential of 
the agent's portfolio value will then be 

dX(t) = t L\i (t) dSi (t) + R(t) ( X(t) - t L\i (t)Si (t)) dt 
m 

= R(t)X(t) dt + L L\i (t) (dSi (t) - R(t)Si (t) dt) 
i=l 
m L\ (t) 

= R(t)X(t) dt + � �(t) d (D(t)Si (t) ) . (5.4 .21 )  

The differential of the discounted portfolio value is 

d(D(t)X (t) ) = D(t) (dX(t) - R(t)X (t) dt) 
m 

= L L\i (t) d (D(t)Si (t) ) . (5.4.22) 
i=l 

lfJP is a risk-neutral measure, then under JP the processes D(t)Si (t) are martin
gales, and hence the process D(t)X (t) must also be a martingale. Put another 
way, under lP each of the stocks has mean rate of return R(t) , the same as the 
rate of return of the money market account. Hence, no matte!:_ how an agent 
invests, the mean rate of return of his portfolio value under lP' must also be 
R(t) ,  and the discounted portfolio value must then be a martingale. We have 
proved the following result . 

Lemma 5.4.5. Let JP be a risk-neutml measure, and let X(t) be the value of 
a portfolio. Under P, the discounted portfolio value D(t)X (t) is a martingale. 

Definition 5.4.6. An arbitrage is a portfolio value process X(t) satisfying 
X(O) = 0 and also satisfying for some time T > 0 

IP'{X(T) � 0} = 1 ,  IP'{X(T) > 0} > 0 .  (5.4.23) 

An arbitrage is a way of trading so that one starts with zero capital and 
at some later time T is sure not to have lost money and furthermore has a 
positive probability of having made money. Such an opportunity exists if and 
only if there is a way to start with positive capital X(O) and to beat the 
money market account . In other words, there exists an arbitrage if and only if 
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there is a way to start with X(O) and at a later time T have a portfolio value 
satisfying { X(O) } lP' X(T) ;::: D(T) = 1 ,  { X(O) } lP' X(T) > D(T) > 0 (5.4.24) 

(see Exercise 5 .7) .  

Theorem 5.4.7 (First fundamental theorem of asset pricing) . If a 
market model has a risk-neutml probability measure, then it does not admit 
arbitmge. 

PROOF: If a market model has a risk-neutral probability measure JP, then every 
discounted portfolio value process is a martingale under JP. In particular, every 
portfolio value process satisfies E [D(T)X (T)] = X(O) .  Let X(t) be a portfolio 
value process with X(O) = 0. Then we have 

E [D(T)X (T)] = 0. (5.4.25) 

Suppose X(T) satisfies the first part of (5.4.23) (i.e . ,  IP'{X(T) < 0} = 0) .  
Since lP i s  equivalent to IP' ,  we have also JP{X (T) < 0} = 0. This, cou
pled with (5.4.25) , implies JP{X(T) > 0} = 0, for otherwise we would have 
P{D(T)X(T) > 0} > 0, which would imply E [D(T)X(T)] > 0. Because lP' 
and lP are equivalent , we have also IP'{X(T) > 0} = 0. Hence, X(t) is not an 
arbitrage. In fact , there cannot exist an arbitrage since every portfolio value 
process X(t) satisfying X(O) = 0 cannot be an arbitrage. 0 

One should never offer prices derived from a model that admits arbitrage, 
and the First Fundamental Theorem provides a simple condition one can apply 
to check that the model one is using does not have this fatal flaw. In our model 
with d Brownian motions and m stocks, this amounts to producing a solution 
to the market price of risk equations (5.4. 18) . In models of the term structure 
of interest rates (i.e. , models that provide prices for bonds of every maturity) , 
there are many instruments available for trading, and possible arbitrages in 
the model prices are a real concern. An application of the First Fundamental 
Theorem of Asset Pricing in such a model leads directly to the Heath-Jarrow
Morton condition for no arbitrage in term-structure models. 

5.4.4 Uniqueness of the Risk-Neutral Measure 

Definition 5.4.8. A market model is complete if every derivative security 
can be hedged. 

Let us suppose we have a market model with a filtration generated by 
a d-dimensional Brownian motion and with a risk-neutral measure lP (i.e . ,  
we have solved the market price of risk equations (5.4. 18) , used the resulting 
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market prices of risk 81 (t) , . . .  , 8d (t) to define the Radon-Nikodym derivative 
process Z(t) , and have changed to the measure iP under which W(t) defined 
by (5.4.2) is a d-dimensional Brownian motion) . Suppose further that we are 
given an F(T)-measurable random variable V(T) , which is the payoff of some 
derivative security. 

We would like to be sure we can hedge a short position in the derivative 
security whose payoff at time T is V(T) . We can define V (t) by (5 .2 .31) ,  so 
that D(t)V (t) satisfies (5.2 .30) , and just as in (5.3.3) , we see that D(t)V (t ) is 
a martingale under iP. According to the Martingale Representation Theorem 
5.4.2, there are processes h (u) , . . .  , rd(u) such that 

d t 
D(t)V (t) = V(O) + L 1 Tj (u) dWi (u) , 0 :S t :S T. 

j=l 0 
(5.4.26) 

Consider a portfolio value process that begins at X(O) . According to 
(5.4.22) and (5.4. 17) , 

m 
d(D(t)X (t) ) = L Lli (t) d (D(t)Si (t) ) 

or, equivalently, 

i= l 
d m 

= L L Lli (t)D(t)Si (t)aii (t) dWi (t) 
j=l i=l 

d t m 
D(t)X (t) = X(O) + L Jn L Lli (u)D(u)Si (u)aij (u) dWj (u) . 

j=l 0 i=l 

(5.4.27) 

(5.4.28) 

Comparing (5.4.26) and (5.4.28) , we see that to hedge the short position, we 
should take X ( 0) = V ( 0) and choose the portfolio processes Ll1 ( t) , . . . , Llm ( t) 
so that the hedging equations 

(5.4.29) 

are satisfied. These are d equations in m unknown processes Ll1 (t) , . . . , Llm (t ) . 
Theorem 5.4.9 (Second fundamental theorem of asset pricing) . Con
sider a market model that has a risk-neutral probability measure. The model 
is complete if and only if the risk-neutral probability measure is unique. 

SKETCH OF PROOF: We first assume that the model is complete. We wish to 
show that there can be only one risk-neutral measure. Suppose the model has 
two risk-neutral measures, P1 and P2 . Let A be a set in :F, which we assumed 
at the beginning of this section is the same as F(T) . Consider the derivative 
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security with payoff V(T) = HA v(r) . Because the model is complete, a short 
position in this derivative security can be hedged (i.e. , there is a portfolio 
value proce� with �orne initial condition X(O) that satisfies X(T) = V(T) ) .  
Since both IP'1 and IP'2 are risk-neutral.l.-the di�ounted portfolio value process 
D(t)X (t) is a martingale under both lP\ and IP'2 . It folrows that 

Pl (A) = fEl [D(T)V(T)] = fEl [D(T)X(T)] 
= lE2 [D(T)X(T)] = lE2 [D(T)V(T)] 

Since A is an arbitrary set in F and P1 (A) = P2 (A) , these two risk-neutral 
measures are really the same. 

For the converse, suppose there is only one risk-neutral measure. This 
means first of all that the filtration for the model is generated by the d
dimensional Brownian motion driving the assets. If that were not the case 
(i.e. , if there were other sources of uncertainty in the model besides the driv
ing Brownian motions) , then we could assign arbitrary probabilities to those 
sources of uncertainty without changing the distributions of the driving Brow
nian motions and hence without changing the distributions of the assets. This 
would permit us to create multiple risk-neutral measures. Because the driving 
Brownian motions are the only sources of uncertainty, the only way multiple 
risk-neutral measures can arise is via multiple solutions to the market price 
of risk equations (5.4. 18) .  Hence, uniqueness of the risk-neutral measure im
plies that the market price of risk equations (5.4. 18) have only one solution 
( 81 ( t) , . . .  , e d ( t) ) .  For fixed t and w, these equations are of the form 

Ax = b, 
where A is the m x d-dimensional matrix 

A =  

[ au (t) , a12 (t) , . . .  , D"Id (t) l 
0"21 (t) , 0"22 (t) , · · · , 0"2d (t) 

. . . ' . . . . . . 
O"ml (t) , O"m2 (t) , · · · , O"md (t) 

x is the d-dimensional column vector [el (t) l 
e2 (t) X = . ' 

ed(t) 
and b is the m-dimensional column vector [ a1 (t) - R(t) l 

a2 (t) - R(t) 
b = . . 

am (t) - R(t) 

(5.4.30) 

(5.4.3 1 )  
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Our assumption that there is only one risk-neutral measure means that the 
system of equations (5.4.30) has a unique solution x. 

In order to be assured that every derivative security can be hedged, we 
must be able to solve the hedging equations (5.4.29) for Ll1 (t) , . . .  , Llm (t) no 
matter what values of �g] appear on the left-hand side. For fixed t and w, 
the hedging equations are of the form 

(5.4.32) 

where Atr is the transpose of the matrix in (5.4.31 ) ,  y is the m-dimensional 
vector [ Y1 l [ Ll1 (t)S1 (t) l 

Y2 Ll2 (t)S2 (t) y =  . = . , . . . . 
Ym Llm(t)Sm (t) 

and c is the d-dimensional vector 

c =  

i\ (t) D(t) i\ (t) D(t) 

In order to be assured that the market is complete, there must be a solution 
y to the system of equations (5.4.32) ,  no matter what vector c appears on 
the right-hand side. If there is always a solution y1 , . • .  , y'"' ,  then there are 
portfolio processes Lli (t) = l(t) satisfying the hedging equations (5.4.29) , no 
matter what processes appear on the left-hand side of those equations. We 
could then conclude that a short position in an arbitrary derivative security 
can be hedged. 

The uniqueness of the solution x to (5.4.30) implies the existence of a so
lution y to (5.4.32) . We give a proof of this fact in Appendix C. Consequently, 
uniqueness of the risk-neutral measure implies that the market model is com
plete. [] 

5 . 5  Dividend-Paying Stocks 

According to Definition 5 .4.3, discounted stock prices are martingales under 
the risk-neutral measure. This is the case provided the stock pays no dividend. 
The key feature of a risk-neutral measure is that it causes discounted portfolio 
values to be martingales (see Lemma 5.4.5) , and that ensures the absence of 
arbitrage (First Fundamental Theorem of Asset Pricing, Theorem 5.4.7) . In 
order for the discounted value of a portfolio that invests in a dividend-paying 
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stock to be a martingale, the discounted value of the stock with the dividends 
reinvested must be a martingale, but the discounted stock price itself is not a 
martingale. This section works out the details of this situation. We consider a 
single stock price driven by a single Brownian motion, although the results we 
obtain here also apply when there are multiple t5tocks and multiple Brownian 
motions. 

5.5.1 Continuously Paying Dividend 

Consider a stock, modeled as a generalized geometric Brownian motion, that 
pays dividends continuously over time at a rate A(t) per unit time. Here A(t) , 
0 � t � T, is a nonnegative adapted process. A continuously paid dividend 
is not a bad model for a mutual fund, which collects lump sum dividends at 
a variety of times on a variety of stocks. In the case of a single stock, it is 
more reasonable to assume there are periodic lump sum dividend payments. 
We consider that case in Subsections 5.5.3 and 5.5.4. 

Dividends paid by a stock reduce its value, and so we shall take as our 
model of the stock price 

dS(t) = o(t)S(t) dt + a(t) S(t) dW(t) - A(t)S(t) dt. (5 .5 . 1 )  

H the stock were to withhold dividends, its mean rate of return would be  o(t) . 
Equivalently, if an agent holding the stock were to reinvest the dividends, the 
mean rate of return on his investment would be o(t) . The mean rate of return 
o(t) , the volatility a(t) , and the interest rate R(t) appearing in (5 .5 .2) below 
are all assumed to be adapted processes. 

An agent who holds the stock receives both the capital gain or loss due to 
stock price movements and the continuously paying dividend. Thus, if Ll(t) is 
the number of shares held at time t, then the portfolio value X(t) satisfies 

dX(t) = Ll(t) dS(t) + Ll(t)A(t)S(t) dt + R(t) [X(t) - Ll(t)S(t)) dt 

where 

= R(t)X(t) dt + (o(t) - R(t) )Ll(t)S(t) dt + a(t)Ll(t)S(t) dW(t) 
= R(t)X(t) dt + Ll(t)S(t)a(t) [8(t) dt + dW(t)] , (5.5.2) 

e(t) = 
o(t) - R(t) 

a(t) (5 .5 .3) 

is the usual market price of risk. 
We define 

W(t) = W(t) + lot 
8(u) du (5.5 .4) 

and use Girsanov's Theorem to change to a measure iP under which W is a 
Brownian motion, so we may rewrite (5.5 .2) as 

dX(t) = R(t)X(t) dt + Ll(t)S(t)a(t) dW(t) . 
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The discounted portfolio value satisfies 

d [D(t)X(t)] = Ll(t)D(t)S(t)a(t) dW(t) . 

In particular, under the risk-neutral measure iP, the discounted portfolio pro
cess is a martingale. Here we denote by D(t) = e- J; R(u)du the usual discount 
process. 

If we now wish to hedge a short position in a derivative security paying 
V(T) at time T, where V(T) is an F(T)-measurable random variable, we 
will need to choose the initial capital X(O) and the portfolio process Ll(t) , 
0 � t � T, so that X(T) = V(T) . Because D(t)X(t) is a martingale under iP, 
we must have 

D(t)X(t) = fE [D(T)V(T) iF(t) ] , 0 � t � T. 

The value X ( t) of this portfolio at each time t is the value (price) of the deriva
tive security at that time, which we denote by V(t) . Making this replacement 
in the formula above, we obtain the risk-neutral pricing formula 

D(t)V(t) = fE [D(T)V(T) iF(t)] , 0 � t � T. (5.5.5) 

We have obtained the same risk-neutral pricing formula (5.2 .30) as in the case 
of no dividends. FUrthermore, conditions that guarantee that a short position 
can be hedged, and hence risk-neutral pricing is fully justified, are the same 
as in the no-dividend case; see Section 5.3. 

The difference between the dividend and no-dividend cases is in the evo
lution of the underlying stock under the risk-neutral measure. From (5.5 . 1 )  
and the definition of  W(t) , we see that 

dS(t) = [R(t) - A(t)) S(t) dt + a(t)S(t) dW(t) . (5 .5 .6) 

Under the risk-neutral measure, the stock does not have mean rate of return 
R(t) , and consequently the discounted stock price is not a martingale. Indeed, 

S(t) = S(O) exp {lot a(u) dW(u) + lot [R(u) - A(u) - �a2 (u)] du} . 
(5 .5 . 7) 

The process 

ef; A(u) D(t)S(t) = exp {lot a(u) dW(u) - � lot a2 (u) du} 
is a martingale. This is the interest-rate-discounted value at time t of an ac
count that initially purchases one share of the stock and continuously reinvests 
the dividends in the stock. 
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5.5.2 Continuously Paying Dividend with Constant Coefficients 

In the event that the volatility a, the interest rate r, and the dividend rate a 
are constant, the stock price at time t ,  given by (5.5.7) , is 

S(t) = S(O) exp { aW(t) + (r - a - �a2) t} . (5 .5 .8) 

For 0 :::; t :::; T, we have 

S(T) = S(t) exp { a (W(T) - W(t)) + (r - a - �a2) (T - t) } . 
According to the risk-neutral pricing formula, the price at time t of a European 
call expiring at time T with strike K is 

(5 .5 .9) 
To evaluate this, we first compute 
c(t , x) 

= fE [e-r(T-t) (x exp { a (W(T) - W(t)) + (r - a - �a2) (T - t) } - K) +] 
= fE [e-rr (x exp { - aJTY + (r - a - �a2) r} - K) +] , (5.5 . 10) 

where T = T - t and - -y = _ W(T) - W(t) 
v'T - t 

is a standard normal random variable under iP. We define 

d± (r, x) = a� [log ; + (r - a ± �a2) r] . (5.5 . 1 1 ) 

We note that the random variable whose expectation we are computing in 
{5.5 . 10) is nonzero (the call expires in the money) if and only if Y < d_ ( r, x) . 
Therefore, 
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We make the change of variable z = y + a .jT in the integral, which leads us 
to the formula 

According to the Independence Lemma, Lemma 2 .3.4, the option price V(t) 
in (5.5 .9 ) is c(t, S(t) ) .  The only differences between this formula and the one 
for a non-dividend-paying stock is in the definition (5.5. 1 1 )  of d± (r, x) (see 
(5 .2 .33) and (5.2 .34) ) and in the presence of e-ar in the first term on the 
right-hand side of (5 .5 . 12) . 

5.5.3 Lump Payments of Dividends 

Finally, let us consider the case when the dividend is paid in lumps. That 
is to say there are times 0 < t1 < t2 < tn < T and, at each time t3 , the 
dividend paid is a3S(t3 - ) ,  where S(t3 -) denotes the stock price just prior 
to the dividend payment. The stock price after the dividend payment is the 
stock price before the dividend payment less the dividend payment : 

(5.5 .13) 
We assume that each a3 is an F(t3 )-measurable random variable taking values 
in [0 , 1 ] . If a3 = 0, no dividend is paid at time t 3 .  If a3 = 1 ,  the full value of the 
stock is paid as a dividend at time t3 , and the stock value is zero thereafter. To 
simplify the notation, we set to = 0 and tn+l = T. However, neither t0 = 0 nor 
tn+l = T is a dividend payment date (i.e. , ao = 0 and an+l = 0) . We assume 
that , between dividend payment dates, the stock price follows a generalized 
geometric Brownian motion: 

dS(t) = a(t)S(t) dt + a(t)S(t) dW(t) , t3 ::; t < tJ+ l >  j = 0, 1 ,  . . .  , n. (5.5 . 14) 
Equations (5 .5 . 13) and (5.5 . 14) fully determine the evolution of the stock 
price. 

Between dividend payment dates, the differential of the portfolio value 
corresponding to a portfolio process Ll(t) , 0 ::; t ::; T, is 

dX(t) = Ll(t) dS(t) + R(t) [X(t) - Ll(t)S(t) ) dt 
= R(t)X(t) dt + (a(t) - R(t) ) Ll(t)S(t) dt + a(t)Ll(t)S(t) dW(t) 
= R(t)X(t) dt + Ll(t)a(t)S(t) [B(t) dt + dW(t)] , 

where the market price of risk B(t) is again defined by (5.5 .3) . At the div
idend payment dates, the value of the portfolio stock holdings drops by 
a3Ll(t1 )S(t1 - ) , but the portfolio collects the dividend a3Ll(t1 )S(t1 - ) , and 
so the portfolio value does not jump. It follows that 
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dX(t) = R(t)X(t) dt + Ll(t)a(t)S(t) [B(t) dt + dW(t)] (5 .5 .15) 

is the correct formula for the evolution of the portfolio value at all times t . 
We again define W by (5.5.4) , change to a measure iP under which W is a 
Brownian motion, and obtain the risk-neutral pricing formula (5 .5 .5) . 

5.5.4 Lump Payments of Dividends with Constant Coefficients 

We price a European call under the assumption that a, r , and each ai are 
constant . From (5 .5 . 14) and the definition of W, we have 

dS(t) = rS(t) dt + aS(t) dW(t) , ti ::; t < ti+ I ' j = 0, 1 ,  . . .  , n. 

Therefore, 

S(ti+ l -) = S(ti ) exp { a (W(tj+I ) - W(tj ) } + (r - �a2) (tj+ l - ti ) } . 
(5.5 . 16) 

From (5 .5 . 13) , we see that 

S(ti+ I ) 

= ( 1 - aj+l )S(tj ) exp { a (W(tj+I ) - W(tj ) ) + (r - �a2) (tj+ l - tj ) } 
or, equivalently, for j = 0, 1 ,  . . .  , n, 

S�t(t;)) = ( 1 - aj+I ) exp { a (W(tj+I ) - W(tj ) ) + (r - �a2) (tj+ l - tj ) } . 

It follows that 
S(T) S(tn+d 
S(O) S(to ) 

In other words, 

= fi S(ti+I ) 
j=O S(tj ) 

= jJ ( 1 - aj+I ) . exp { aW(T) + (r - �a2)T} . 

S(T) = S(O) ll ( 1 - ai+I ) · exp { aW(T) + (r - �a2)r} . (5.5 . 17) 

This is the same formula we would have for the price at time T of a geo
metric Brownian motion not paying dividends if the initial stock price were 
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S(O) Ilj,:-� ( 1 - ai+I ) rather than S(O) . Therefore, the price at time zero of 
a European call on this dividend-paying asset , a call that expires at time 
T with strike price K, is obtained by replacing the initial stock price by 
S(O) Ilj,:;-� ( 1 - aj+l ) in the classical Black-Scholes-Merton formula. This re
sults in the call price 

n- 1 
S(O) IT ( 1 - aj+l )N(d+ ) - e-rT KN(d- ) ,  

j=O 

where 

A similar formula holds for the call price at times t between 0 and T. In those 
cases, one includes only the terms ( 1 - ai+l ) corresponding to the dividend 
dates between times t and T. 

5.6 Forwards and Futures 

In this section, we assume there is a unique risk-neutral measure IP', and all as

sets satisfy the risk-neutral pricing formula. Under this assumption, we study 
forward and futures prices and the relationship between them. The formulas 
we develop apply to any tradable, non-dividend-paying asset, not just to a 
stock. In a binomial model, these topics were addressed in Sections 6.3 and 
6.5 of Volume I. 

5.6. 1 Forward Contracts 

Let S(t) , 0 ::; t ::; T, be an asset price process, and let R(t) , 0 ::; t ::; T, be 
an interest rate process. We choose here some large time T, and all bonds 
and derivative securities we consider will mature or expire at or before time 
T. As usual, we define the discount process D(t) = e- J; R(u)du . According to 
the risk-neutral pricing formula (5.2.30) , the price at time t of a zero-coupon 
bond paying 1 at time T is 

1 -B(t, T) = D(t) IE[D(T) IF(t)] , 0 ::; t ::; T ::;  T. (5.6 . 1 ) 
This pricing formula guarantees that no arbitrage can be found by trading in 
these bonds because any such portfolio, when discounted, will be a martingale 
under the risk-neutral measure. The details of this argument in the binomial 
model are presented in Theorem 6.2.6 and Remark 6.2 . 7 of Volume I . 
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Definition 5.6. 1 .  A forward contract is an agreement to pay a specified de
livery price K at a delivery date T, where 0 :::; T :::; T, for the asset whose 
price at time t is S(t) . The T-forward price Fors (t, T) of this asset at time t , 
where 0 :::; t :::; T :::; T, is the value of K that makes the forward contract have 
no-arbitrage price zero at time t .  

Theorem 5.6.2. Assume that zero-coupon bonds of all maturities can be 
traded. Then 

S(t) Fors (t ,  T) = B(t, T) , 0 :::; t :::; T :::; T. (5.6.2) 

PROOF:  Suppose that at time t an agent sells the forward contract with deliv
ery date T and delivery price K. Suppose further that the value K is chosen 
so that the forward contract has price zero at time t. Then selling the forward 
contract generates no income. Having sold the forward contract at time t , 
suppose the agent immediately shorts B�!�t) zero-coupon bonds and uses the 
income S(t) generated to buy one share of the asset. The agent then does no 
further trading until time T, at which time she owns one share of the asset , 
which she delivers according to the forward contract. In exchange, she receives 
K. After covering the short bond position, she is left with K - B���t) . If this 
is positive, the agent has found an arbitrage. If it is negative, the agent could 
instead have taken the opposite position, going long the forward, long the 
T-maturity bond, and short the asset, to again achieve an arbitrage. In order 
to preclude arbitrage, K must be given by (5.6.2) . D 
Remark 5. 6. 3. The proof of Theorem 5.6 .2 does not use the notion of risk
neutral pricing. It shows that the forward price must be given by (5.6 .2) in 
order to preclude arbitrage. Because we have assumed the existence of a risk
neutral measure and are pricing all assets by the risk-neutral pricing formula, 
we must be able to obtain (5.6.2) from the risk-neutral pricing formula as well. 
Indeed, using (5.2.30) , (5.6. 1 ) ,  and the fact that the discounted asset price is 
a martingale under JP, we compute the price at time t of the forward contract 
to be 

D�t) E [D(T) (S(T) - K) iF(t)] 

1 - K -= D(t) lE [D(T)S(T) iF(t)] - D(t) IE
[D(T) /F(t)] 

= S(t) - K B(t , T) . 

In order for this to be zero, K must be given by (5.6.2) . 

5.6.2 Futures Contracts 

Consider a time interval [0, T] , which we divide into subintervals using the 
partition points 0 = t0 < t 1 < t2 < · · · < tn = T. We shall refer to each 
subinterval [tk , tk+l ) as a "day." 
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Suppose the interest rate is constant within each day. Then the discount 
process is given by D(O) = 1 and, for k = 0, 1 ,  . . .  , n - 1 ,  

[tk+ l k 
D(tk+I ) = exp { - Jo R(u) du} = exp { - L R(tj ) (tj+ l - tj ) } , 

0 j=O 
which is F(tk )-measurable. According to the risk-neutral pricing formula 
(5.6. 1 ) ,  the zero-coupon bond paying 1 at maturity T has time-tk price 

1 -B(tk , T) = D(tk) IE[D(T) IF(tk)] . 

An asset whose price at time t is S(t) has time-tk forward price 
S(tk ) Fors (tk , T) = B(tk , T) , (5.6.3) 

an F(tk )-measurable quantity. Suppose we take a long position in the forward 
contract at time tk (i .e. , agree to receive S(T) and pay Fors (tk , T) at time 
T) . The value of this position at time tj 2:: tk is 

Vk,j = Dttj ) E [ D(T) (S(T) - B�t���) ) i .r(tj )] 
1 - S(tk) 1 -= D(tj ) IE[D(T)S(T) IF(tj )] - B(tk , T) · D(tj ) IE[D(T) IF(tj )] 

S( ) S( ) B(tj , T) = tj - tk . 
B(tk , T) " 

If tj = tk , this is zero, as it should be. However, for tj > tk , it is generally 
different from zero. For example, if the interest rate is a constant r so that 
B(t, T) = e-r(T-t) , then 

Vk,j = S(tj ) - er(t; -tk )S(tk ) · 
If the asset grows faster than the interest rate, the forward contract takes on 
a positive value. Otherwise, it takes on a negative value. In either case, one 
of the parties to the forward contract could become concerned about default 
by the other party. 

To alleviate the problem of default risk, parties to a forward contract could 
agree to settle one day after the contract is entered. The original forward 
contract purchaser could then seek to purchase a new forward contract one 
day later than the initial purchase. By repeating this process , the forward 
contract purchaser could generate the cash flow 

B(h , T) B(h , T) V0, 1 = S(t1 ) - S(to) · B(to , T) = S(ti ) - S(O) · B(O, T) , 

B(t2 ,  T) V1 ,2 = S(t2 ) - S(ti ) · B(h , T) , 
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v. S( ) S( ) B(tm T) = S(T) _ S(tn-d . n- 1 ,n = tn - tn- 1 · B( T) B( ) tn- 1 ' tn- 1 , T 
There are two problems with this. First of all , the purchaser of the for

ward contract was presumably motivated by a desire to hedge against a price 
increase in the underlying asset . It is not clear the extent to which receiving 
this cash flow provides such a hedge. Second, this daily buying and selling of 
forward contracts requires that there be a liquid market each day for forward 
contracts initiated that day and forward contracts initiated one day before. 
This is too much to expect . 

A better idea than daily repurchase of forward contracts is to create a 
futures price Futs (t, T) , and use it as described below. If an agent holds a 
long futures position between times tk and tk+I , then at time tk+I he receives 
a payment 

Futs(tk+ 1 , T) - Futs (tk , T) . 
This is called marking to margin. The stochastic process Futs (t , T) is con
structed so that Futs (t, T) is F(t)-measurable for every t and 

Futs(T, T) = S(T) . 

Therefore, the sum of payments received by an agent who purchases a futures 
contract at time zero and holds it until delivery date T is 

(Futs (h , T) - Futs(to ,  T)) + (Futs(t2 , T) - Futs (t1 , T)) + . . .  
· · · + (Futs(tn , T) - Futs (tn- 1 , T) = Futs (T, T) - Futs (O, T) 

= S(T) - Futs (O, T) . 

If the agent takes delivery of the asset at time T, paying market price S(T) 
for it , his total income from the futures contract and the delivery payment 
is -Futs (O, T) . Ignoring the time value of money, he has effectively paid the 
price Futs (O, T) for the asset , a price that was locked in at time zero. 

In contrast to the case of a forward contract , the payment from holding a 
futures contract is distributed over the life of the contract rather than coming 
solely at the end. The mechanism for these payments is the margin account, 
which the owner of the futures contract must open at the time of purchase of 
the contract and to which he must contribute or from which he may withdraw 
money, depending on the trajectory of the futures price. Whereas the owner 
of a forward contract is exposed to counterparty default risk, the owner of a 
futures contract is exposed to the risk that some of the intermediate payments 
(margin calls) will force him to close out his position prematurely. 

In addition to satisfying Futs (T, T) = S(T) , the futures price process is 
chosen so that at each time tk the value of the payment to be received at time 
tk+I , and indeed at all future times t1 > tk , is zero. This means that at any 
time one may enter or close out a position in the contract without incurring 
any cost other than payments already made. The condition that the value at 
time tk of the payment to be received at time tk+I be zero may be written as 
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where we have used the fact that D(tk+l ) is F(tk )-measurable to take D(tk+I ) 
out of the conditional expectation. From the equation above, we see that 

JE[Futs (tk+ I , T) IF(tk )] = Futs (tk , T) , k = 0, 1 ,  . . .  , n - 1 .  (5.6.4) 

This shows that Futs (tk , T) must be a discrete-time martingale under JP. But 
we also require that Futs (T, T) = S(T) , from which we conclude that the 
futures prices must be given by the formula 

Futs (tk , T) = JE[S(T) IF(tk)] , k = 0, 1 ,  . . .  , n. (5.6.5) 

Indeed, under the condition that Futs (T, T) = S(T) , equations (5 .6.4) and 
(5.6.5) are equivalent . 

We note finally that with Futs (t, T) given by (5 .6.5) ,  the value at time tk 
of the payment to be received at time tj is zero for every j ;:::: k + 1 .  Indeed, 
using the F(tj_ I )-measurability of D(tj )  and the martingale property for 
Futs (t, T) , we have 

1 -
D(tk) lE [D(ti ) (Futs(tj ,  T) - Futs(tj- 1 , T)) IF(tk )] 

= Dttk ) lE [i [D(tj )  (Futs(tj ,  T) - Futs{tj- 1 >  T) ) IF(ti-d] l.r(tk ) J 

= Dttk ) lE [ D(tj )E [Futs(ti , T) IF(ti-d] - D(ti )Futs (tj- 1 , T) i.r(tk )] 
= Dttk ) i [D(tj )Futs(tj- I > T) - D(tj )Futs(tj- I > T) IF(tk )] = 0. 

These considerations lead us to make the following definition for the fully 
continuous case (i.e. , the case when R(t) is assumed only to be an adapted 
stochastic process, not necessarily constant on time intervals of the form 
[tk , tk+ 1 ) ) .  
Definition 5.6.4. The futures price of an asset whose value at time T is S(T) 
is given by the formula 

Futs(t, T) = JE[S(T) IF(t)] , 0 ::; t ::;  T. (5.6.6) 
A long position in the futures contract is an agreement to receive as a cash 
flow the changes in the futures price (which may be negative as well as positive} 
during the time the position is held. A short position in the futures contmct 
receives the opposite cash flow. 
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Theorem 5.6.5. The futures price is a martingale under the risk-neutml 
measure P, it satisfies Futs (T, T) = S(T) , and the value of a long (or a 
short) futures position to be held over an interval of time is always zero. 

OUTLINE OF PROOF: The usual iterated conditioning argument shows that 
Futs (t , T) given by (5.6.6) is a P-martingale satisfying the terminal condi
tion Futs (T, T) = S(T) . In fact, this is the only P-martingale satisfying this 
terminal condition. 

If the filtration :F(t) ,  0 � t � T, is generated by a Brownian motion W(t) , 
0 � t � T, then Corollary 5.3.2 of the Martingale Representation Theorem 
implies that 

Futs (t , T) = Futs(O, T) + lot F(u) dW(u) , 0 � t � T, 

for some adapted integrand process f ( i.e. , dFuts(t , T) = f(t) dW(t) ) .  Let 
0 � to < t1 � T be given and consider an agent who at times t between 
times to and h holds Ll(t) futures contracts . It costs nothing to change the 
position in futures contracts, but because the futures contracts generate cash 
flow, the agent may have cash to invest or need to borrow in order to execute 
this strategy. He does this investing and/or borrowing at the interest rate R(t) 
prevailing at the time of the investing or borrowing. The agent's profit X(t) 
from this trading satisfies 

dX(t) = Ll(t) dFuts(t, T) + R(t)X(t) dt = Ll(t)f(t) dW(t) + R(t)X(t) dt, 

and thus 
d (D(t)X(t)) = D(t)Ll(t)F(t) dW(t) . 

Assume that at time t0 the agent's profit is X(t0 ) = 0. At time t1 ,  the agent's 
profit X ( t 1 ) will satisfy 

(5.6.7) 

Because Ito integrals are martingales, we have 

JE[D(t1 )X (h ) I:F(to )] 

= lE [1t 1 D(u)Ll(u)F(u) dW(u) - 1to D(u)Ll(u)F(u) dW(u) l :F(to)] 
= lE [1t 1 D(u)Ll(u)F(u) dW(u) l :F(to)] - 1to D(u)Ll(u)F(u) dW(u) 
= 0. (5.6.8) 

According to the risk-neutral pricing formula, the value at time to of a payment 
of X(ti )  at time t1 is vlto ) lE [D(t i )X (ti ) I:F(to )] , and we have just shown that 
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this is zero. The value of owning a long futures position over the interval to 
to t1 is obtained by setting Ll(u) = 1 for all u; the value of holding a short 
position is obtained by setting Ll(u) = -1 for all u. In both cases, we see that 
this value is zero. 

If the filtration :F(t) ,  0 $ t $ T, is not generated by a Brownian motion, 
so that we cannot use Corollary 5.3.2, then we must write (5 .6 .7) as l.tl 

D(t1 )X(ti ) = D(u)Ll(u) dFuts (u, T) . to (5 .6 .9) 

This integral can be defined and it will be a martingale. We will again have 

E[D(tt )X(h ) I:F(to ) ] = 0. D 
Remark 5. 6. 6  (Risk-neutral valuation of a cash flow). Suppose an asset gen
erates a cash flow so that between times 0 and u a total of C(u) is paid, 
where C(u) is :F(u)-measurable. Then a portfolio that begins with one share 
of this asset at time t and holds this asset between times t and T, investing 
or borrowing at the interest rate r as necessary, satisfies 

dX(u) = dC(u) + R(u)X(u) du, 
or equivalently 

d(D(u)X(u) ) = D(u) dC(u) . 
Suppose X(t) = 0. Then integration shows that 

D(T)X(T) = [T D(u) dC(u) . 

The risk-neutral value at time t of X(T) , which is the risk-neutral value at 
time t of the cash flow received between times t and T, is thus 

D�t) E[D(T)X(T)] = D�t) t [[T D(u) dC(u) I :F(t)] , O $ t $ T. 
(5.6 . 10) 

Formula (5.6. 10) generalizes the risk-neutral pricing formula (5 .2 .30) to allow 
for a cash flow rather than payment at the single time T. In (5.6. 10) , the 
process C( u) can represent a succession of lump sum payments A1 , A2 , • . •  , An 
at times t1 < h < · · · < tn , where each Ai is an :F(ti )-measurable random 
variable. The formula for this is 

n 

C(u) = L Aill[o,uJ (ti ) · 
i= l 

In this case, 
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1
T D(u) dC(u) = tD(ti )AiH(t ,TJ (ti ) · t i= l 

Only payments made strictly later than time t appear in this sum. Equation 
(5 .6 . 10} says that the value at time t of the string of payments to be made 
strictly later than time t is 

which is the sum of the time-t values of the payments made strictly later than 
time t. 

The process C(u) can also be continuous, as in (5.6.9} . The process C(u) 
may decrease as well as increase (i .e. , the cash flow may be negative as well 
as positive) . 0 

5.6.3 Forward-Futures Spread 

We conclude with a comparison of forward and futures prices . We have defined 
these prices to be 

S(t) Fors (t, T) = B(t, T) , 
Fut8 (t, T) = E[S(T) I.1"(t)] . 

If the interest rate is a constant r, then B (t , T) = e-r(T-t) and 

Fors (t , T) = er(T-t) S(t) , 
Futs (t, T) = erTE [e-rTS(T) IF(t)) = erT e-rt S(t) = er(T-t) S(t) . 

In this case, the forward and futures prices agree. 
We compare Fors (O, T) and Futs (O, T) in the case of a random interest 

rate. In this case, B (O, T) = ED(T) , and the S<rcalled forward-futures spread 
is 

Fors (O, T) - Futs (O, T) = -S(O) - ES(T) IED(T) 
= �{E[D(T)S(T)] - ED(T) . ES(T) } 

IED(T) 
1 � 

= B (O, T) Cov(D(T) , S(T) ) , (5.6. 1 1 )  

where Cov(D(T) , S(T) ) denotes the covariance of D(T) and S(T) under the 
risk-neutral measure. If the interest rate is nonrandom, this covariance is zero 
and the futures price agrees with the forward price. 
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One can explain this last formula as follows. If D(T) and S(T) are pos
itively correlated, then higher asset prices tend to correspond to higher dis
count levels, which tend to correspond to lower interest rates. But when the 
asset goes up, the long position in the futures contract receives a payment 
(because the futures price is positively correlated with the underlying asset 
price) .  The long position in the futures contract thus receives money when the 
interest rate for investing is unfavorable (low) and conversely must pay money 
when the interest rate at which money can be borrowed is also unfavorable 
(high) . The owner of the futures contract would have rather owned the for
ward contract , in which all payments are postponed until the end. Therefore, 
to make the futures contract attractive, the futures price must be lower than 
the forward price. (Recall that this price is what the investor ultimately pays 
for the asset. )  This creates a positive forward-futures spread when the dis
count factor D(T) and the asset price S(T) are positively correlated. Note 
that all correlations in this argument are computed under the risk-neutral 
measure, not the actual probability measure. In a Brownian-motion-driven 
model, in which the multidimensional Girsanov Theorem, Theorem 5.4. 1 ,  is 
used to change to the risk-neutral measure, instantaneous asset correlations 
are the same under both measures (see Exercise 5 . 12 ) . However, correlations 
between random variables (as opposed to instantaneous correlations between 
stochastic processes) can be affected by changes of measure (see Exercise 5 .13 ) . 

5.7 Summary 

This chapter treats the application to finance of two major theorems, Girsanov 
(Theorem 5.4. 1 ) and Martingale Representation (Theorem 5.4.2) . These lead 
to the two Fundamental Theorems of Asset Pricing, Theorem 5.4. 7 and The
orem 5.4.9. Both of these are stated for models with multiple assets whose 
prices are driven by multiple Brownian motions. 

According to the Fundamental Theorems of Asset Pricing, there are three 
possible situations when we build a mathematical model of a multiasset mar
ket . 

Case 1 .  There is no risk-neutral measure (i.e. , the market price of risk 
equations (5.4.18) cannot be solved for 81 (t) , . . .  , 8d(t) ) .  This is a bad model. 
There must be some way to form an arbitrage by trading at the prices given 
by this model. Do not use this model. 

Case 2. There are multiple risk-neutral measures (i.e. , the market price 
of risk equations (5.4. 18) have more than one solution) . The different risk
neutral measures lead to different prices for derivative securities in the model. 
Any derivative security that has more than one price cannot be synthesized 
by trading in the model (i.e. , a position in this derivative security cannot be 
hedged) .  (If the derivative security could be hedged, this would determine a 
unique price; see the proof of Theorem 5.4.9. ) It may still be possible to cali
brate the model (i.e. , determine its parameters by getting it to match market 
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prices, and the model might then give reasonable prices for nontraded instru
ments) . However, it cannot be used to fully hedge the exposure associated 
with derivative positions . 

At the present time, credit derivative models fall into Case 2. They are 
used for pricing, but are incomplete because the derivatives in question pay 
off contingent upon the default of some party and it is impossible to perfectly 
hedge default risk by trading in primary assets. These models have multiple 
risk-neutral measures, all of which can be consistent with market prices of the 
primary assets but give different prices for derivatives. In practical applica
tions, one of these risk-neutral measures is singled out and used for pricing. 
Which of the risk-neutral measures is chosen for this purpose depends on the 
way the model is specified and calibrated. 

Case 3. There is one and only one set of processes 81 (t) , . . .  , Bd(t) that 
solve the market price of risk equations (5.4. 18) . There is a unique risk-neutral 
measure, and risk-neutral pricing is justified. In other words,the price (value) 
at time t of any security that pays V(T) at time T is 

1 -V(t) = D(t) lE [D(T)V(T) iF(t)] . (5 .7 . 1 )  

In particular, the price at time zero of the security is its risk-neutral ex
pected discounted payoff. The risk-neutral price of a derivative security is 
the initial capital that permits an agent to set up a perfect hedge for a 
short position in that derivative security. These perfect hedges are the solu
tions ..11 (t) , . . .  , Llm(t) of the hedging equations (5.4.29) , and these solutions 
are guaranteed to exist (by the second part of the proof of Theorem 5.4.9) . 
However, we do not generally attempt to determine the hedging positions 
..11 (t) , . . .  , Llm(t) by solving (5.4.29) . Instead, we determine hedges by the 
technique presented in Chapter 6. 

When assets pay dividends, their discounted prices are no longer martin
gales under the risk-neutral measure. Instead, the martingale under the risk
neutral measure is the discounted value of any portfolio that trades in the 
assets and receives dividends in proportion to its position in the assets at the 
time of dividend payment . For the case of a continuous payment of dividends 
at a constant rate, the Black-Scholes-Merton formula is given by (5 .5 . 12) . If 
dividend payments are made in lump sums, the necessary modification to the 
classical Black-Scholes-Merton formula is presented in Subsection 1 1 .5 .4 . 

The forward price of an asset is defined to be that price that one can 
agree today to pay at a future delivery date so that the present value of the 
forward contract is zero. For assets that pay no dividends (and, unlike most 
commodities, cost nothing to hold) , the forward price is the asset price divided 
by the price of a zero-coupon bond maturing on the delivery date and having 
face value 1 :  

S(t) Fors (t, T) = B(t , T) , 0 :::; t :::; T. 
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The futures price of an asset is an adapted stochastic process Futs (t , T) 
with two properties. 
(i) The futures price agrees with the asset price on the delivery date (i.e. , 

Futs (T, T) = S(T) ) . 
(ii) The value of holding the futures contract over a period of time and re

ceiving the cash flows associated with this position is zero: 

The unique process having these two properties is 

Futs(t, T) = E[S(T) IF(t) ] ,  0 ::;  t ::;  T. 
When the interest rate process is nonrandom, forward and futures prices agree. 
When interest rates are random, the difference between forward and futures 
prices is proportional to the covariance under the risk-neutral measure be
tween the discount factor D(T) and the underlying asset price S(T) (see 
(5.6. 1 1 ) ) . 

5 . 8  Notes 

The idea of risk-neutral pricing is implicit in the classical papers by Black and 
Scholes [17] and Merton [122] but was not fully developed and appreciated 
until the work of Ross [140] , Harrison and Kreps [77] , and Harrison and Pliska 
[78] , [79] . Ross [ 140] treats a one-period model, Harrison and Kreps [77] treat 
a continuous-time model with trading at discrete dates, and Harrison and 
Pliska [78] , [79] treat a continuous-time model with continuous trading. The 
closely related concept of state price density (see Exercise 5.2) is due to Arrow 
and Debreu [5] .  

Girsanov's Theorem, Theorem 5.2.3, in the generality stated here is due to 
Girsanov [72] , although the result for constant () was established much earlier 
by Cameron and Martin [26] . The theorem requires a technical condition to 
ensure that JEZ(T) = 1 so that iP is a probability measure. For this purpose, 
we imposed (5.2 . 13) . An easier condition to verify, due to Novikov [128] , is 

see Karatzas and Shreve [101] , page 198. The multidimensional version of both 
Girsanov's Theorem and the Martingale Representation Theorem (Theorems 
5.4. 1 and 5.4.2) can be found in Karatzas and Shreve [101] as Theorems 5. 1 and 
4.15 of Chapter 3. A mathematically rigorous application of these theorems 
to Brownian-motion-driven models in finance is provided by Karatzas and 
Shreve [102] . 



5.9 Exercises 251 

The application of the Girsanov Theorem to risk-neutral pricing is due to 
Harrison and Pliska [78] . This methodology frees the Brownian-motion-driven 
model from the assumption of a constant interest rate and volatility. When 
both of these are stochastic, the Brownian-motion-driven model is mathe
matically the most general possible for continuous stock prices that do not 
admit arbitrage. In particular, the log-normal model for asset prices is just 
one special case of the Brownian-motion-driven model. 

The Fundamental Theorems of Asset Pricing, Theorems 5.4. 7 and 5.4.9, 
can be found in Harrison and Pliska [78] , [79] . It is tempting to believe the 
converse of Theorem 5.4.7 (i.e. , that the absence of arbitrage implies the 
existence of a risk-neutral measure) . This is true in discrete-time models (see 
Dalang, Morton, and Willinger [45] ) ,  but in continuous-time models a slightly 
stronger condition is needed to guarantee existence of a risk-neutral measure. 
See Delbaen and Schachermayer [49] for a summary of relevant results . 

The distinction between forward contracts and futures was pointed out by 
Margrabe [ 1 18] and Black [13] . No-arbitrage pricing of futures in a discrete
time model was developed by Cox, Ingersoll, and Ross [40] and Jarrow and 
Oldfield [98] . 

5 .  9 Exercises 

Exercise 5 .1 .  Consider the discounted stock price D(t)S(t) of (5 .2 .19) . In 
this problem, we derive the formula (5 .2 .20) for d(D(t)S(t) ) by two methods. 
(i) Define f(x) = S(O)ex and set 

X(t) = 1t a(s) dW(s) + 1t ( o:(s) - R(s) - �a2 (s)) ds 

so that D(t)S(t) = f(X(t) ) .  Use the It6-Doeblin formula to compute 
df(X(t) ) .  

(ii) According to Ito's product rule, 

d(D(t)S(t) ) = S(t) dD(t) + D(t) dS(t) + dD(t) dS(t) . 

Use (5 .2 .15) and (5 .2 .18) to work out the right-hand side of this equation. 

Exercise 5.2 (State price density process) .  Show that the risk-neutral 
pricing formula (5.2 .30) may be rewritten as 

D(t)Z(t)V(t) = lE [D(T)Z(T)V(T) iF(t) ] . (5 .9 . 1 ) 
Here Z(t) is the Radon-Nikodym derivative process (5 .2 . 1 1 ) when the market 
price of risk process 8(t) is given by (5 .2 .21) and the conditional expectation 
on the right-hand side of (5.9. 1 )  is taken under the actual probability measure 
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IP', not the risk-neutral measure JP>. In particular, if for some A E :F(T) a deriva
tive security pays off [A (i .e. , pays 1 if A occurs and 0 if A does not occur) , 
then the value of this derivative security at time zero is JE[D(T)Z(T)KA] · The 
process D(t)Z(t) appearing in (5.9. 1 ) is called the state price density process. 
Exercise 5.3. According to the Black-Scholes-Merton formula, the value at 
time zero of a European call on a stock whose initial price is S(O) = x is given 
by 

c(O, x) = xN(d+ (T, x) ) - Ke-rTN(d- (T, x) ) , 
where 

d+ (T, x) = a� [tog ; + (r + �a2)r] , 

d_ (T, x) = d+ (T, x) - av'T. 
The stock is modeled as a geometric Brownian motion with constant volatil
ity a > 0, the interest rate is constant r, the call strike is K, and the call 
expiration time is T. This formula is obtained by computing the discounted 
expected payoff of the call under the risk-neutral measure, 

c(O, x) = E [e-rT (S(T) - K)+] 
= iE [e-rT ( x exp { aW(T) + (r - �a2)T} - K) +] , (5.9.2) 

where W is a Brownian motion under the risk-neutral measure IP'. In Exercise 
4.9 (ii) , the delta of this option is computed to be Cx (O, x) = N(d+ (T, x) ) . This 
problem provides an alternate way to compute cx (O, x) . 
(i) We begin with the observation that if h(s) = (s - K)+ , then 

h' (s) = { 0 �f s < K, 
1 If s > K. 

If s = K, then h' (s) is undefined, but that will not matter in what follows 
because S(T) has zero probability of taking the value K. Using the formula 
for h' (s) ,  differentiate inside the expected value in (5.9.2) to obtain a 
formula for Cx (O, x) . 

(ii) Show that the formula you obtained in (i) can be rewritten as 

Cx (O, x) = P(S(T) > K), 
where iP is a probability measure equivalent to JP>.  Show that 

W(t) = W(t) - at 
is a Brownian motion under P. 
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(iii) Rewrite S(T) in terms of W(T) , and then show that 

P{S(T) > K} = P { -"');? < d+ (T, x) } = N(d+ (T, x) ) .  

Exercise 5.4 (Black-Scholes-Merton formula for time-varying, non
random interest rate and volatility) . Consider a stock whose price dif
ferential is 

dS(t) = r(t)S(t) dt + u(t) dW(t) , 
where r(t) and u(t) are nonran<!_om functions of t and W is a Brownian motion 
under the risk-neutral measure IP'. Let T > 0 be given, and consider a European 
call, whose value at time zero is 

(i) Show that S(T) is of the form S(O)ex , where X is a normal random 
variable, and determine the mean and variance of X.  

(ii) Let 

BSM(T, x; K, R, E) = xN ( E� [log ; + (R + E2 /2)T] ) 
-e-RTKN (E� [log ; + (R - E2/2)rJ ) 

denote the value at time zero of a European call expiring at time T when 
the underlying stock has constant volatility E and the interest rate R is 
constant . Show that 

c(O, S(O) ) � BSM ( S(O) , T, � [ r(t)dt , � [ u2 (t)dt) . 
Exercise 5.5. Prove Corollary 5.3.2 by the following steps. 
(i) Compute the differential of z(t) , where Z(t) is given in Corollary 5.3.2 . 
(ii) Let M(t) ,  0 :::; t :::; T, be a martingale under iP. Show that M(t) = 

Z(t)M(t) is a martingale under IP'. 
(iii) According to Theorem 5.3. 1 ,  there is an adapted process F(u) ,  0 :::; u :::; T, 

such that 
M(t) = M(O) + 1T F(u) dW(u) ,  0 :::; t :::; T. 

Write M(t) = M(t) · z(t ) and take its differential using Ito's product rule. 
(iv) Show that the differential of M(t) is the sum of an adapted process, which 

we call f(t) , times dW(t) , and zero times dt. Integrate to obtain (5.3.2) . 
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Exercise 5.6. Use the two-dimensional Levy Theorem, Theorem 4.6.5, to 
prove the two-dimensional Girsanov Theorem (i.e. , Theorem 5.4. 1 with d = 2) . 

Exercise 5.7. (i) Suppose a multidimensional market model as described in 
Section 5.4.2 has an arbitrage. In other words, suppose there is a portfolio 
value process satisfying X1 (0) = 0 and 

lP{X1 (T) � 0} = 1 ,  lP{X1 (T) > 0} > 0, (5.4.23) 

for some positive T. Show that if X2 (0) is positive, then there exists a 
portfolio value process X2 (t) starting at X2 (0) and satisfying 

(5.4.24) 

(ii) Show that if a multidimensional market model has a portfolio value pro
cess X2 (t) such that X2(0) is positive and (5.4.24) holds, then the model 
has a portfolio value process X1 (0) such that X1 (0) = 0 and (5.4.23) 
holds. 

Exercise 5.8 (Every strictly positive asset is a generalized geometric 
Brownian motion) . Let ( {l, :F, JP) be a probability space on which is defined 
a Brownian motion W(t) , 0 ::; t ::; T. Let :F(t) ,  0 ::; t ::; T, be the filtration 
generated by this Brownian motion. Assume there is a unique risk-neutral 
measure iP, and let W ( t) , 0 ::; t ::; T, be the Brownian motion under iP obtained 
by an application of Girsanov's Theorem, Theorem 5.2.3 . 

Corollary 5.3.2 of the Martingale Representation Theorem asserts that 
every martingale M(t) , 0 ::; t ::; T, under iP can be written as a stochastic 
integral with respect to W(t) , 0 ::; t ::; T. In other words, there exists an 
adapted process F(t) , 0 ::; t ::; T, such that 

M(t) = M(O) + 1t F(u) dB(u) ,  0 ::;  t ::;  T. 

Now let V(T) be an almost surely positive ( "almost surely" means with 
probability one under both lP and iP since these two measures are equivalent) , 
:F(T)-measurable random variable. According to the risk-neutral pricing for
mula (5.2 .31 ) ,  the price at time t of a security paying V(T) at time T is 

V(t) = lE [ e - It R(u)duV(T) i :F(t) J , 0 ::;  t ::;  T. 

(i) Show that there exists an adapted process F(t) , 0 ::; t ::; T, such that 

dV(t) = R(t)V(t) dt + ���� dW(t) , 0 ::;  t ::; T. 
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(ii) Show that, for each t E [0, T] , the price of the derivative security V(t) at 
time t is almost surely positive. 

(iii) Conclude from (i) and (ii) that there exists an adapted process a(t) , 0 � 
t � T, such that 

dV(t) = R(t)V(t) dt + a(t)V(t) dW(t) , 0 � t � T. 
In other words, prior to time T, the price of every asset with almost surely 
positive price at time T follows a generalized (because the volatility may be 
random) geometric Brownian motion. 

Exercise 5.9 (Implying the risk-neutral distribution).  Let S(t) be the 
price of an underlying asset, which is not necessarily a geometric Brownian 
motion (i .e . , does not necessarily have constant volatility) . With S(O) = x, 
the risk-neutral pricing formula for the price at time zero of a European call 
on this asset, paying (S(T) - Kt at time T, is 

(Normally we consider this as a function of the current time 0 and the current 
stock price x, but in this exercise we shall also treat the expiration time T 
and the strike price K as variables, and for that reason we include them as 
arguments of c. ) We denote by p(O, T, x, y) the risk-neutral density in the y 
variable of the distribution of S(T) when S(O) = x. Then we may rewrite the 
risk-neutral pricing formula as 

c(O, T, x, K) = e-rr ioo (y - K)jj(O, T, x, y) dy. (5.9.3) 

Suppose we know the market prices for calls of all strikes (i .e . , we know 
c(O, T, x, K) for all K > 0) .2 We can then compute cK (O, T, x, K) and 
CKK (O, T, x, K) , the first and second derivatives of the option price with re
spect to the strike. Differentiate (5.9.3) twice with respect to K to obtain the 
equations 

CK (O, T, x, K) = -e-rT ioo p(O, T, x, y)dy 
CKK (O, T, x, K) = e-rTp(O, T, x, K) . 

-e-rTP{S(T) > K}, 

The second of these equations provides a formula for the risk-neutral distri
bution of S(T) in terms of call prices: 

p(O, T, x, K) = erTCKK (O, T, x, K) for all K > 0. 
2 In practice, we do not have this many prices. We have the prices of calls at some 

strikes, and we can infer the prices of calls at other strikes by knowing the prices 
of puts and using put-call parity. We must create prices for the calls of other 
strikes by interpolation of the prices we do have. 
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Exercise 5.10 (Chooser option) . Consider a model with a unique risk
neutral measure iP and constant interest rate r. According to the risk-neutral 
pricing formula, for 0 $ t $ T, the price at time t of a European call expiring 
at time T is 

C(t) = E [ e-r(T-t) (S(T) - K) + I F(t)] , 

where S(T) is the underlying asset price at time T and K is the strike price 
of the call. Similarly, the price at time t of a European put expiring at time 
T is 

Finally, because e-rts(t) is a martingale under iP, the price at time t of a 
forward contract for delivery of one share of stock at time T in exchange for 
a payment of K at time T is 

Because 

F(t) = E [ e-r(T-t) (S(T) - K) I F(t)] 
= ertjE [ e-rTS(T) j J="(t)] - e-r(T-t) K 
= S(t) - e-r(T-t) K. 

(S(T) - K) + - (K - S(T) ) + = S(T) - K, 
we have the put-call parity relationship 

C( t) - P( t) = iE [ e-r(T-t) ( S(T) - Kt - e-r(T-t) ( K - S(T)) + I J="(t)] 
= iE [ e-r(T-t) (S(T) - K) I J="(t)] = F(t) . 

Now consider a date to between 0 and T, and consider a chooser option, 
which gives the right at time to to choose to own either the call or the put. 
(i) Show that at time to the value of the chooser option is 

C(to ) + max{O, -F(to ) } = C(to ) + ( e-r(T-to ) K - S(to )) + . 
(ii) Show that the value of the chooser option at time 0 is the sum of the 

value of a call expiring at time T with strike price K and the value of a 
put expiring at time to with strike price e-r(T-to )  K. 

Exercise 5 .11  (Hedging a cash flow) . Let W(t) , 0 $ t $ T, be a Brownian 
motion on a probability space (il, J=", lP) , and let J="(t) , 0 $ t $ T, be the 
filtration generated by this Brownian motion. Let the mean rate of return 
a(t) , the interest rate R(t) , and the volatility u (t) be adapted processes, and 
assume that u (t) is never zero. Consider a stock price process whose differential 
is given by (5.2 . 15) : 
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dS(t) = a(t)S(t) dt + a(t)S(t) dW (t) , 0 � t � T. 

Suppose an agent must pay a cash flow at rate C(t) at each time t, where 
C(t) , 0 � t � T, is an adapted process. If the agent holds Ll(t) shares of stock 
at each time t, then the differential of her portfolio value will be 

dX (t) = Ll (t) dS(t) + R(t) (X (t) - Ll (t)S(t) ) dt - C(t) dt. (5.9 .4) 

Show that there is a nonrandom value of X(O) and a portfolio process Ll (t) , 
0 � t � T, such that X(T) = 0 almost surely. (Hint: Define the risk-neutral 
measure and apply Corollary 5.3.2 of the Martingale Representation Theorem 
to the process 

M(t) = IE [loT D(u)C(u) du i .F(t)] , 0 � t � T, (5.9.5) 

where D(t) is the discount process (5.2. 17) . )  

Exercise 5 .12 (Correlation under change of measure) . Consider the 
multidimensional market model of Subsection 5.4.2, and let Bi (t) be defined 
by (5.4.7) . Assume that the market price of risk equations (5.4. 18) have a 
solution el (t) , . . .  ' ed (t) , and let jp> be the corresponding risk-neutral measure 
under which 

are independent Brownian motions. 
( " ) D . - 1 d d fi (t) - "d u,, (t)ll, (t) Sh th t 1 ror z - , . . .  , , e ne "fi - L...,j=l u; (t) . ow a 

is a Brownian motion under lP'. 
(ii) We saw in (5.4.8) that 

Show that 

(iii) We saw in (5.4.9) that dBi (t) dBk (t ) = Pik (t) . This is the instantaneous 
correlation between Bi (t) and Bk (t) . Because (5.4.9) makes no reference 
to the probability measure, Exercise 4.17 of Chapter 4 implies that under 
both lP' and iP', the correlation between the pair of increments B1 (to + f) -
B1 (to ) and B2 (to + f) - B2 (to ) is approximately Pik (to ) .  Show that 
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This formula means that, conditioned on :F(to ) ,  under both lP and Jii> the 
correlation between the pair of increments B1 (to + €) - B1 (to) and B2 (to + 
€) - B2 (to ) is approximately Pik ( to ) .  

(iv) Show that if Pik (t) is not random (although it may still depend on t), then 
for every t 2: 0, 

Since Bi (t) and Bk (t) both h�ve variance t under lP and Bi (t) and Bk (t) 
both have variance t under JP, this shows that the correlation between 
Bi (t) and Bk (t) under lP is the same as the correlation between Bi (t) and 
Bk (t) under Jii>. In both cases, this correlation is t J; Pik (u) du. If Pik is 
constant, then the correlation is simply Pik · 

(v) When Pik (t) is random, we can have 

Even though instantaneous correlations are unaffected by a change of 
measure, correlations can be. To see this , we take m = d = 2 and let W1 (t) 
and W2 (t) be independent Brownian motions under JP. Take au (t) = 
a21 (t) = 0, a12 (t) = 1, and a22 (t) = sign(W1 (t) ) ,  where . ( ) { 1 if X � 0, Sign X = - 1 if X < 0. 

Then a1 (t) = 1 ,  a2 (t) = 1 ,  Pu (t) = 1 ,  P22 (t) = 1 and P12 (t) = P21 (t) = 
sign(W1 (t) ) .  Take 81 (t) = 1 and 82 (t) = 0, so that W1 (t) = W1 (t) + t 
and W2 (t) = W2(t) . Then 'YI (t) = 'Y2 (t) = 0. We have 

Show that 

B1 (t) = W2(t) , B2 (t) = 1t sign(W1 (u)) dW2 (u) , 

Bl (t) = Bl (t) , B2 (t) = B2(t) . 

Exercise 5.13.  In part (v) of Exercise 5 .12 ,  we saw that when we change 
measures and change Brownian motions, correlations can change if the in
stantaneous correlations are random. This exercise shows that a change of 
measure without a change of Brownian motions can change correlations if the 
market prices of risk are random. 
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Let W1 (t) and W2 (t) be independent Brownian motions under a prob
ability measure P. Take 81 (t) = 0 and 82(t) = W1 (t) in the multidi
mensional Girsanov Theorem, Theorem 5.4. 1 .  Then W1 (t) = W1 (t) and 
W2(t) = W2(t) + f� W1 (u) du. 
(i) Because W1 (t) and W2(t) are Brownian motions under iP', the equation 

EW1 (t) = EW2 (t) = 0 must hold for all t E [0, T] . Use this equation to 
conclude that 

EW1 (t) = EW2(t) = 0 for all t E [0, T] . 

(ii) From Ito's product rule, we have 

Use this equation to show that 

This is different from 

Exercise 5.14 (Cost of carry) . Consider a commodity whose unit price 
at time t is S(t) . Ownership of a unit of this commodity requires payment at 
a rate a per unit time ( cost of carry) for storage. Note that this payment is 
per unit of commodity, not a fraction of the price of the commodity. Thus, 
the value of a portfolio that holds Ll(t) units of the commodity at time t and 
also invests in a money market account with constant rate of interest r has 
differential 

dX(t) = Ll(t) dS(t) - aLl(t) dt + r (X(t) - Ll(t)S(t) ) dt. (5.9.6) 

As with the dividend-paying stock in Section 5.5, we must choose the risk
neutral measure so that the discounted portfolio value e-rt X(t) is a martin
gale. We shall assume a constant volatility, so in place of (5.5 .6) we have 

dS(t) = rS(t) dt + aS(t) dW(t) + a dt, (5 .9 .7) 
where W(t) is a Brownian motion under the risk-neutral measure iP'. 
(i) Show that when dS(t) is given by (5.9.7) , then under iP' the discounted 

portfolio value process e-rt X(t) , where X(t) is given by (5.9 .6) , is a mar
tingale. 

(ii) Define 
Y(t) = exp { aW (t) + (r - �a2) t} . 
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Verify that , for 0 � t � T, 

dY(t) = rY(t) dt + o.Y(t) dW(t) , 
that e-rtY(t) is a martingale under P, and that 

satisfies (5.9.7) . 

t a S(t) = S(O)Y(t) + Y(t) Jo Y(s) ds (5.9.8) 

(iii) For 0 � t � T, derive a formula for E[S(T) jF(t)] in terms of S(t) by 
writing 

E[S(T) IF(t)] = S(O)E[Y(T) IF(t)] + E[Y(T) IF(t)] 1t 
Y�s) ds 

+a 1T 
iE [���; I F(t)] ds (5.9 .9) 

and then simplifying the right-hand side of this equation. 
(iv) The process IE [S(T) IF(t)] is the futures price process for the commodity 

(i.e . , Futs (t , T) = E[S(T) IF(t)] ) .  This must be a martingale under P. To 
check the formula you obtained in (iii ) , differentiate it and verify that 
E[S(T) jF(t)] is a martingale under P. 

(v) Let 0 � t � T be given. Consider a forward contract entered at time t to 
purchase one unit of the commodity at time T for price K paid at time 
T. The value of this contract at time t when it is entered is 

E [e-r(T-t) (S(T) - K) iF(t)] . (5.9. 10) 

The forward price Fors(t, T) is the value of K that makes the contract 
value (5.9. 10) equal to zero. Show that Fors (t, T) = Futs (t, T) . 

(vi) Consider an agent who takes a short position in a forward contract at time 
zero. This costs nothing and generates no income at time zero. The agent 
hedges this position by borrowing S(O) from the money market account 
and purchasing one unit of the commodity, which she holds until time T. 
At time T, the agent delivers the commodity under the forward contract 
and receives the forward price Fors(O, T) set at time zero. Show that this 
is exactly what the agent needs to cover her debt to the money market 
account , which has two parts. First of all, at time zero, the agent borrows 
S(O) from the money market account in order to purchase the unit of the 
commodity. Second, between times zero and T, the agent pays the cost 
of carry a per unit time, borrowing from the money market account to 
finance this . (Hint : The value of the agent's portfolio of commodity and 
money market account begins at X(O) = 0 (one unit of the commodity 
and a money market position of -S(O) ) and is governed by (5.9.6) with 
Ll(t) = 1 .  Write this equation, determine d (e-rtx(t) ) , integrate both 
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sides from zero to T, and solve for X(T) . You wiH need the fact; that 
e-rt (dS(t) - rS(t) dt) ""' d(e-rtS(t)) . You should !et X(T) = S(T) 
Fors(O, T) . )  
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6 

Connections with Partial Differential Equations 

6. 1 Introduction 

There are two ways to compute a derivative security price: ( 1 ) use Monte 
Carlo simulation to generate paths of the underlying security or securities un
der the risk-neutral measure and use these paths to estimate the risk-neutral 
expected discounted payoff; or (2) numerically solve a partial differential equa
tion. This chapter addresses the second of these methods by showing how to 
connect the risk-neutral pricing problem to partial differential equations. Sec
tion 6.2 explains the concept of stochastic differential equations, which is used 
to model asset prices. Solutions to stochastic differential equations have the 
Markov property, as is discussed in Section 6.3 . Because of this , related to 
each stochastic differential equation there are two partial differential equa
tions, one that includes discounting and one that does not. These partial dif
ferential equations and their derivations are the subject of Section 6.4. Section 
6.5 shows how these ideas can be applied to interest rate models to compute 
bond prices and the prices of derivatives on bonds. The discussion of Sections 
6.2-6.5 concerns one-dimensional processes. The multidimensional theory is 
outlined in Section 6.6, and a representative example that uses this theory, 
pricing and hedging an Asian option, is presented in that section. 

6.2 Stochastic Differential Equations 

A stochastic differential equation is an equation of the form 

dX (u) = f3(u, X (u) )  du + -y(u, X (u) )  dW(u) . (6.2 . 1 ) 

Here /3( u, x) and -y( u, x) are given functions, called the drift and diffusion, 
respectively. In addition to this equation, an initial condition of the form 
X ( t) = x , where t 2:: 0 and x E IR, is specified. The problem is then to find a 

stochastic process X(T) , defined for T 2:: t, such that 
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X(t) = x, 
X(T) = X(t) + i

T {3(u, X(u) ) du + iT f'(u, X(u) ) dW(u) . 
(6.2.2) 

(6.2.3) 

Under mild conditions on the functions {3(u, x) and f'(u, x) , there exists a 
unique process X (T) , T 2:: t, satisfying (6 .2 .2) and (6 .2 .3) .  However, this 
process can be difficult to determine explicitly because it appears on both the 
left- and right-hand sides of equation (6.2 .3) .  

The solution X(T) at time T will be F(T)-measurable (i.e. , X(T) only 
depends on the path of the Brownian motion up to time T.) In fact , since the 
initial condition X ( t) = x is specified, all that is really needed to determine 
X(T) is the path of the Brownian motion between times t and T. 

Although stochastic differential equations are, in general, difficult to solve, 
a one-dimensional linear stochastic differential equation can be solved explic
itly. This is a stochastic differential equation of the form 

dX(u) = (a (u) + b(u)X(u) ) du + ('y (u) + a(u)X(u) ) dW(u) , (6.2.4) 

where a (u) ,  b(u) , a(u) , and f'(u) are nonrandom functions of time. Indeed, 
this equation can even be solved when a(u) ,  b(u) ,  f'(u) ,  and a(u) are adapted 
random processes (see Exercise 6. 1 ) , although it is then no longer of the form 
(6 .2 . 1 ) . In order to guarantee that the solution to (6.2 . 1 ) has the Markov 
property discussed in Section 6.3 below, the only randomness we permit on 
the right-hand side of (6.2 . 1 ) is the randomness inherent in the solution X(u) 
and in the driving Brownian motions W(u) . There cannot be additional ran
domness such as would occur if any of the processes a(u) , b(u) , l'(u) , and 
a(u) appearing in (6.2 .4) were themselves random. The next two examples 
are special cases of (6.2.4) in which a(u) ,  b(u) ,  l'(u) ,  and a(u) are nonrandom. 

Example 6. 2. 1 (Geometric Brownian motion) . The stochastic differential equa
tion for geometric Brownian motion is 

dS(u) = aS(u) du + aS(u) dW(u) . 
In the notation of (6.2 . 1 ) , {3(u, x) = ax and l'(u, x) = ax. We know the formula 
for the solution to this stochastic differential equation when the initial time 
is zero and the initial position is S(O) , namely 

S(t) = S(O) exp { aW(t) + (a - �a2) t } · 
Similarly, for T 2:: t, 

S(T) = S(O) exp { aW(T) + (a - �a2)T } · 

Dividing S(T) by S(t) , we obtain 
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���i = exp { u (W(T) - W(t) ) + (a - �u2) (T - t) } · 

If the initial condition is given at time t rather than at time zero and is 
S(t) = x, then this last equation becomes 

S(T) = x exp { u (W(T) - W(t) ) + (a - �u2) (T - t) } · 
As expected, when we use the initial condition S(t) = x, then S(T) depends 
only on the path of the Brownian motion between times t and T. 

Example 6. 2. 2 {Hull-White interest rote model} . Consider the stochastic dif
ferential equation 

dR(u) = (a(u) - b(u)R(u)) du + u(u) dW(u) , 

where a(u) , b(u) , and u(u) are nonrandom positive functions of the time 
variable u and W(u) is a Brownian motion under a risk-neutral measure fiii. In 
this case, we use the dummy variable r rather than x, and {3(u, r) = a(u) 
b(u)r, -y(u, r) = u(u) . Let us take the initial condition R(t) = r. We can solve 
the stochastic differential equation by first using the stochastic differential 
equation to compute 

d ( eiou b(v)dv R(u)) = eiou b(v)dv (b(u)R(u) du + dR(u)) 

= eiou b(v)dv (a(u) du + u(u) dW(u)) . 

Integrating both sides from t to T and using the initial condition R(t) = r, 
we obtain the formula 

eJ:J' b(v)dvR(T) = rei; b(v)dv+ 1T eiou b(v) dva(u) du+ 1T eiou b(v) dvu(u) dW(u) , 

which we can solve for R(T) : 

R(T) = re- It b(v)dv + 1T e- I:; b(v) dva(u) du + 1T e- I:; b(v) dvu(u) dW(u) . 

This is an explicit formula for the solution R(T) . The right-hand side of the 
final equation does not involve the interest rate process R(u) apart from the 
initial condition R(t) = r; it contains only this initial condition, an integral 
with respect to time, and an Ito integral of given functions. Note also that 
the Brownian motion path between times t and T only enters this formula. 

Recall from Theorem 4.4.9 that the Ito integral It e- I:; b(v)dvu(u) dW(u) 
of the nonrandom integrand e- I:; b(v)dvu(u) is normally distributed with mean 
zero and variance It e-2 I:; b(v)dvu2 (u) du. The other terms appearing in the 
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formula above for R(T) are nonrandom. Therefore, under the risk-neutral 
measure IP, R(T) is normally distributed with mean 

re- ft b(v)dv + [T e- f:; b(v) dvo:(u) du 

and variance lT e-2 J:; b(v)dvu2 (u) du. 

In particular, there is a positive probability that R(T) is negative. This is one 
of the principal objections to the Hull-White model. D 

Example 6. 2. 3 {Cox-Ingersoll-Ross interest rate model}. In the Cox-Ingersoll
Ross (CIR) model, the interest rate is given by the stochastic differential 
equation 

dR(u) = (a - bR(u)) du + u.Jii(0 dW(u) , (6.2.5) 
where a, b, and u are positive constants. Suppose an initial condition R(t) = r 
is given. Although there is no formula for R(T) , there is one and only one 
solution to this differential equation starting from the given initial condition. 
This solution can be approximated by Monte Carlo simulation, and many 
of its properties can be determined, even though we do not have an explicit 
formula for it. For instance, in Example 4.4. 1 1 , the mean and variance of R(T) 
were computed when the initial time is t = 0 and the initial interest rate is 
R(O) . 

Unlike the interest rate in the Hull-White model, the interest rate in the 
Cox-Ingersoll-Ross model cannot take negative values. When the interest rate 
approaches zero, the term u.Jii{0 dW(u) also approaches zero. With the 
volatility disappearing, the behavior of the interest rate near zero depends on 
the drift term a - bR(u) , and this is a >  0 when R(u) = 0. The positive drift 
prevents the interest rate from crossing zero into negative territory. 

More information about the solution to (6 .2 .5) is provided in Exercise 6.6 
and Remark 6.9 . 1 following that exercise. D 

6.3 The Markov Property 

Consider the stochastic differential equation (6.2 . 1 ) .  Let 0 � t � T be given, 
and let h(y) be a Borel-measurable function. Denote by 

g(t , x) = IE1•xh(X(T) ) (6.3. 1 ) 
the expectation of h(X(T) ) ,  where X(T) is the solution to (6.2. 1 ) with initial 
condition X(t) = x. (We assume that IE1•x lh(X(T) ) I < oo. ) Note that there is 
nothing random about g(t , x) ; it is an ordinary (actually, Borel-measurable) 
function of the two dummy variables t and x. 
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If we do not have an explicit formula for the distribution of X(T) , we could 
compute g(t , x) numerically by beginning at X(t) = x and simulating the 
stochastic differential equation. One way to do this would be to use the Euler 
method, a particular type of Monte Carlo method: choose a small positive step 
size 8, and then set 

X(t + 8) = x + f3(t, x) 8 + -y (t, x) v'o  t: 1 , 

where t:1 is a standard normal random variable. Then set 

X(t + 28) = X(t + 8) + /3(t + 8, X(t + 8) ) 8 + -y (t + 8, X(t + 8))vto t:2 , 

where t:2 is a standard normal random variable independent of f l . By this 
device, one eventually determines a value for X(T) (assuming 8 is chosen so 
that Tit is an integer) . This gives one realization of X(T) (corresponding 
to one w) . Now repeat this process many times and compute the average of 
h(X(T) ) over all these simulations to get an approximate value for g(t , x) . 
Note that if one were to begin with a different time t and initial value x, one 
would get a different answer (i .e. , the answer is a function of t and x) . This 
dependence on t and x is emphasized by the notation Et,x in (6.3 . 1 ) .  

Theorem 6.3. 1 .  Let X(u) , u 2:: 0, be a solution to the stochastic differential 
equation {6. 2. 1) with initial condition given at time 0. Then, for 0 � t � T, 

lE [h(X(T) ) iF(t)] = g (t, X(t) ) . (6.3.2) 
While the details of the proof of Theorem 6.3. 1 are quite technical and will 

not be given, the intuitive content is clear. Suppose the process X(u) begins 
at time zero, being generated by the stochastic differential equation (6.2 . 1 ) , 
and one watches it up to time t. Suppose now that one is asked, based on 
this information, to compute the conditional expectation of h(X(T) ) ,  where 
T ;::: t. Then one should pretend that the process is starting at time t at its 
current position, generate the solution to the stochastic differential equation 
corresponding to this initial condition, and compute the expected value of 
h(X(T) ) generated in this way. In other words, replace X(t) by a dummy x in 
order to hold it constant , compute g(t , x) = lEt,xh(X(T) ) ,  and after computing 
this function put the random variable X(t) back in place of the dummy x. 
This is the procedure set forth in the Independence Lemma, Lemma 2.3.4, and 
it is applicable here because the value of X (T) is determined by the value of 
X(t) , which is F(t)-measurable, and the increments of the Brownian motion 
between times t and T, which are independent of F(t) .  

Notice in the discussion above that although one watches the stochastic 
process X(u) for 0 � u � t, the only relevant piece of information when 
computing IE [h(X(T) ) IF(t)] is the value of X(t) . This means that X(t) is a 
Markov process (see Definition 2 .3 .6) . We highlight this fact as a corollary. 
Corollary 6.3.2 .  Solutions to stochastzc differential equations are Markov 
processes. 
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6.4 Partial Differential Equations 

The Feynman-Kac Theorem below relates stochastic differential equations and 
partial differential equations. When this partial differential equation is solved 
(usually numerically) , it produces the function g ( t, x) of ( 6.3. 1 ) .  The Euler 
method described in the previous section for determining this function con
verges slowly and gives the function value for only one pair (t , x) . Numerical 
algorithms for solving equation (6.4. 1 )  below converge quickly in the case of 
one-dimensional x being considered here and give the function g(t , x) for all 
values of (t , x) simultaneously. The relationship between geometric Brownian 
motion and the Black-Scholes-Merton partial differential equation is a special 
case of the relationship between stochastic differential equations and partial 
differential equations developed in the following theorems. 

Theorem 6.4. 1 (Feynman-Kac) . Consider the stochastic differential equa
tion 

dX(u) = (J(u, X(u) )  du + 'Y(u, X(u) ) dW(u) .  (6.2 . 1 )  
Let h(y) be a Borel-measurable function. Fix T > 0, and let t E [0 , T] be given. 
Define the function 

g(t , x) = lEt,xh(X(T) ) .  (6.3. 1 )  
{We assume that lEt,x ih(X(T) ) i < oo for all t and x.} Then g(t, x) satisfies 
the partial differential equation 

gt (t, x) + (J(t, x)gx (t, x) + �'Y2 (t , x)gxx (t, x) = 0 (6.4. 1 )  

and the terminal condition 

g(T, x) = h(x) for all x . (6.4.2) 

The proof of the Feynman-Kac Theorem depends on the following lemma. 

Lemma 6.4.2.  Let X(u) be a solution to the stochastic differential equation 
{6.2. 1} with initial condition given at time 0. Let h(y) be a Borel-measurable 
function, fix T > 0, and let g(t, x) be given by {6. 3. 1}. Then the stochastic 
process 

is a martingale. 
g(t , X(t) ) ,  0 :;  t :;  T, 

PROOF: Let 0 :;  s :;  t :; T be given. Theorem 6.3. 1 implies 

lE [h(X(T)) iF(s)] = g(s , X(s ) ) ,  

lE [h(X(T) ) iF(t) ] = g(t, X(t)) . 
Take conditional expectations of the second equation, using iterated condi
tioning and the first equation, to obtain 



6.4 Partial Differential Equations 269 

E [g(t, X(t)) iF(s)] = E [E [h(X(T) ) iF(t)] IF(s)] 
= E [h(X(T) ) iF(s)] 
= g(s , X(s ) ) .  D 

OUTLINE OF PROOF OF THEOREM 6 .4 . 1 :  Let X(t) be the solution to the 
stochastic differential equation (6.2 . 1 )  starting at time zero. Since g(t, X(t)) 
is a martingale, the net dt term in the differential dg(t, X (t)) must be zero. 
If it were positive at any time, then g(t, X (t)) would have a tendency to rise 
at that time; if it were negative, g(t, X(t) ) would have a tendency to fall . 
Omitting the argument (t , X(t)) in several places below, we compute 

1 dg(t , X(t)) = 9t dt + 9x dX + 29xx dX dX 
1 2 = 9t dt + f3gx dt + 'Y9x dW + 2'Y 9xx dt 

= [9t + f3gx + �'Y29xx] dt + 'Y9x dW 

Setting the dt term to zero and putting back the argument (t , X(t) ) ,  we obtain 

1 
9t (t, X(t)) + (3(t, X(t))gx (t , X(t)) + 2'Y2 (t, X(t))9xx (t , X(t)) = 0 

along every path of X. Therefore, 

1 2 9t (t, x) + (3(t , x)gx (t, x) + 2'Y (t , x)gxx (t, x) = 0 

at every point (t , x) that can be reached by (t , X(t) ) .  For example, if X(t) is 
a geometric Brownian motion, then (6.4. 1 )  must hold for every t E [0, T) and 
every x > 0. On the other hand, if X(t) is a Hull-White interest rate process, 
which can take any positive or negative value, then (6.4. 1 )  must hold for every 
t E [O, T) and every x E R D 

The general principle behind the proof of the Feynman-Kac theorem is : 
1 .  find the martingale, 
2. take the differential, and 
3. set the dt term equal to zero. 

This gives a partial differential equation, which can then be solved numer
ically. We illustrate this three-step procedure in the following theorem and 
subsequent examples. 

Theorem 6.4.3 (Discounted Feynman-Kac) . Consider the stochastic 
differential equation 

dX(u) = (3(u, X(u) ) du + 7(u, X(u) ) dW(u) . (6.2 . 1 )  
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Let h(y) be a Borel-measumble function and let r be constant. Fix T > 0, and 
let t E [0 , T] be given. Define the function 

f(t , x) = lEt ,x [e-r(T-t)h(X(T))] . (6.4.3) 

(We assume that lEt ,x ih(X(T) ) i < oo for all t and x .) Then f(t, x) satisfies 
the partial differential equation 

ft (t , x) + (3(t, x)fx (t, x) + �-y2(t , x)fxx (t, x) = r f(t , x) (6.4.4) 

and the terminal condition 

f(T, x) = h(x) for all x. (6.4.5) 

OuTLINE OF PROOF: Let X(t) be the solution to the stochastic differential 
equation (6.2 . 1 ) starting at time zero. Then 

f(t , X(t)) = lE [e-r(T-t)h(X(T) ) iF(t)] . 

However, it is not the case that f(t, X(t) ) is a martingale. Indeed, if 0 � s � 
t � T, then 

lE [f(t , X(t)) IF(s)] = lE [lE [e-r(T-t) h(X(T) ) iF(t)] IF(s)] 
= lE [e-r(T-t)h(X(T) ) iF(s)] , 

which is not the same as 

f(s , X(s) ) = lE [e-r(T-s)h(X(T) ) iF(s)] 

because of the differing discount terms. The difficulty here is that in order to 
get the martingale property from iterated conditioning, we need the random 
variable being estimated not to depend on t, the time of the conditioning. To 
achieve this , we "complete the discounting," observing that 

e-rtf(t , X(t) ) = lE [e-rTh(X(T) ) iF(t)] . 

We may now apply iterated conditioning to show that e-rt f(t , X(t) ) is a 
martingale. The differential of this martingale is 

d (e-rtf(t , X(t)) ) = e-rt [ - rf dt + ft dt + fx dX + �fxx dX dX] 

= e-rt [ - r f + ft + f3fx + �'"Y2 fxx] dt + e-rt'"Yfx dW 

Setting the dt term equal to zero, we obtain (6.4.4) . D 

Example 6.4 .4 {Options on a geometric Brownian motion). Let h(S(T) ) be 
the payoff at time T of a derivative security whose underlying asset is the 
geometric Brownian motion 
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dS(u) = aS(u) du + aS(u) dW(u) .  (6.4.6) 

We may rewrite this as 

dS(u) = rS(u) du + aS(u) dW(u) , (6 .4.7) 

where W(u) is a Brownian motion under the risk-neutral probability measure 
P. Here we assume that a and the interest rate r are constant . According to 
the risk-neutral pricing formula (5.2 .31 ) ,  the price of the derivative security 
at time t is 

V(t) = E [e-r(T-t) h(S(T) ) iF(t)] . (6.4.8) 
Because the stock price is Markov and the payoff is a function of the stock 
price alone, there is a function v(t , x) such that V(t) = v(t, S(t) ) .  Moreover, 
the function v( t, x) must satisfy the discounted partial differential equation 
(6.4.4) . This is the Black-Scholes-Merton equation 

1 2 2 Vt (t, x) + rxvx (t, x) + 20'  x Vxx (t , x) = rv(t , x) . (6.4.9) 

When the underlying asset is a geometric Brownian motion, this is the right 
pricing equation for a European call, a European put, a forward contract, and 
any other option that pays off some function of S(T) at time T. 

Note that to derive (6.4.9) we use the discounted partial differential equa
tion (6.4.4) when the stochastic differential equation for the underlying process 
is (6.4.7) rather than (6.4.6) (i .e. , we have rxvx (t, x) in (6.4.9) rather than 
axvx (t , x) ) . This is because we are computing the conditional expectation in 
(6.4.8) under the risk-neutral measure P and hence must use the differential 
�uation that represents S(u) in terms of W(u) , the Brownian motion under 
IP'. In other words, we are using the Discounted Feynman-Kac Theorem with 
W ( u) replacing W ( u) and P replacing lP'. D 

In the previous example, if a were a function of time and stock price (i.e. , 
a ( t, x) ) , then the stock price would no longer be a geometric Brownian motion 
and the Black-Scholes-Merton formula would no longer apply. However, one 
can still solve for the option price by solving the partial differential equation 
( 6.4. 9) , where now the constant a2 is replaced by a2 ( t, x) : 

1 2 ) 2 Vt (t, x) + rxvx (t, x) + 20' (t , x x Vxx (t , x) = rv(t, x) . (6.4. 10) 
This equation is not difficult to solve numerically. 

It has been observed in markets that if one assumes a constant volatility, 
the parameter a that makes the theoretical option price given by (6.4.9) agree 
with the market price, the so-called implied volatility, is different for options 
having different strikes . In fact , this implied volatility is generally a convex 
function of the strike price. One refers to this phenomenon as the volatility 
smile. 
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One simple model with nonconstant volatility is the constant elasticity of 
variance (CEV) model, in which u(t , x) = ux6- 1 depends on x but not t .  The 
parameter 8 E (0, 1 )  is chosen so that the model gives a good fit to option 
prices across different strikes at a single expiration date. For this model, the 
stock price is governed by the stochastic differential equation 

dS(t) = rS(t) dt + uS6 (t) dW(t) . 

The volatility uS6- 1 (t) is a decreasing function of the stock price. 
When one wishes to account for different volatilities implied by options 

expiring at different dates as well as different strikes, one needs to allow u to 
depend on t as well as x. This function u(t, x) is called the volatility surface 
(see Exercise 6 . 10) . 

6 . 5  Interest Rate Models 

The simplest models for fixed income markets begin with a stochastic differ
ential equation for the interest rate, e.g. , 

dR(t) = {3(t ,  R(t) ) dt + -y(t, R(t)) dW(t) , (6.5 . 1 ) 
where W(t) is a Brownian motion under a risk-neutral probability measure iP. 
In these models, one begins with a risk-neutral measure iP and uses the risk
neutral pricing formula to price all assets. This guarantees that discounted 
asset prices are martingales under the risk-neutral measure, and hence there is 
no arbitrage. The issue of calibration of these models (i.e. , choosing the model 
and the model parameters so that they give a good fit to market prices) is 
not discussed in this text. 

Models for the interest rate R(t) are sometimes called short-rate models 
because R(t) is the interest rate for short-term borrowing. When the interest 
rate is determined by only one stochastic differential equation, as is the case 
in this section, the model is said to have one factor. The primary shortcoming 
of one-factor models is that they cannot capture complicated yield curve be
havior; they tend to produce parallel shifts in the yield curve but not changes 
in its slope or curvature. 

The discount process is as given in (5.2 . 17) , 
D(t) = e- J; R(s)ds , 

and we denote the money market account price process to be 

_1_ = ef; R(s)ds 
D(t) 

. 

This is the value at time t of one unit of currency invested in the money market 
account at time zero and continuously rolled over at the short-term interest 
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rate R(s) ,  s 2: 0. As discussed following (5.2. 18) , we have the differential 
formulas ( 1 ) R(t) dD(t) = -R(t)D(t) dt, d D(t) = D(t) dt. 

A zero-coupon bond is a contract promising to pay a certain "face" amount , 
which we take to be 1 ,  at a fixed maturity date T. Prior to that, the bond 
makes no payments. The risk-neutral pricing formula (5.2 .30) says that the 
discounted price of this bond should be a martingale under the risk-neutral 
measure. In other words , for 0 :::; t :::; T, the price of the bond B(t, T) should 
satisfy 

D(t)B(t , T) = IE [D(T) i.F(t)] . (6 .5 . 2) 
(Note that B(T, T) = 1 . )  This gives us the zero-coupon bond pricing formula 

B(t, T) = JE [ e- ft R(s)ds I .F(t)] , (6 .5 .3) 

which we take as a definition. Once zero-coupon bond prices have been com
puted, we can define the yield between times t and T to be 

1 Y(t, T) = - T _ t log B(t , T) 

or, equivalently, 
B(t, T) = e-Y(t ,T) (T-t) _ 

The yield Y(t, T) is the constant rate of continuously compounding interest 
between times t and T that is consistent with the bond price B(t, T) . The 30-
year rate at time t is Y(t, 30+ t) ;  this is an example of a long rate. Notice that 
once we adopt a model (6 .5 . 1 ) for the short rate, the long rate is determined 
by the formulas above; we may not model the long rate separately. 

Since R is given by a stochastic differential equation, it is a Markov process 
and we must have 

B(t , T) = f(t , R(t)) 
for some function f(t , r) of the dummy variables t and r. This is a slight step 
beyond the way we have used the Markov property previously because the 
random variable e- It R(s)ds being estimated in (6.5.3) depends on the path 
segment R(s ) ,  t :::; s :::; T, not just on R(T) . However, the only relevant part 
of the path of R before time t is its value at time t, and so the bond price 
B(t, T) must be a function of time t and R(t) . 

To find the partial differential equation for the unknown function f ( t, r) , 
we find a martingale, take its differential, and set the dt term equal to zero. 
The martingale in this case is D(t)B(t, T) = D(t)f(t , R(t)) . Its differential is 

d(D(t)f(t , R(t) ) )=J(t , R(t) ) dD(t) + D(t) df(t, R(t) ) 

=D(t) [ -Rf dt + ft dt + frdR + �frr dR dR] 
=D(t) [ -RJ + ft + /3/r + �72 /rr] dt + D(t)'Yfr dW. 
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Setting the dt term equal to zero, we obtain the partial differential equation 

1 2 ft (t, r) + {J(t, r)fr (t, r) + fY ( t ,  r)frr (t , r) = r f( t ,  r ) .  

We also have the terminal condition 

f(T, r) = 1 for all r 

because the value of the bond at maturity is its face value 1 .  

(6.5.4) 

(6.5.5) 

Example 6. 5. 1 (Hull- White interest rate model}. In the Hull-White model , 
the evolution of the interest rate is given by 

dR(t) = (a(t) - b(t)R(t) ) dt + a(t) dW(t) , 

where a(t) , b(t) , and a(t) are nonrandom positive functions of time. The par
tial differential equation (6.5.4) for the zero-coupon bond price becomes 

ft(t, r) + (a(t) - b(t)r) fr (t , r) + �a2 (t)frr (t , r) = rf(t, r ) .  (6.5.6) 

We initially guess and subsequently verify that the solution has the form 

f(t , r) = e-rC(t,T)-A(t ,T) 

for some nonrandom functions C(t, T) and A(t, T) to be determined. These 
are functions of t E [0 , T] ; the maturity T is fixed. In this case, the yield 

Y(t, T) = - T � t log f(t, r) = T � t (rC(t, T) + A(t, T)) 
is an affine function of r (i .e. , a number times r plus another number) . The 
Hull-White model is a special case of a class of models called affine yield 
models. 

Furthermore, 

ft(t, r) = ( - rC'(t , T) - A' (t , T)) f(t, r ) ,  
fr (t, r) = -C(t, T)f(t, r) , 
frr (t , r) = C2 (t, T)f(t, r) ,  

where C' (t, T) = gtc(t, T) and A' (t, T) = gtA(t, T) . Substitution into the 
partial differential equation (6 .5 .6) gives 

[ ( - C' (t , T) + b(t)C(t, T) - 1)r 

-A' (t, T) - a(t)C(t, T) + �a2 (t)C2 (t , T)] f(t , r) = 0. (6 .5 .7) 
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Because this equation must hold for all r, the term that multiplies r in this 
equation must be zero. Otherwise, changing the value of r would change the 
value of the left-hand side of (6 .5 .7) , and hence it could not always be equal 
to zero. This gives us an ordinary differential equation in t : 

C' (t, T) = b(t)C(t, T) - 1 .  (6.5 .8) 

Setting this term equal to zero in (6 .5 .7) ,  we now see that 

A' (t , T) = -a(t)C(t, T) + �a2 (t)C2 (t, T) . (6 .5 .9) 
The terminal condition (6.5 .5) must hold for all r, and this implies that 
C(T, T) = A(T, T) = 0. Equations (6.5.8) and (6.5 .9) and these terminal con
ditions provide enough information to determine the functions A(t, T) and 
C(t, T) for 0 � t � T. They are 

C(t, T) = 1T 
e- J,• b(v)dvds , 

A(t, T) = 1T ( a(s)C(s , T) - �a2 (s)C2 (s , T)) ds . 

(6.5 .10) 

(6.5 . 1 1 ) 

It is clear that these formulas give functions that satisfy C(T, T) = A(T, T) = 
0. The verification that these formulas provide the unique solutions to (6.5 .8) 
and (6.5.9) is Exercise 6.3. 

In conclusion, we have derived an explicit formula for the price of a zero
coupon bond as a function of the interest rate in the Hull-White model. It 
is 

B(t , T) = e-R(t)C(t ,T)-A(t ,T) , 0 � t � T, 
where C(t, T) and A(t, T) are given by (6.5 .10) and (6 .5 . 1 1) .  0 
Example 6. 5. 2 (Cox-Ingersoll-Ross interest rate model). In the CIR model, 
the evolution of the interest rate is given by 

dR(t) = (a - bR(t) ) dt + ay'R{i) dW(t) , 

where a, b, and a are positive constants. The partial differential equation 
(6.5.4) for the bond price becomes 

1 2 ft (t , r) + (a - br)fr (t , r) + 2a r frr (t , r) = r f(t, r) . (6.5 . 12) 
Again, we initially guess and subsequently verify that the solution has the 

form 
f(t, r) = e-rC(t ,T)-A(t ,T) . 

The Cox-Ingersoll-Ross model is another example of an affine yield model. 
Substitution into the differential equation (6.5 .12) gives 
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[ ( - C' (t, T) + bC(t, T) + �a2C2 (t ,  T) - 1) r 

-A' (t, T) - aC(t, T)] f(t, r) = 0. (6.5 .13) 

We can again conclude that the term multiplying r must be zero and then 
conclude that the other term must also be zero, thereby obtaining two ordinary 
differential equations in t : 

C' (t , T) = bC(t, T) + �a2C2 (t , T) - 1 ,  

A' (t, T) = -aC(t, T) . 

(6.5. 14) 

(6.5. 15) 

The solutions to these equations satisfying the terminal conditions C(T, T) = 
A(T, T) = 0 are 

C(t, T) = sinh('y(T - t)) 
' 'Y cosh('y(T - t) ) + � b sinh('y(T - t)) 

A(t, T) = - - log , 2a [ 'Ye ! b(T- t) l 
a2 'Y cosh('y (T - t) )  + �b sinh('y(T - t) )  

(6.5. 16) 

(6.5. 17) 

where 'Y = � Jb2 + 2a2 , sinh u = eu -2e-u , and cosh u = eu+2e-u . The verifica
tion of this assertion is Exercise 6.4. 0 

Example 6. 5. 3 (Option on a bond}. Consider the general short-rate model 
(6.5. 1 ) .  Let 0 � t � T1 < T2 be given. In this example, the fixed time T2 is 
the maturity date for a zero-coupon bond. The fixed time T1 is the expiration 
date for a European call on this bond. We wish to determine the value of this 
call at time t . 

Suppose we have solved for the function f(t, r) satisfying the partial differ
ential equation (6.5 .4) together with the terminal condition (6.5.5) . This gives 
us the price of the zero-coupon bond as a function of time and the underlying 
interest rate. 

According to the risk-neutral pricing formula (5.2 .31) and the Markov 
property, the value of the call at time t is 

c(t, R(t) ) = fE [ e- Jt' R(s)ds (J(Tl , R(TI ) ) - K) 

+ I F(t)] 
= 

D�t) fE [ D(TI ) (f(TI , R(TI ) ) - K) + I F(t)] 
for some function c(t, r) of the dummy variables t and r. The discounted call 
price 

is a martingale. The differential of the discounted call price is 
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d (D(t) c(t, R(t) ) )  = c(t, R(t) ) dD(t) + D(t) dc(t, R(t) ) 

= D [ -Rc dt + Ct dt + Cr dR + � Crr dR dR] 
= D [ -Rc + Ct + f3cr + �')'2Crr] dt + D')'Cr dW. 

Setting the dt term to zero, we obtain the partial differential equation 

( 1 2 Ct t , r) + {3(t , r)cr (t , r) + 2, (t , r)crr (t , r) = rc(t , r) . 

This is the same partial differential equation that governs f(t , r) .  However, 
c(t, r) and f(t, r) have different terminal conditions. The terminal condition 
for c(t , r) is 

c(T1 , r) = (f(TI . r) - K)+ for all r. 
One can use these conditions to numerically determine the call price function 
c(t, r) . [] 

6.6 Multidimensional Feynman-Kac Theorems 

The Feynman-Kac and Discounted Feynman-Kac Theorems, Theorems 6.4. 1 
and 6.4.3, have multidimensional versions. The number of differential equa
tions and the number of Brownian motions entering those differential equa
tions can both be larger than one and do not need to be the same. We illustrate 
the general situation by working out the details for two stochastic differential 
equations driven by two Brownian motions. 

Let W(t) = (W1 (t) , W2 (t) ) be a two-dimensional Brownian motion (i .e. , a 
vector of two independent , one-dimensional Brownian motions) . Consider two 
stochastic differential equations 

dX1 (u) = fJ1 (u, X1 (u) ,  X2 (u) )  du + I'l l (u, X1 (u) , X2 (u) ) dW1 (u) 
+1'12 (u, X1 (u) ,  X2 (u)) dW2(u) ,  

dX2 (u) = fJ2 (u, X 1  (u) ,  X2 (u) )  du + /'21 (u, X1 (u) ,  X2 (u)) dW1 (u) 
+1'22 (u, X1 (u) ,  X2 (u) ) dW2(u) . 

The solution to this pair of stochastic differential equations, starting at 
X1 (t) = x1 and X2(t) = x2 , depends on the specified initial time t and the 
initial positions x1 and x2 . Regardless of the initial condition, the solution is 
a Markov process. 

Let a Borel-measurable function h(y1 ,  Y2 ) be given. Corresponding to the 
initial condition t, x1 , x2 , where 0 � t � T, we define 

g(t , x 1 , x2 ) = 1Et,x 1 ,x2h(X1 (T) , X2 (T) ) , 
f(t, x 1 , x2 ) = 1Et,x. ,x2 [e-r(T- t )h(X1 (T) , X2 (T) ) ] . 

(6.6. 1 )  
(6.6.2) 
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Then 

9t + f319xl + f329x2 
1 2 2 1 2 2 ) +2 (1'1 1  + 'Y12)9x1x1 + h'n/'21 + /'121'22)9x lx2 + 2 h'21 + 1'22 9x2x2 = 0, 

(6.6.3) 
ft + f3dxl + f32/x2 

1 2 2 ) 1 ( 2 2 ) +2 h'n + 'Y12)fx1 x1 + h'n /'21 + /'12/'22 fx1 x2 + 2 1'21 + 1'22 fx2x2 = r f. 
(6.6.4) 

Of course, these functions also satisfy the terminal conditions 

g(T, XI , X2 ) = f(T, XI , X2) = h(xb X2) for all X1 and X2 . 

Equations (6.6.3) and (6.6.4) are derived by starting the pair of pro
cesses X1 , X2 at time zero, observing that the processes g(t , X1 (t) , X2 (t)) 
and e-rtf(t , X1 (t) , X2 (t)) are martingales , taking their differentials , and set
ting the dt terms equal to zero. When taking the differentials , one uses the 
fact that W1 and W2 are independent . We leave the details to the reader in 
Exercise 6.5. This exercise also provides the counterparts of (6.6.3) and (6.6.4) 
when W1 and W2 are correlated Brownian motions. 

Example 6. 6. 1 (Asian option). We show by example how the Discounted 
Feynman-Kac Theorem can be used to find prices and hedges , even for path
dependent options. The option we choose for this example is an Asian option. 
A more detailed discussion of this option is presented in Section 7.5. The 
payoff we consider is 

V(T) � (� [ S(u) du - Kf 
where S(u) is a geometric Brownian motion, the expiration time T is fixed 
and positive, and K is a positive strike pric� In terms of the Brownian mo
tion W(u) under the risk-neutral measure IP', we may write the stochastic 
differential equation for S ( u) as 

dS(u) = rS (u) du + aS(u) dW(u) . (6.6.5) 
Because the payoff depends on the whole path of the stock price via its 

integral, at each time t prior to expiration it is not enough to know just the 
stock price in order to determine the value of the option. We must also know 
the integral of the stock price, 

Y(t) = 1t S(u) du, 



6.6 Multidimensional Feynman-Kac Theorems 279 

up to the current time t. Similarly, it is not enough to know just the integral 
Y(t) . We must also know the current stock price S(t) . Indeed, for the same 
value of Y(t) , the Asian option is worth more for high values of S(t) than for 
low values because the high values of S(t) make it more likely that the option 
will have a high payoff. 

For the process Y(u) , we have the stochastic differential equation 

dY(u) = S(u) du. (6.6.6) 

Because the pair of processes (S(u) , Y(u) ) is given by the pair of stochastic 
differential equations (6.6.5) and (6.6 .6) ,  the pair of processes (S(u) , Y(u) ) is 
a two-dimensional Markov process. 

Note that Y(u) alone is not a Markov process because its stochastic dif
ferential equation involves the process S(u) . However, the pair (S(u) , Y(u) ) 
is Markov because the pair of stochastic differential equations for these pro
cesses involves only these processes (and, of course, the driving Brownian 
motion W(u) ) .  

If we use (6.6.5) and (6.6.6) to  generate the processes S(u) and Y(u) 
starting with initial values S(O) > 0 and Y(O) = 0 at time zero, then the 
payoff of the Asian option at expiration time T is V(T) = (�Y(T) - K)+ . 
According to the risk-neutral pricing formula (5.2 .31 ) ,  the value of the Asian 
option at times prior to expiration is 

Because the pair of processes (S(u) , Y(u) ) is Markov, this can be written as 
some function of the time variable t and the values at time t of these processes. 
In other words, there is a function v(t, x, y) such that 

v (t, S(t) , Y(t) ) = V(t) = E [ e-r(T-t) (�Y(T) - K) + I F(t)] . 

Note that this function must satisfy the terminal condition 

v(T, x , y) = (� - K) + for all x and y. (6 .6 .7) 
Using iterated conditioning, it is easy to see that the discounted option 

value e-rtv(t, S(t) , Y(t) ) is martingale. Its differential is 

d(e-rtv (t, S(t) , Y(t) ) ) 

= e-rt [ - rv dt + Vt dt + Vx dS + Vy dY + �Vxx dS dS + Vxy dS dY 

+ �vyy dY dY] 
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= e-rt [ -rv dt + Vt dt + Vx (rS dt + aS dW) + vyS dt + �a2S2vxx dt] 
= e-rt [ - rv(t, S(t) , Y(t)) + Vt (t , S(t) , Y(t)) + rS(t)vx (t , S(t) , Y(t)) 

+S(t)vy (t, S(t) , Y(t)) + �a2S2 (t)vxx (t , S(t) , Y(T) )] dt 
+e-rtaS(t)vx (t, S(t) , Y(t)) dW(t) . (6.6.8) 

Because the discounted option price is a martingale, the dt term in this dif
ferential must be zero. We obtain the partial differential equation 

Vt (t , x, y) +rxvx (t, x, y) +xvy (t, x, y) + �a2x2vxx (t , x, y) = rv(t, x, y) . (6.6.9) 

This is an example of the Discounted Feynman-Kac Theorem, a special case 
of equation (6.6 .4) . In particular, (6.6 .8) simplifies to 

d( e-rtv( t, S(t) , Y( t) ) ) = e-rtaS(t)vx (t, S(t) , Y(t) )  dW(t) . (6.6. 10) 

Recall from (5.2 .27) that the discounted value of a portfolio satisfies the 
equation 

(6.6. 1 1 ) 
If we sell the Asian option at time zero for v(O, 8(0) , 0) and use this as the 
initial capital for a hedging portfolio (i .e. , take X(O) = v(O, 8(0) , 0) ) , and at 
each time t use the portfolio process Ll(t) = vx (t, S(t) , Y(t) ) ,  then we will 
have 

d(e-rt X(t) ) = d(e-rtv(t , S(t) , Y(t)) ) 
for all times t, and hence 

X(T) = v(T, S(T) , Y(T) ) = (�Y(T) - K) + . 
This procedure hedges a short position in the Asian option. We have obtained 
the usual formula that the number of shares held to hedge a short position 
in the option is the derivative of the option value with respect to the under
lying stock price. However, the Asian option price is the solution to a partial 
differential equation that contains a term xvy (t, x, y) that does not appear in 
the partial differential equation for the price of a European option. 0 

6 . 7  Summary 

When the underlying price of an asset is given by a stochastic differential 
equation, the asset price is Markov and the price of any non-path-dependent 
derivative security based on that asset is given by a partial differential equa
tion. In order to price path-dependent securities , one first seeks to determine 
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the variables on which the path-dependent payoff depends and then intro
duce one or more additional stochastic differential equations in order to have 
a system of such equations that describes the relevant variables. If this can 
be done, then again the price of the derivative security is given by a partial 
differential equation. 

This leads to the following four-step procedure for finding the pricing dif
ferential equation and for constructing a hedge for a derivative security. 
1 .  Determine the variables on which the derivative security price depends. In 

addition to time t, these are the underlying asset price S(t) and possibly 
other stochastic processes. We call these stochastic processes the state 
processes. One must be able to represent the derivative security payoff in 
terms of these state processes. 

2. Write down a system of stochastic differential equations for the state pro
cesses. Be sure that , except for the driving Brownian motions, the only 
random processes appearing on the right-hand sides of these equations 
are the state processes themselves. This ensures that the vector of state 
processes is Markov. 

3. The Markov property guarantees that the derivative security price at each 
time is a function of time and the state processes at that time. The dis
counted option price is a martingale under the risk-neutral measure. Com
pute the differential of the discounted option price, set the dt term equal 
to zero, and obtain thereby a partial differential equation. 

4. The terms multiplying the Brownian motion differentials in the discounted 
derivative security price differential must be matched by the terms multi
plying the Brownian motion differentials in the evolution of the hedging 
portfolio value; see (5.4.27) . Matching these terms determines the hedge 
for a short position in the derivative security. 

6.8 Notes 

Conditions for the existence and uniqueness of solutions to stochastic differen
tial equations are provided by Karatzas and Shreve [101] , Chapter 5 , Section 
2, who also show in Chapter 5, Section 4, that solutions to stochastic differ
ential equations have the Markov property. This is based on work of Stroock 
and Varadhan [151] . The ideas behind the Feynman-Kac Theorem, although 
not the presentation we give here, trace back to Feynman [65] and Kac [99] . 

Hull and White presented their interest rate model in [88] , in which they 
generalized a model of Vasicek [154] to allow time-varying coefficients. The 
origin of the Cox-Ingersoll-Ross model is [41] , where one can find a closed
form formula for the distribution of the interest rate in the model. These are 
examples of affine-yield models, a class identified by Duffie and Kan [58] . They 
are sometimes called multifactor CIR models. 

Example 6.6 . 1 obtains a partial differential equation for the price of an 
Asian option but does not address computational issues . In the form given 
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here, the equation is difficult to handle numerically. Veeer [ 156] and Rogers and 
Shi [139] present transformations of this equation that are numerically more 
stable. See also Andreasen [4] for an application of the change-of-numeraire 
idea of Chapter 9 to discretely sampled Asian options. The transformation of 
Veeer and its use for both continuously sampled and discretely sampled Asian 
options is presented in Section 7.5. 

The Heston stochastic volatility model of Exercise 6. 7 is taken from Heston 
[84] . Exercise 6. 10 on implying the volatility surface comes from Dupire [61] . 
The same idea for binomial trees was worked out by Derman et al. [50] , [51] . 

6 . 9  Exercises 

Exercise 6. 1 .  Consider the stochastic differential equation 

dX(u) = (a(u) + b(u)X(u)) du + ('Y(u) + u(u)X(u)) dW(u) , (6.2 .4) 

where W(u) is a Brownian motion relative to a filtration F(u) , u � 0, and we 
allow a(u) , b(u) , "Y(u) , and u(u) to be processes adapted to this filtration. Fix 
an initial time t � 0 and an initial position x E :R.. Define 

Z(u) = exp {lu u(v) dW(v) + lu (b(v) - �u2 (v)) dv} , 

Y( ) = lu a(v) - u(v)"Y(v) d lu "Y(v) dW( ) u x + t Z(v) v + t Z(v) v . 

(i) Show that Z(t) = 1 and 

dZ(u) = b(u)Z(u) du + u(u)Z(u) dW(u) , u � t . 

(ii) By its very definition, Y(u) satisfies Y(t) = x and 

dY(u) = 
a(u) - u(u)"Y(u) du + "Y(u) dW(u) u > t Z(u) Z(u) ' - · 

Show that X(u) = Y(u)Z(u) solves the stochastic differential equation 
(6.2 .4) and satisfies the initial condition X(t) = x. 

Exercise 6.2 (No-arbitrage derivation of bond-pricing equation) . In 
Section 6.5, we began with the stochastic differential equation (6.5. 1 ) for the 
interest rate under the risk-neutral measure JP, used the risk-neutral pricing 
formula (6.5 .3) to consider a zero-coupon bond maturing at time T whose 
price B(t, T) at time t before maturity is a function f(t, R(t)) of the time 
and the interest rate, and derived the partial differential equation (6.5.4) for 
the function f(t , r) . In this exercise, we show how to derive this partial dif
ferential equation from no-arbitrage considerations rather than by using the 
risk-neutral pricing formula. 
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Suppose the interest rate is given by a stochastic differential equation 

dR(t) = a(t, R(t)) dt + 7(t, R(t) ) dW(t) , (6.9. 1 )  

where W(t) is a Brownian motion under a probability measure lP' not assumed 
to be risk-neutral. Assume further that , for each T, the T-maturity zero
coupon bond price is a function f(t, R(t) , T) of the current time t, the current 
interest rate R(t) , and the maturity of the bond T. We do not assume that 
this bond price is given by the risk-neutral pricing formula (6.5.3) . 

Assume for the moment that fr (t, r, T) =/:- 0 for all values of r and 0 :::; t :::; 
T, so we can define 

1 [ 1 2 ] f3(t, r, T) = - fr (t, r, T) -r f(t, r, T) + ft (t, r, T) + 2'Y (t, r)frr (t, r, T) , 

(6.9 .2) 

and then have 
1 2 ft (t, r, T) + {J(t, r, T)fr (t, r, T) + 2'Y (t , r)frr (t, r, T) = r f(t, r, T) . (6.9.3) 

Equation (6.9.3) will reduce to (6.5.4) for the function f(t, r, T) if we can show 
that {J(t, r, T) does not depend on T. 

(i) Consider two maturities 0 < T1 < T2 , and consider a portfolio that at each 
time t :::; T1 holds Ll1 (t) bonds maturing at time T1 and Ll2 (t) bonds ma
turing at time T2 , financing this by investing or borrowing at the interest 
rate R(t) . Show that the value of this portfolio satisfies 

d(D(t)X(t)) 

= Ll1 (t)D(t) [ - R(t)f(t, R(t) , TI ) + ft (t, R(t) , T1 ) 
1 2 ] +a(t, R(t) )fr (t, R(t) , T1 ) + 2'Y (t , R(t) )frr (t, R(t) , Tt ) dt 

+Ll2 (t)D(t) [ - R(t)f(t , R(t) , T2 ) + ft (t, R(t) , T2 ) 

1 2 ] +a(t, R(t) )fr (t, R(t) , T2) + 2'Y (t , R(t) )frr (t, R(t) , T2 ) dt 

+D(t)'Y(t, R(t) ) [Llt (t)fr (t, R(t) , Tt ) + Ll2 (t)fr (t, R(t) , T2)) dW(t) 
= Llt (t)D(t) [a(t , R(t) ) - {J(t, R(t) , TI )] fr (t, R(t) , Tt ) dt 

+Ll2 (t)D(t) [ a(t, R(t) ) - {J(t, R(t) , T2 )) fr (t, R(t) , T2) dt 
+D(t)'Y(t, R(t) ) [Llt (t)fr (t, R(t) , TI ) + Ll2 (t)fr (t, R(t) , T2 )) dW(t) . 

(6.9.4) 
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(ii) Denote 

and 

{ 1 if X > 0, 
sign(x) = 0 if x = 0, 

- 1 if X <  0, 

S(t) = sign { [.B(t, R(t) , T2 ) - ,B(t, R(t) , TI )] fr (t, R(t) , TI )fr (t, R(t) , T2 ) } . 

Show that the portfolio processes Ll1 (t) = S(t)fr (t, R(t) , T2) and Ll2 (t) = 
-S(t)fr (t, R(t) , T1 )  result in arbitrage unless ,B(t , R( t) , TI ) = ,B(t, R(t) , T2 ) .  
Since T1 and T2 are arbitrary, we conclude that ,B(t, r, T )  does not depend 
on T. 

(iii) Now let a maturity T > 0 be given and consider a portfolio Ll(t) that 
invests only in the bond of maturity T, financing this by investing or 
borrowing at the interest rate R(t) . Show that the value of this portfolio 
satisfies 

d (D(t)X(t) ) 
= Ll(t)D(t) [ - R(t)f(t, R(t) , T) + ft (t, R(t) , T) 

+a(t, R(t) )fr (t, R(t) , T) + �-l (t, R(t) )frr (t, R(t) , T)] dt 

+D(t)Ll(t)'y(t, R(t))fr (t , R(t) , T) dW(t) . (6.9.5) 

Show that if fr (t, r, T) = 0, then there is an arbitrage unless 
1 2 ft (t, r, T) + 2'�' (t , r)frr (t, r, T) = r f(t, r, T) . (6.9.6) 

In other words, if fr (t, r, T) = 0, then (6.9.3) must hold no matter how 
we choose ,B(t, r, T) . 

In conclusion, we have shown that if trading in the zero-coupon bonds presents 
no arbitrage opportunity, then for all t, r, and T such that fr (t, r, T) =/= 0, we 
can define ,B(t, r) by (6.9.2) because the right-hand side of (6.9.2) does not 
depend on T. We then have 

1 2 ft (t, r, T) + ,B(t, r)fr (t, r, T) + 2'�' (t , r)frr (t, r, T) = r f(t, r, T) , (6.9 .7) 
which is (6.5 .4) for the T-maturity bond. If fr (t, r, T) = 0, then (6.9.6) holds , 
so (6.9.7) must still hold, no matter how ,B(t, r) is defined. If we now change 
to a measure JPi under which 

t 1 W(t) = W(t) + lo 'Y(u, R(u)) [a(u, R(u) ) - ,B(u, R(u))] du 

is a Brow�ian motion, then (6.9. 1 ) can be rewritten as (6.5. 1 ) .  The probability 
measure lP' is risk-neutral. 
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Exercise 6.3 (Solution of Hull-White model) . This exercise solves the 
ordinary differential equations (6.5.8) and (6.5.9) to produce the solutions 
C(t, T) and A(t, T) given in (6 .5. 10) and (6.5. 1 1 ) .  

(i) Use equation (6.5 .8) with s replacing t t o  show that 

:
s 

[e- f; b(v)dvC(s, T)] = -e- J; b(v)dv . 

(ii) Integrate the equation in (i) from s = t to s = T, and use the terminal 
condition C(T, T) to obtain (6.5. 10) .  

(iii) Replace t by s in (6.5.9) , integrate the resulting equation from s = t to 
s = T, use the terminal condition A(T, T) = 0, and obtain (6.5 . 1 1 ) .  

Exercise 6.4 (Solution of  Cox-Ingersoll-Ross model) . This exercise 
solves the ordinary differential equations (6.5. 14) and (6 .5 .15) to produce the 
solutions C(t, T) and A(t, T) given in (6.5. 16) and (6.5. 17) . 

(i) Define the function 

Show that 

cp(t) = exp { �a2 1T C(u, T) du} . 

2cp' (t) C(t, T) = - �( ) ' 0" cp t 
1 2cp"(t) 1 2 2 C (t , T) = - 172cp(t) + 2a C (t , T) . 

(ii) Use the equation (6.5. 14) to show that 

cp"(t) - bcp' (t) - �a2cp(t) = 0. 

(6.9.8) 

(6.9.9) 

(6.9. 10) 

This is a constant-coefficient linear ordinary differential equation. All so
lutions are of the form 

where ..X1 and ..X2 are solutions of the so-called characteristic equation ..X2 -
b..X - !o-2 = 0, and a1 and a2 are constants. 

(iii) Show that cp(t) must be of the form 

(t) _ C1 - ( l b+'"Y)(T-t) C2 - ( l b-'")') (T-t) cp - !b + ,e 2 -
!b -

,e 2 

for some constants c1 and c2 , where 'Y = ! vb2 + 2a2 . 

(6.9. 1 1 )  
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(iv) Show that 
' (t) -( !. b+')') (T-t) -( !. b-')') (T-t) cp = c1 e 2 - c2e 2 • 

Use the fact that C(T, T) = 0 to show that c1 = c2 . 
(v) Show that 

(t) _ - !b(T-t) [ !b - "f -')'(T-t) _ !b + 'Y "!(T-t)] cp - c1 e 1 b2 2 e 1 b2 2 e 4 - "( 4 - "( 

(6.9. 12) 

= 2c; e- ! b(T-t) [b sinh('Y(T - t)) + 2"f cosh('Y(T - t))] , a 
cp' (t) = -2c1 e- ! b(T-t) sinh('Y(T - t) ) .  

Conclude that C(t ,  T) is given by (6.5. 16) . 
(vi) From (6.5 . 15) and (6.9.8) , we have 

A'(t, T) = 2�cp'?? . a cp t 
Replace t by s in this equation, integrate from s = t to s = T, and show 
that A(t , T) is given by (6.5. 17) .  

Exercise 6.5 (Two-dimensional Feynman-Kac).  
(i) With g(t , x1 . x2 ) and j(t, x1 . x2 ) defined by (6.6. 1 )  and (6.6.2) , show that 

g(t , X1 (t) , X2 (t)) and e-rtj(t, X1 (t) , X2 (t)) are martingales. 
(ii) Assuming that W1 and W2 are independent Brownian motions, use the 

ItO-Doeblin formula to compute the differentials of g(t, X1 (t) , X2 (t)) and 
e-rtf(t, X1 (t) , X2 (t) ) ,  set the dt term to zero, and thereby obtain the 
partial differential equations (6.6.3) and (6.6.4) . 

(iii) Now consider the case that dW1 (t) dW2 (t) = p dt, where p is a constant . 
Compute the differentials of g(t, X1 (t) , X2 (t) ) and e-rt f(t, X1 (t) , X2 (t) ) ,  
set the dt term to zero, and obtain the partial differential equations 

(6.9 .13) 

(6.9. 14) 

Exercise 6.6 (Moment-generating function for Cox-Ingersoll-Ross 
process) . 
(i) Let W1 , . . .  , Wd be independent Brownian motions and let a and a be pos

itive constants. For j = 1 ,  . . .  , d, let X3 (t) be the solution of the Ornstein
Uhlenbeck stochastic differential equation 



Show that 

6.9 Exercises 287 

(6.9. 15) 

(6 .9 .16) 

Show further that for fixed t, the random variable X3 (t) is normal with 
2 

JEX3 (t) = e- � btX3 (0) , Var(X3 (t) ) = �b 
[1 - e-bt] . 

(Hint : Use Theorem 4.4.9. )  
(ii) Define 

d 
R(t) = L XJ(t) , 

j= l 

and show that 

dR(t) = (a - bR(t) ) dt + u..JR(t) dB(t) , 

where a = �2 and 

B(t) = t t � dW3 (s) 
j= l lo y R(s) 

(6.9. 17) 

(6.9. 18) 

(6.9. 19) 

(6.9.20) 

is a Brownian motion. In other words, R(t) is a Cox-Ingersoll-Ross interest 
rate process (Example 6.5.2) . (Hint : Use Levy's Theorem, Theorem 4.6.4, 
to show that B(t) is a Brownian motion. ) 

(iii) Suppose R(O) > 0 is given, and define 

X3 (0) = �. 

Show then that X1 (t) , . . .  , Xd (t) are independent , identically distributed, 
normal random variables, each having expectation 

and variance 0"2 
v(t) = 4b [1 - e-bt] . 

(iv) Part (iii) shows that R(t) given by (6.9. 18) is the sum of squares of in
dependent , identically distributed, normal random variables and hence 
has a noncentral x2 distribution, the term "noncentral" referring to the 
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fact that J.L(t) = lEXj (t) is not zero. To compute the moment-generating 
function of R(t) , first compute the moment-generating function 

1 { UJ.L2 (t) } 1 lE exp {uXJ (t) } = exp 2 ( )  for all u <  -2 ( ) " J1 - 2v(t)u 1 - v t u v t 
(6.9.21) 

(Hint : You will need to complete a square, first deriving and then using 
the equation 

2 1 2 1 - 2v(t)u ( J.L(t) ) 2 uJ.L2 (t) ux - 2v(t) (
x - J.L(t)} = - 2v(t) x - 1 - 2v(t)u + 1 - 2v(t)u · 

The integral from -oo to oo of the normal density with mean J.L(t)/( 1 -
2v(t)u) and variance v(t)/ ( 1 - 2v(t)u) , 

1 - 2v(t)u { 1 - 2v(t)u ( J.L(t) ) 2 } exp - x -2rrv(t) 2v(t) 1 - 2v(t)u ' 

is equal to 1 . )  
(v) Show that R(t) given by (6.9. 19) has moment-generating function 

lE uR(t) e U ( 1 ) d/2 { -bt R(O) } e = exp 1 - 2v(t)u 1 - 2v(t)u ( 1 ) 2afcr2 { e-btuR(O) } = 1 - 2v(t)u exp 1 - 2v(t)u 
1 for all u < 2v(t) . 

(6.9.22) 

Remark 6. 9. 1 {Cox-Ingersoll-Ross process hitting zero). Although we have 
derived (6.9.22) under the assumption that d is a positive integer, the second 
line of (6.9.22) is expressed in terms of only the parameters a, b, and a entering 
(6.9 . 19) , and this formula is valid for all a > 0, b > 0, and a > 0. When d 2: 2 
(i .e. , a 2: �a2) ,  the multidimensional process (X1 (t) , . . .  , Xd (t) ) never hits the 
origin in JR.d, and hence R(t) is never zero. In fact , R(t) is never zero if and 
only if a 2: �a2 . If 0 < a < �a2 , then R(t) hits zero repeatedly but after each 
hit becomes positive again. 

Exercise 6.7 (Heston
_

stochastic volatility model) . Suppose that under 
a risk-neutral measure lP' a stock price is governed by 

dS(t) = rS(t) dt + JV{t) S(t) dW1 (t) , (6.9.23) 

where the interest rate r is constant and the volatility JV(t} is itself a stochas
tic process governed by the equation 

dV(t) = (a - bV(t) ) dt + a JV(t} dW2(t) . (6.9.24) 
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The parameters a, b, and u are positive constants, and W1 (t) and W2(t) are 
correlated Brownian motions under ffii with 

dW1 (t) dW2 (t) = p dt 
for some p E ( -1 ,  1 ) .  Because the two-dimensional process ( S ( t ) ,  V ( t) ) is 
governed by the pair of stochastic differential equations (6.9 .23) and (6.9.24) , 
it is a two-dimensional Markov process. 

So long as trading takes place only in the stock and money market ac
count, this model is incomplete. One can create a one-parameter family of 
risk-neutral measures by changing the dt term in (6.9.24) without affecting 
(6.9 .23) . 

At time t, the risk-neutral _price of a call expiring at time T � t in this 
stochastic volatility model is IE[e-r(T-t) (S(T) - K)+ IF(t)] . Because of the 
Markov property, there is a function c(t, s, v) such that 

c(t, S(t) , V(t)) = lE [ e-r(T-t) (S(T) - Kt l .r(t)] , 0 � t � T. (6.9.25) 
This problem shows that the function c(t, s, v) satisfies the partial differential 
equation 

1 2 1 2 Ct + rsC8 + (a - bv)cv + 2 8 VC88 + pUSVC8v + 2U VCvv = rc (6.9.26) 
in the region 0 � t < T, s � 0, and v � 0. The function c(t, s, v) also satisfies 
the boundary conditions 

c(T, s , v) = (s - K)+ for all s � O, v � 0, 
c(t, O, v) = 0 for all 0 � t � T, v  � 0, 
c(t, s,  0) = (s - e-r(T-t) Kt for all 0 � t � T, s � 0, 

I c(t, s , v) c 1 T im K = 1 tor al 0 � t � , v � 0, s-+oo S -
lim c(t, s , v) = s for all 0 � t � T, s � 0. v-+oo 

In this problem, we shall be concerned only with (6.9.27) . 

(6.9.27) 
(6.9.28) 
(6.9.29) 

(6.9.30) 
(6.9.31 ) 

(i) Show that e-rtc(t, S(t) , V(t)) is a martingale under ffii, and use this fact 
to obtain (6.9.26) . 

(ii) Suppose there are functions f(t , x, v) and g(t, x, v) satisfying 

ft + (r + �v) fx + (a - bv + puv)fv + �vfxx + puvfxv 

1 2 + 2u vfvv = 0, 

9t + (r - �v) 9x + (a - bv)gv + �V9xx + puvgxv 

(6.9.32) 

(6.9.33) 
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in the region 0 ::; t < T, -oo < x < oo, and v ;::: 0. Show that if we define 

c(t, s, v) = sf(t, log s , v) - e-r(T-t) Kg(t, log s ,  v) , (6.9.34) 

then c(t, s, v) satisfies the partial differential equation (6.9 .26) . 
(iii) Suppose a pair of processes (X(t) , V(t)) is governed by the stochastic 

differential equations 

dX(t) = (r + �V(t)) dt + JV{i)dW1 (t) , (6.9.35) 

dV(t) = (a - bV(t) + paV(t) ) dt + aJV{t) dW2 (t) , (6.9.36) 

where W1 (t) and W2(t) are Brownian motions under some probability 
measure lP with dW1 (t) dW2 (t) = pdt. Define 

J(t, x , v) = IEt,x,vn{X(T)�Iog K} · (6.9.37) 

Show that f(t, x, v) satisfies the partial differential equation (6.9.32) and 
the boundary condition 

f(T, x, v) = H{x�Iog K} for all X E IR., v 2: 0. (6.9.38) 

(iv) Suppose a pair of processes (X(t) , V(t)) is governed by the stochastic 
differential equations 

dX(t) = (r - �V(t)) dt + JV{i)dW1 (t) , 

dV(t) = (a - bV(t) ) dt + aJV{t) dW2 (t) , 

(6.9.39) 

(6.9 .40) 

where W1 (t) and W2(t) are Brownian motions under some probability 
measure lP with dW1 (t) dW2 (t) = pdt. Define 

g(t, x, v) = IEt,x ,vn{X(T)�Iog K} · (6.9.41) 

Show that g(t , x , v) satisfies the partial differential equation (6.9.33) and 
the boundary condition 

g(T, x, v) = H{x�Iog K} for all X E JR., V 2: 0. (6.9 .42) 

(v) Show that with f(t , x, v) and g(t , x , v) as in (iii) and (iv) , the function 
c(t, x , v) of (6.9.34) satisfies the boundary condition (6.9.27) . 

Remark 6. 9. 2. In fact , with f(t, x , v) and g(t , x , v) as in (iii) and (iv) , the 
function c(t, x, v) of (6.9.34) satisfies all the boundary conditions (6.9.27)
(6.9.31) and is the function appearing on the left-hand side of (6.9.25) .  
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Exercise 6.8 (Kolmogorov backward equation) . Consider the stochas
tic differential equation 

dX(u) = f3(u, X(u)) du + -y(u, X(u)) dW(u) . 

We assume that, just as with a geometric Brownian motion, if we begin a 
process at an arbitrary initial positive value X(t) = x at an arbitrary initial 
time t and evolve it forward using this equation, its value at each time T > t 
could be any positive number but cannot be less than or equal to zero. For 
0 ::; t < T, let p(t, T, x, y) be the transition density for the solution to this 
equation (i.e . ,  if we solve the equation with the initial condition X(t) = x, 
then the random variable X(T) has density p(t, T, x , y) in the y variable) . We 
are assuming that p(t , T, x , y) = 0 for 0 ::; t < T and y ::; 0. 

Show that p(t, T; x , y) satisfies the Kolmogorov backward equation 

1 2 -pt (t, T, x, y) = {3(t, x)px (t, T, x, y) + 2'Y (t , X)Pxx (t, T, x, y) . (6.9.43) 

(Hint: We know from the Feynman-Kac Theorem, Theorem 6.4. 1 ,  that , for 
any function h(y) ,  the function 

g(t, x) = lEt ,xh (X(T)) = 100 h(y)p(t , T, x, y)dy 

satisfies the partial differential equation 
1 2 gt (t, x) + {3(t, x)gx (t , x) + 2'Y (t , x)gxx (t, x) = 0. 

(6.9.44) 

(6.9.45) 

Use (6.9.44) to compute gt , gx , and gxx , and then argue that the only way 
(6.9 .45) can hold regardless of the choice of the function h(y) is for p(t, T, x , y) 
to satisfy the Kolmogorov backward equation. )  

Exercise 6 .9  (Kolmogorov forward equation) . (Also called the Fokker
Planck equation) . We begin with the same stochastic differential equation, 

dX(u) = f3(u, X(u)) du + -y (u, X(u)) dW(u) , (6.9.46) 
as in Exercise 6.8, use the same notation p(t, T, x, y) for the transition density, 
and again assume that p(t, T, x ,  y) = 0 for 0 ::; t < T and y ::; 0. In this 
problem, we show that p(t, T, x, y) satisfies the Kolmogorov forward equation 

{) {) 1 {)2 2 
{)Tp(t , T, x , y) = - ay (f3(t , y)p(t , T, x , y)) + 2 0Y2 ('Y (T, y)p(t , T, x, y)) . 

(6.9 .47) 
In contrast to the Kolmogorov backward equation, in which T and y were 
held constant and the variables were t and x, here t and x are held constant 
and the variables are y and T. The variables t and x are sometimes called the 
backward variables, and T and y are called the forward vanables. 
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(i) Let b be a positive constant and let hb(Y) be a function with continuous 
first and second derivatives such that hb(x) = 0 for all x ::; 0, h/,(x) = 0 
for all x ;:::: b, and hb(b) = h/, (b) = 0. Let X(u) be the solution to the 
stochastic differential equation with initial condition X(t) = x E (0, b) , 
and use Ito's formula to compute dhb (X(u)) . 

(ii) Let 0 ::; t < T be given, and integrate the equation you obtained in (i) 
from t to T. Take expectations and use the fact that X(u) has density 
p(t, u, x, y) in the y-variable to obtain 

fo
b 
hb (y)p(t, T, x , y)dy = hb (x) + i

T 
fo

b 
f3(u, y)p(t, u, x , y)h/, (y)dy du 

+� i
T 
fo

b 
''?{u, y)p(t , u, x , y)h� (y)dy. 

(6.9.48) 

( i i i ) Integrate the integrals J; · · · dy on the right-hand side of (6.9 .48) by parts 
to obtain 

fo
b 
hb (y)p(t, T, x , y)dy 

= hb(x) - i
T 
fo

b
� [f3(u, y)p(t, u, x , y)] hb(y)dy du 

l
i

T rb fP 2 +2 t 
Jo 8y2 ['Y (u, y)p(t, u, x , y)] hb (y)dy du. 

(iv) Differentiate (6.9.49) with respect to T to obtain 

rb [ 8 8 
Jo hb(Y) 8Tp(t, T, x, y) + 8y (f3(T, y)p(t , T, x , y)) 

1 82 ] -2 8y2 (
''?(T, y)p(t, T, x, y)) dy = O. 

(6.9 .49) 

(6.9.50) 

(v) Use (6.9.50) to show that there cannot be numbers 0 < y1 < y2 such that 
8 8 

8Tp(t, T, x , y) + 8y (f3(T, y)p(t, T, x, y)) 

1 82 2 - 2 8y2 ('Y (T, y)p(t, T, x, y)) > 0 for all y E (y1 , y2 ) . 

Similarly, there cannot be numbers 0 < y1 < Y2 such that 
8 8 
8Tp(t , T, x, y) + 8y (f3(T, y)p(t, T, x , y) ) 

1 82 2 - 2 8y2 ('Y ( T, Y) p( t , T, x , y) ) < 0 for all y E [YI , Y2] ·  
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This is as much as you need to do for this problem. It is now obvious that if 
{) {) 1 {) 2 

{)Tp(t, T, x ,  y) + ay (fJ(T, y)p(t, T, x, y)) - 2 ay2 ('y (T, y)p(t , T, x , y) ) 

is a continuous function of y, then this expression must be zero for every y > 0, 
and hence p(t, T, x , y) satisfies the Kolmogorov forward equation stated at the 
beginning of this problem. 

Exercise 6.10 (Implying the volatility surface) . Assume that a stock 
price evolves according to the stochastic differential equation 

dS(u) = rS(u) dt + a (u, S(u) )S(u) dW(u) , 

where the interest rate r is constant, the volatility a( u, x) is a function of time 
and the underlyi!!g stock price, and W is a Brownian motion under the risk
neutral measure JP>. This is a special case of the stochastic differential equation 
(6.9.46) with {J(u, x) = rx and 7(u, x) = a(u, x)x . Let p(t, T, x , y) denote the 
transition density. 

According to Exercise 6.9, the transition density p(t, T, x, y) satisfies the 
Kolmogorov forward equation 

Let 

;.p(t, T, x , y) = -:y (ryp(t, T, x, y)) + � :2 (a
2 (T, y)y2p(t, T, x , y)) . 

(6.9 .51) 

c(O, T, x, K) = e-rT Loo 
(y - K)jj(O, T, x , y)dy (6.9.52) 

denote the time-zero price of a call expiring at time T, struck at K, when the 
initial stock price is S(O) = x. Note that 

cr (O, T, x, K) = -rc(O, T, x, K) + e-rT Loo 
(y - K)pr (O, T, x, y)dy. (6.9.53) 

(i) Integrate once by parts to show that 

roo {) roo 
- }K (y - K) 0y (ryjj(O, T, x, y)) dy = }K ryp(O, T, x , y)dy. 

You may assume that 

lim (y - K)ryp(O, T, x , y) = 0. y-+oo 
(ii) Integrate by parts and then integrate again to show that 

1 roo ()2 
2 1K (y - K) 0y2 (a

2 (T, y)y2p(O, T, x , y)) dy 

= �a2 (T, K)K2p(O, T, x , K) .  

(6.9.54) 

(6.9 .55) 

(6.9 .56) 
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You may assume that 

lim (y - K) 8
8 

(a2 (T, y)y2p(O, T, x, y)) = 0 , 
y-+oo Y 

lim a2 (T, y)y2p(O, T, x, y) = 0. 
y-+oo 

(6.9.57) 

(6 .9 .58) 

(iii) Now use (6.9.53) , (6.9.52) , (6.9.51) ,  (6.9.54) , (6.9.56) , and Exercise 5.9 of 
Chapter 5 in that order to obtain the equation 

CT (O, T, x, K) 

= e-rTrK 1: p(O, T, x, y)dy + �e-rTa2 (T, K)K2p(O, T, x, K) 

1 2 2 = -rKcK(O, T, x, K) + 2a (T, K)K CKK(O, T, x, K) . (6.9 .59) 

This is the end of the problem. Note that under the assumption that 
CKK (O, T, x, K) =f. 0, (6.9.59) can be solved for the volatility term a2 (T, K) 

in terms of the quantities cT (O, T, x, K) , cK (O, T, x, K) , and CKK(O, T, x, K) , 

which can be inferred from market prices . 



7 

Exotic Options 

7. 1 Introduction 

The European calls and puts considered thus far in this text are sometimes 
called vanilla or even plain vanilla options. Their payoffs depend only on the 
final value of the underlying asset. Options whose payoffs depend on the path 
of the underlying asset are called path-dependent or exotic. 

In this chapter, we present three types of exotic options on a geometric 
Brownian motion asset and work out a detailed analysis for one option of each 
type. The types considered are barrier options, lookback options, and Asian 
options. In each case, we work out the standard partial differential equation 
governing the option price. The first two options have explicit pricing formu
las, which are based on the reflection principle for Brownian motion. Such a 
formula for Asian options is not known. However, for the Asian option there 
is a change-of-numeraire argument that reduces the pricing partial differential 
equation to a simple form that can easily be solved numerically. We present 
this argument in Subsection 7.5.3. 

7.2 Maximum of Brownian Motion with Drift 

In this section, we derive the joint density for a Brownian motion with drift 
and its maximum to date. This density is used in Sections 7.3 and 7.4 to 
obtain explicit pricing formulas for a barrier option and a lookback option. 
To derive this formula, we begin with a Brownian motion W(t) , 0 :::; t :::; T, 
defined on a probability space (!2, :F, P) . Under lP, the Brownian motion W(t) 
has zero drift (i.e. , it is a martingale) . Let a be a given number, and define 

W (t) = at + W(t) , 0 :::; t :::; T. (7.2 . 1 )  

This Brownian motion W (t) has drift a under JPi. We further define 
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M(T) = max W(t) . o:::; t::;T (7.2.2) 

Because W(O) 0, we have M(T) ;:::: 0. We also have W(T) < M(T) . 
Therefore, the pair of random variables (M(t) , W(T)) takes values in the 
set { (m, w) ; w � m, m ;:::: 0} shown in Figure 7.2. 1 .  

w 

m 

Fig. 7.2.1.  Range of (M(T) , W(T)) . 

Theorem 7.2.1 .  The joint density under P of the pair (M(T) , W(T)) is 

f
-

( ) 2 (2m - w) aw- .!a?T- ...!... (2m-w)2 M(T) ,W(T) m, w = 
T...tiffT 

e 2 2T , 

and is zero for other values of m and w. 

PROOF: We define the exponential martingale 

w � m, m ;:::: O, 
(7.2.3) 

Z(t) = e-<>W(t) - !a2 t = e-<>W(t)+ !a2 t , 0 � t � T, 

and use Z(T) to define a new probability measure fiD by 

P(A) = L Z(T) dP for all A E F. 

According to Girsanov's Theorem, Theorem5.2.3, W(t) is a Brownian mo

tion (with zero drift) under fiD. Theorem 3.7.3 gives us the joint density of 
(M(T) ,  W(T)) under fiD, which is 
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� 2 (2m - w) _ _!_(2m-w)2 fri(T) ,W(T) (m, w) = Tv'2i?f 
e 2T , w � m, m ;:::: 0, (7.2 .4) 

and is zero for other values of m and w. To work out the density of 
(M(T) , W(T)) under P, we use Lemma 5.2. 1 , which implies 

P{ M(T) � m, W(T) � w} 
= JE (JI{M(T)$m,W(T)::;w} J  
- iE [-1-ll � � l - Z(T) {M(T)$m,W(T)$w} 

JE [ oW(T)- lo2TJI ] = e 2 {M(T)$m,W(T)$w} 
= I: I: e<>Y- !<>2TjM(T) ,W(T) (x, y) dx dy. 

Therefore, the density of (M(T) , W(T)) under JPi is 

When w � m and m ;:::: 0, this is formula (7.2.3) . For other values of m and 
w, we obtain zero because JM(T) ,W(T) (m, w) is zero. 0 
Corollary 7.2.2. We have 

and the density under JPi of the random variable M(T) is 

JM(T) (m) = ke- A <m-oT)2 - 2ae20mN ( -m
JT 

aT) , m ;:::: 0, (7.2 .7) 

and is zero for m  < 0 .  

PROOF: We integrate the density (7.2.3) over the region in Figure 7.2.2 to 
compute 
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w 

Fig. 7.2.2. The region M(T) :::; m. 

We complete the squares. Observe that 

1 2 (2m - w)2 1 2 --(w - 2m - aT) = - + aw - 2am - -a T IT IT 2 ' 

Therefore, 

1 )2 w2 1 2 --(w - aT = - - + aw - -a T 2T 2T 2 . 

We make the change of variable y = w-2rraT in the first integral and y = 
w·;.;t in the second, thereby obtaining 



This establishes (7.2.6) . 
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To obtain the density (7.2 .7) , we differentiate (7.2.6) with respect to m: d�Jiii{M(T) � m} 
= N' ( m :;T) ( Jr) _ 2ae2omN ( -mJT aT) 

-e2omN' ( -mJTaT) ( _ Jr) 
1 _...!... (m-oT)2 2 2omN ( -m - aT) e2om _ ...!... (-m-oT)2 = -- e 2T - ae + -- e 2T • ..fiiT vr ..fiiT 

The exponent in the third term is 

(-m - aT)2 2am - 2T = 

= 

4am 2T m2 - 2amT + a2T2 2T 
(m - aT)2 2T 

which is the exponent in the first term. Combining the first and third terms, 
we obtain (7.2 .7) . 0 

7.3 Knock-out Barrier Options 

There are several types of barrier options. Some "knock out" when the un
derlying asset price crosses a barrier (i .e. , they become worthless) . If the un
derlying asset price begins below the barrier and must cross above it to cause 
the knock-out, the option is said to be up-and-out. A down-and-out option 
has the barrier below the initial asset price and knocks out if the asset price 
falls below the barrier. Other options "knock in" at a barrier (i.e. , they pay off 
zero unless they cross a barrier) . Knock-in options also fall into two classes, 
up-and-in and down-and-in. The payoff at expiration for barrier options is 
typically either that of a put or a call. More complex barrier options require 
the asset price to not only cross a barrier but spend a certain amount of time 
across the barrier in order to knock in or knock out . 

In this section, we treat an up-and-out call on a geometric Brownian mo
tion. The methodology we develop works equally well for up-and-in, down
and-out, and down-and-in puts and calls . 
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7.3.1  Up-and-Out Call 

Our underlying risky asset is geometric Brownian motion 

dS(t) = rS(t) dt + aS(t) dW(t) , 

where W(t) , 0 � t � T, is a Brownian motion under the risk-neutral measure 
Jiii. Consider a European call, expiring at time T, with strike price K and up
and-out barrier B. We assume K < B; otherwise, the option must knock out 
in order to be in the money and hence could only pay off zero. The solution 
to the stochastic differential equation for the asset price is 

S(t) = S(O)euW(t )+(r- !u2 )t = S(O)euW(t ) ' 

where W(t) = at + W(t) , and 

a = � (r - �a2) . 
We define M(T) = maxo::;t ::;T W(t) , so 

max S(t) = S(O)euM(T) . o::;t::;T 

(7.3 . 1 ) 

The option knocks out if and only if S(O)euM(T) > B; if S(O)euM(T) � B, the 
option pays off 

(S(T) - Kt = (s(O)euW(T) - K) + . 

In other words, the payoff of the option is 

where 

V (T) = ( S(O)euW(T) - K) + II{S(O)e"M(T) ::;B} 
= ( S(O)euW(T) - K) ][{S(O)e"W(T) ;2:K,S(O)e"M(T) :SB} 
= ( S(O)euW(T) - K) ][{W(T);2:k ,M(T):Sb} ' 

1 B 
b = � log S(O) " 

7.3.2 Black-Scholes-Merton Equation 

(7.3.2) 

(7.3.3} 

The price of an up-and-out call satisfies a Black-Scholes-Merton equation that 
has been modified to account for the barrier. This equation can be used to 
solve for the price. In this particular case, we do not need to find the price this 
way because it can be computed analytically (see Subsection 7.3 .3} . However, 
we provide the equation and its derivation because this methodology works 
in situations where analytical solutions cannot be obtained. 
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Theorem 7.3. 1 .  Let v(t , x) denote the price at time t of the up-and-out call 
under the assumption that the call has not knocked out prior to time t and 
S(t) = x. Then v(t, x) satisfies the Black-Scholes-Merton partial differential 
equation 

) 1 2 2 Vt (t, x + rxvx (t , x) + 20" x Vxx (t , x) = rv(t, x) (7.3 .4) 

in the rectangle { ( t , x) ; 0 ::; t < T, 0 ::; x ::; B} and satisfies the boundary 
conditions 

v(t , 0) = 0, 0 ::;  t ::;  T, 
v( t, B) = 0, 0 ::; t < T, 
v(T, x) = (x - K)+ , 0 ::; x ::; B. 

(7.3.5) 
(7.3.6) 
(7.3.7) 

The lower boundary condition (7.3.5) follows as in the usual Black-Scholes
Merton framework: If the asset price begins at zero, it stays there and the 
option expires out of the money. The upper boundary condition follows from 
the fact that when the geometric Brownian S(t) hits the level B, it immedi
ately rises above B. In fact , because it has nonzero quadratic variation, the 
asset price S(t) oscillates, rising and falling across the level B infinitely many 
times immediately after hitting it. The option price is zero when the asset 
price hits B because the option is on the verge of knocking out. The only 
exception to this is if the level B is first reached at the expiration time T, 
for then there is no time left for the knock-out . In this case, the option price 
is given by the terminal condition (7.3.7) . In particular, the function v(t, x) 
is not continuous at the corner of its domain where t = T and x = B. It is 
continuous everywhere else in the rectangle { (t , x) ; O ::; t ::;  T, O ::; x ::;  B} . 

Exercise 7.8 outlines the steps to verify the Black-Scholes-Merton equation 
by direct computation, starting with the analytical formula (7.3.20) obtained 
in Subsection 7.3.3. Here we derive this partial differential equation (7.3.4) by 
the simpler but more generally applicable argument used previously: ( 1 ) find 
the martingale, (2) take the differential, and (3) set the dt term equal to zero. 

Let us begin with an initial asset price S(O) E (0 , B) .  We then define 
the option payoff V(T) by (7.3.2) . The price of the option at time t between 
initiation and expiration is given by the risk-neutral pricing formula 

V(t) = E [ e-r(T-t) V(T) I F(t)] , 0 ::;  t ::;  T. (7.3.8) 

The usual iterated conditioning argument (e.g. , (5.3.3) ) shows that 

(7.3.9) 

is a martingale. We would like to use the Markov property as we did in Exam
ple 6.4.4 to say that V(t) = v (t ,  S(t) ) , where v(t , x) is the function in Theorem 
7.3. 1 .  However, this equation does not hold for all values of t along all paths. 
Recall that v ( t , S( t)) is the value of the option under the assumption that it 



302 7 Exotic Options 

has not knocked out prior to t, whereas V(t) is the value of the option with
out any assumption. In particular, if the underlying asset price rises above the 
barrier B and then returns below the barrier by time t, then V(t) will be zero 
because the option has knocked out, but v (t , S(t) ) will be strictly positive 
because v(t, x) given by (7.3.20) is strictly positive for all values of 0 :::; t < T 
and 0 < x < B. The process V ( t) is path-dependent and remembers that the 
option has knocked out . The process v (t , S(t) ) is not path-dependent, and 
when S(t) < B, it gives the price of the option under the assumption that it 
has not knocked out, even if that assumption is incorrect. 

We resolve this annoyance by defining p to be the first time t at which 
the asset price reaches the barrier B. In other words, p is chosen in a path
dependent way so that S ( t) < B for 0 :::; t � p and S (p) = B. Since the asset 
price almost surely exceeds the barrier immediately after reaching it, we may 
regard p as the time of knock-out. If the asset price does not reach the barrier 
before expiration, we set p = oo. If the asset price first reaches the barrier at 
time T, then p = T but knock-out does not occur because there is no time 
left for the asset price to exceed the barrier. However, the probability that 
the asset price first reaches the barrier at time T is zero, so this anomaly does 
not matter. 

The random variable p is a stopping time because it chooses its value based 
on the path of the asset price up to time p. Stopping times in the binomial 
model were defined in Definition 4.3. 1 of Volume I. The Optional Sampling 
Theorem, Theorem 4.3.2 of Volume I, asserts that a martingale stopped at a 
stopping time is still a martingale. The same is true in continuous time. In 
particular, the process 

-r(t/\p)V(t ) = { e-rtv(t) if 0 :::; t :::; p, e 1\ p e-rpV(p) if p < t :::; T, (7.3. 10) 

is a JP-martingale. Before t gets to p, this is just the martingale e-rtv(t) . 
Once t gets to p, although the time parameter t can march on, the value of 
the process is frozen at e-rPV(p) . A process that does not move is trivially 
a martingale. The only way the martingale property could be ruined would 
be if p "looked ahead" when deciding to stop the process. If p stopped at a 
time because the process was about to go up and let the process continue if it 
was about to go down, the stopped process would have a downward tendency. 
So long as p makes the decision to stop at the current time based only on 
the path up to and perhaps including the current time, the act of stopping a 
martingale at time p preserves the martingale property. 

Lemma 7.3.2. We have 

V(t) = v (t, S(t) ) , 0 :::; t :::; p. (7.3. 1 1 )  

In particular, e-rtv (t , S(t) )  is a IP'-martingale up to time p ,  or, put another 
way, the stopped process 
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e-r(tAp)v (t 1\ p, S(t 1\ p)) ,  0 � t � T, (7.3 . 12) 

is a martingale under iP. 
SKETCH OF PROOF: Because v (t , S(t) ) is the value of the up-and-out call 
under the assumption that it has not knocked out before time t, and for 
t � p this assumption is correct, we have (7.3. 1 1 ) for t � p. From (7.3. 1 1 ) ,  we 
conclude that the process in (7.3. 12) is the iii-martingale (7.3. 10) . D 
PROOF OF THEOREM 7 .3 . 1 :  We compute the differential 

d ( e-rtv (t ,  S(t) ) )  = e-rt [ - rv (t, S(t) ) dt + Vt (t , S(t) ) dt + Vx (t , S(t) ) dS(t) 

+�vxx (t, S(t) ) dS(t) dS(t)] 

= e-rt [ - rv (t , S(t) ) + vt (t , S(t) ) + rS(t)vx (t , S(t) ) 

+�u2S2 (t)vxx (t, S(t) ) ] dt 

+e-rtuS(t)vx (t , S(t) ) dW(t) . (7.3.13) 
The dt term must be zero for 0 � t � p, (i.e . ,  before the option knocks out) . 
But since (t , S(t) ) can reach any point in { (t, x) ; 0 � t < T, 0 � x � B} before 
the option knocks out, the Black-Scholes-Merton equation (7.3.4) must hold 
for every t E [0, T) and x E [0, B] . D 
Remark 7.9. 9. From Theorem 7.3. 1 and its proof, we see how to construct a 
hedge, at least theoretically. Setting the dt term in (7.3 .13) equal to zero, we 
obtain 

d( e-rtv (t ,  S(t) ) )  = e-rtuS(t)vx (t, S(t) ) dW(t) , 0 � t � p. (7.3 .14) 
The discounted value of a portfolio that at each time t holds L\(t) shares of 
the underlying asset is given by (see (5.2.27) )  

d(e-rt X(t)) = e-rtuS(t)L\(t) dW(t) . 

At least theoretically, if an agent begins with a short position in the up-and-out 
call and with initial capital X(O) = v (O, S(O)) , then the usual delta-hedging 
formula 

L\(t) = vx (t, S(t) ) (7.3 . 15) 
will cause her portfolio value X(t) to track the option value v (t, S(t) ) up to 
the time p of knock-out or up to expiration T, whichever comes first . 

In practice, the delta hedge is impossible to implement if the option has 
not knocked out and the underlying asset price approaches the barrier near 
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expiration of the option. The function v(T, x) is discontinuous at x = B, 
jumping from B - K to 0 at that point . For t near T and x just below 
B, the function v( t , x) is approaching a discontinuity and has large negative 
delta vx (t, x) and large negative gamma Vxx (t , x) values. Near expiration near 
the barrier, the delta-hedging formula (7.3. 15) requires the agent to take a 
large short position in the underlying asset and to make large adjustments 
in the position (because of the large negative gamma) whenever the asset 
price moves. The Black-Scholes-Merton model assumes the bid-ask spread is 
zero, and here that assumption is a poor model of reality. The delta-hedging 
formula calls for such a large amount of trading that the bid-ask spread 
becomes significant. The common industry practice is to price and hedge the 
up-and-out call as if the barrier were at a level slightly higher than B. In this 
way, the large delta and gamma values of the option occur in the region above 
the contractual barrier B, and the hedging position will be closed out upon 
knock-out at the contractual barrier before the asset price reaches this region. 
0 

7.3.3 Computation of the Price of the Up-and-Out Call 

The risk-neutral price at time zero of the up-and-out call with payoff V(T) 
given by (7.3.2) is V(O) = E [e-rTV(T) ] . We use the density formula (7.2.3) 
to compute this . If k � 0, we must integrate over the region { (m, w) ; k � 
w � m � b} .  On the other hand, if k < 0, we integrate over the region 
{ (m, w) ; k � w � m, 0 � m � b} . In both cases, the region can be described 
as { (m, w) ; k � w � b, w+ � m � b} ; see Figure 7.3. 1 .  We assume here that 
S(O) � B so that b > 0. Otherwise, the region over which we integrate has 
zero area, and the time-zero value of the call is zero rather than the integral 
computed below. We also assume S(O) > 0 so that b and k are finite. 

When 0 < S(O) � B, the time-zero value of the up-and-out call is 

V (O) = {b 1b e-rT (S(O)eo-w - K) 2(2m - w) eaw- !a?T- b (2m-w)2 dm dw 
J k w+ T -..fii1i' 

where 

1b 1 1 2 1 2 1 m=b 
= - e-rT (S(O)eO"W - K) -- eaw- 2a T- 2T (2m-w) dw k -..fii1i' m=w+ 
= _1_ {b (S(O)eo-w - K) e-rT+aw- !a2T- 2\-.w2 dw -..fiirT Jk 

_ _ 1_ {b (S(O)eo-w - K)e-rT+aw- !a2T- 2\-. (2b-w)2 dw 
-..fiirT Jk 

= S(O)h - Kh - S(O)h + Kh 
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Fig. 7.3.1 .  Regions of integration for k :?:  0 and k < 0. 

Each of these integrals is of the form 

_1_ 1b 
ef3+yw- -,}rw2 dw = _1_ 1b 

e- 2� (w-')'T)2+b2T+f3 dw v'21rT k v'21rT k 
1 2 1 l)r(b-"!T) 1 2 = e2"�  T+f3__ e- 2Y dy, (7.3 . 16) v'2if )r (k-"!T) 

where we have made the change of variable y = w;TT . Using the standard 
cumulative normal distribution property N(z) = 1 - N( - z) and (7.3.3) , we 
continue, writing 
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_1_ {b ef3+'Yw- � dw 
..j2i?t Jk 

= eh2T+f3 [N c -;;T) _ N ( k rrT) ]  
= eh2T+f3 [N ( -k:r-yT) _ N ( -b:r-yT) ] 
= eh2T+f3 [N Cr� [log Si) + -yaT] )  

-N (
a
� [log S�) + -yaT] ) ] . (7.3 . 17) 

Set 
(7.3 . 18) 

The integral h is of the form (7.3 . 17) with (3 = -rT - !a2T and 7 = a + a, 
so !-r2T + (3 = 0 and -ya = r + !a2 • Therefore, 

h = N (5+ (T, Si) ) ) - N (5+ (T, S�) ) ) . 

The integral /2 is of the form (7.3. 17) with (3 = -rT - !a2T and 7 = a, so 
!-r2T + (3 = -rT and -ya = r - !a2 • Therefore, 

For /3 , we have (3 = -rT - !a2T - 2;.2 and 7 = a + a + � ' so 

Therefore, 

Finally, for 14 , we have (3 = -rT - !a2T - 2r and 7 = a + � ' so 



Therefore, 
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(S(0) ) -�+1 [ ( ( B2 ) )  ( ( B ) ) ] 14 = e-rT 
B N o_ T, KS(O) - N o_ T, S(O) . 

Putting all this together, under the assumption 0 < S(O) :::; B, we have the 
up-and-out call price formula 

Now let t E [0, T) be given, and assume the underlying asset price at time 
t is  S(t) = x. As above, we assume 0 < x :::; B. If the call has not knocked 
out prior to time t, its price at time t is obtained by replacing T by the time 
to expiration T = T - t and replacing S(O) by x in (7.3. 19) . This gives us the 
call price as a function v(t , x) of the two variables t and x: 

v (  t, X) = X [N ( 8+ ( T, ; ) ) - N ( 8+ ( T, �) ) ] 

-e-rrK [N (L (r, ; ) ) - N (L (r, �)) ] 

-B (�) 
-� [N (8+ (r, ::) ) - N (8+ (r, =) ) J 

+e-rrK (�) 
-�+1 [N(L (r, ::) ) - N(o_ (r, =)) ] , 0 :::; t < T, 0 < X :::; B. (7.3 .20) 

Formula (7 .3 .20) was derived under the assumption that T > 0 (i .e . ,  t < T) 
and 0 < x :::; B. For 0 :::; t :::; T and x > B, we have v(t , x) = 0 because 
the option knocks out when the asset price exceeds the barrier B. Indeed, if 
the asset price reaches the barrier before expiration, then it will immediately 
exceed the barrier almost surely, and so v(t , B) = 0 for 0 :::; t < T. However, 
v(T, B) = B-K. We also have v(t, 0) = 0 because geometric Brownian motion 
starting at 0 stays at zero, and hence the call expires out of the money. Finally, 
if the option does not knock out prior to expiration, then its payoff is that 
of a European call (i .e. , v(T, x) = (x - K)+ ) . In summary, v(t , x) satisfies 
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the boundary conditions (7.3.5)-(7.3.7) .  Formula (7.3.6) can be obtained by 
substitution of x = B in (7.3 .20) , but for x > B, the right-hand side of 
(7.3.20) is not v (t , x) = 0. Formula (7.3.20) was derived under the assumption 
0 < x � B, and it is incorrect if x > B. Formulas (7.3.5) and (7.3.7) cannot 
be obtained by substitution of x = 0 and t = T (r = 0) into (7.3.20) because 
this leads to zeroes in denominators, but it can be shown that (7.3.20) gives 
these formulas as limits as x -I- 0 and T -I- 0; see Exercise 7.2. 

7.4 Look back Options 

An option whose payoff is based on the maximum that the underlying asset 
price attains over some interval of time prior to expiration is called a lookback 
option. In this section we price a floating strike lookback option. The payoff 
of this option is the difference between the maximum asset price over the 
time between initiation and expiration and the asset price at expiration. The 
discussion of this option introduces a new type of differential, a differential 
that is neither dt nor dW (t) . 

7.4. 1 Floating Strike Lookback Option 

We begin with a geometric Brownian motion asset price, which may be written 
as in (7.3. 1 )  as 

S(t) = S(O)euW(t) , 

where, as in Subsection 7.3. 1 ,  W(t) = at + W(t) and 

With 
M(t) = max W(u) , 0 � t � T, O�u::;t 

we may write the maximum of the asset price up to time t as 

Y(t) = max S(u) = S(O)euM(t) . O�u::;t 

The lookback option considered in this section pays off 

V(T) = Y(T) - S(T) 

(7.4. 1 )  

(7.4.2) 

(7.4.3) 

(7.4.4) 

at expiration time T. This payoff is nonnegative because Y(T) � S(T) . 
Let t E [0, T] be given. At time t, the risk-neutral price of the lookback 

option is 
V(t) = IE [ e-r(T-t) (Y(T) - S(T) ) I F(t)] . (7.4.5) 
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Because the pair of processes (S(t) , Y(t) ) has the Markov property (see Ex
ercise 7.3) , there must exist a function v(t, x, y) such that 

V(t) = v (t, S(t) , Y(t)) . 

In Subsection 7.4.2 , we characterize this function by the Black-Scholes-Merton 
equation. In Subsection 7.4.3, we compute it explicitly. 

7.4.2 Black-Scholes-Merton Equation 

Theorem 7.4.1 .  Let v(t , x, y) denote the price at time t of the floating strike 
lookback option under the assumption that S(t) = x and Y(t) = y . Then 
v(t, x, y) satisfies the Black-Scholes-Merton partial differential equation 

) ) 1 2 2 Vt (t , x, y + rxvx (t, x, y + 20" X Vxx (t, x, y) = rv(t, x, y) (7.4.6) 

in the region { (t , x, y) ;  0 � t < T, 0 � x � y} and satisfies the boundary 
conditions 

v(t, 0, y) = e-r(T-t) y, 0 � t � T, y :2: 0, 
Vy (t, y, y) = 0, 0 � t � T, y > 0, 
v (T, x, y) = y - x, 0 � x � y. 

(7.4. 7) 
(7.4.8) 
(7.4.9) 

Iterated conditioning implies that e-rtv (t) = e-rtv (t, S(t) , Y(t)) , where 
V(t) is given by (7.4.5) ,  is a martingale under P. We compute its differential 
and set the dt term equal to zero to obtain (7.4.6) . However, when we do this, 
the term dY(t) appears. This is different from the term dS(t) , because S(t) 
has nonzero quadratic variation, whereas Y(t) has zero quadratic variation. 
This is because Y(t) is continuous and nondecreasing in t. Let 0 = to <  t1 < 
· · · < tm = T be a partition of [0, 11· Then 

m 
L (Y(tj ) - Y(tj- 1 ) ) 2 
j=l 

m 
� . max (Y(ti ) - Y(ti_ t ) ) L (Y(tj ) - Y(ti-d) J=l ,  . . .  ,m . ]= l 
= . max (Y(ti ) - Y(ti_ t ) ) · (Y(T) - Y(O)) , J=l , . . . ,m (7.4. 10) 

and maxi=l ,  . . . ,m (Y(tj ) - Y(ti-d) has limit zero as maxi=l ,  . . .  ,m (ti - ti -d 
goes to zero because Y(t) is continuous. We conclude that Y(t) accumulates 
zero quadratic variation on [0, T] , a fact we record by writing 

dY(t) dY(t) = 0. (7.4. 1 1 )  
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This argument works because Y(tJ ) - Y (tJ- l ) is nonnegative, and hence we 
do not need to take the absolute value of these terms in (7.4. 10) . This ar
gument shows that on any interval in which a function is continuous and 
nondecreasing, it will accumulate zero quadratic variation. 

On the other hand, dY (t) is not a dt term: there is no process 8 (t) such 
that dY (t) = 8 (t) dt . In other words, we cannot write Y (t) as 

Y (t) = Y(O) + 1t 8(u) du . (7.4. 12) 

If we could, then 8(u) would be zero whenever u is in a "flat spot" of Y (t) , 
which occurs whenever S(t) drops below its maximum to date (see Figure 
7.4. 1 ) .  Figure 7.4 . 1  suggests that there are time intervals in which Y (t) is 
strictly increasing, but in fact no such interval exists . Such an interval can 
occur only if S ( t) is strictly increasing on the interval, and if there were such an 
interval, then S(t) would accumulate zero quadratic variation on the interval 
(see the argument in the previous paragraph) . This is not the case because 
dS (t) dS(t) = aS2 (t) dt is positive for all t. Thus, despite the suggestion of 
Figure 7.4. 1 ,  the lengths of the "flat spots" of Y (t) on any time interval [0, T) 
sum to T. Therefore, if (7.4. 12) were to hold, we would need to have 8(u) = 0 
for Lebesgue almost every u in [0, T) . This would result in Y (t) = Y(O) for 
0 ::; t ::; T. But in fact Y (t) > Y(O) for all t > 0. We conclude that Y (t) 
cannot be represented in the form (7.4. 12) ; dY (t) is not a dt term. 

The paths of Y (t) increase over time, but they do so on a set of times 
having zero Lebesgue measure. Each time interval [0, T) contains a sequence 
of subintervals whose lengths sum to T, and on each of these subintervals, Y (t) 
is constant . The particular subintervals depend on the path, but regardless 
of the path, the lengths of these subintervals sum to T. A similar situation 
is described in Appendix A, Section A.3. In the case discussed there, T = 1 
and the subintervals are explicitly exhibited. Their union is the Cantor set . 
It is verified that although the lengths of these subintervals sum to 1, there 
are uncountably many points not contained in these intervals. The function 
F(x) described in Section A.3 increases, but only on the complement of the 
Cantor set . Furthermore, F(x) is continuous. Functions of this kind are said 
to be singularly continuous. 

Fortunately, we can work with the differential of Y (t) . We have already 
argued that dY (t) dY (t) = 0. Similarly, we have 

dY (t) dS(t) = 0 (7.4. 13) 

(see Exercise 7.4) . We now provide the proof of Theorem 7.4. 1 .  

PROOF O F  THEOREM 7 .4 . 1 :  We use the lt6-Doeblin formula and (7.4. 1 1 ) and 
(7.4. 13) to differentiate the martingale e-rtv (t , S(t) , Y (t) ) to obtain 
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Fig. 7.4. 1 .  Geometric Brownian motion and its maximum to date. 

t 

d (e-rtv (t, S(t) , Y(t) ) )  

= e-rt [ - rv (t, S(t) , Y(t) ) dt + Vt (t , S(t) , Y(t) ) dt 

1 
+vx (t , S(t) , Y(t) ) dS(t) + 2Vxx (t , S(t) , Y(t) ) dS(t) dS(t) 

+vy (t , S(t) , Y(t)) dY(t)] 
= e-rt [ - rv ( t , S(t) , Y(t) ) + Vt ( t, S(t) , Y(t) ) + rS(t)vx ( t, S(t) , Y(t) ) 

+�a2 S2 (t)vxx ( t, S(t) , Y(t) )] dt 
+e-rtaS(t)vx (t , S(t) , Y(t) ) dW(t) 
+e-rtvy (t , S(t) , Y(t) ) dY(t) . (7.4. 14) 

In order to have a martingale, the dt term must be zero, and this gives us 
the Black-Scholes-Merton equation (7.4.6) . The new feature is that the term 
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e-rtvy (t, S(t) , Y(t)) dY(t) must also be zero. It cannot be canceled by the dt 
term nor by the dW(t) term because it is fundamentally different from both 
of these terms. The dY(t) term is naturally zero on the "flat spots" of Y(t) 
(i.e . ,  when S(t) < Y(t) ) .  However, at the times when Y(t) increases, which 
are the times when S(t) = Y(t) ,  the term e-rtvy ( t, S(t) , Y(t) } must be zero 
because dY(t) is "positive." This gives us the boundary condition (7.4.8) . 

The boundary condition (7.4.9) is the payoff of the option. If at any time 
t we have S(t) = 0, then we will have S(T) = 0. FUrthermore, Y will be 
constant on [t , T] ; if Y(t) = y, then Y(T) = y and the price of the option at 
time t is this value discounted from T back to t . This gives us the boundary 
condition (7.4.7) . 0 

Remark 1.4 . 2. The proof of Theorem 7.4. 1 shows that 

d (e-rtv (t , S(t) , Y(t) ) )  = e-rtaS(t)vx (t , S(t) , Y(t) ) dW(t) . 

Just as in Remark 7.3.3, this equation implies that the delta-hedging formula 
(7.3. 15) works. In contrast to the situation in Remark 7.3.3, here the function 
v(t , x, y) is continuous and we have no problems with large delta and gamma 
values. 0 

7.4.3 Reduction of Dimension 

The price of the floating strike lookback option has a linear scaling property: 

v(t , >-.x, >-.y) = >-.v(t , x, y) for all ).. > 0. (7.4. 15) 

This is because scaling both S(t) and Y(t) by the same positive constant at 
a time t prior to expiration results in the payoff Y(T) - S(T) being scaled by 
the same constant . In particular, if we know the function of two variables 

u(t, z ) = v(t, z ,  1) ,  0 � t � T, 0 � z � 1 , (7.4. 16) 
then we can easily determine the function of three variables v(t , x, y) by the 
formula 

v(t, x, y) = yv (t, � , 1) = yu (t , �) , O � t � T, O � x � y, y > O. 
(7.4. 17) 

From (7.4. 17) , we can compute the partial derivatives: 

Vt (t, x, y) = YUt (t , �) , 
Vx (t, x, y) = YUz (t , �) · :X (�) 
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Substitution into the Black-Scholes-Merton equation (7.4.6) yields 

1 2 2 0 = -rv(t, x, y) + Vt (t , x, y) + rxvx (t, x, y) + 20' X Vxx (t, x, y) 

= y [ - ru (t , �) + Ut (t , �) + r (�) Uz (t ,  �) 
. + �a2 (�r Uzz (t, �) ] · 

Canceling y and making the change of variable z = : , we see that u(t, z) 
satisfies the Black-Scholes-Merton equation 

1 2 2 Ut (t, z) + rzuz (t, z) + 20' z Uzz (t , z) = ru(t, z) ,  0 ::;  t < T, 0 < z < 1 .  
(7.4. 18) 

Boundary conditions for u(t, z ) can be obtained from the boundary conditions 
(7.4.7)-(7.4.9) for v(t, x, y) .  In particular, 

implies 

Furthermore, 

implies 

Finally, 

implies 

e-r(T- t) y = v(t, 0, y) = yu (t, 0) 

u(t, 0) = e-r(T-t) , 0 ::;  t ::; T. 

0 = vy (t, y, y) = u(t , 1 )  - Uz (t , 1 )  

u (t , 1 )  = Uz (t , 1 ) ,  0 ::; t < T. 

y - x = v (T, x , y) = yu (r, �) 

u (T, z ) = 1 - z, 0 ::;  z ::;  1 .  

(7.4. 19) 

(7.4.20) 

(7.4.21 )  
Equation (7.4. 18) and the boundary conditions (7.4. 19)-(7.4.21) uniquely de
termine the function u (t, z ) . As a consequence, we see that the Black-Scholes
Merton equation and boundary conditions in Theorem 7.4. 1 uniquely deter
mine the function v (t , x, y ) .  
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7 .4.4 Computation of the Price of the Look back Option 

In this subsection, we compute the function v(t , x, y) of Theorem 7.4. 1 .  We 
do this for 0 � t < T and 0 < x � y. Because Y(t) 2: S(t) for all t , we do 
not need to compute values of v (t, x, y) for x > y. The reader is invited in 
Exercise 7.5 to compute the partial derivatives of v (t, x, y) and verify that the 
Black-Scholes-Merton equation and boundary conditions in Theorem 7.4. 1 are 
satisfied. 

For 0 � t < T and r = T - t, we observe that 

Y(T) = S(O)euM(t) eu(M(T)-M(t) )  = Y(t)eu(M(T)-M(t) ) . 

If maxt::;u::;T W(u) > M(t) (i.e. , if W attains a new maximum in [t, T] ) ,  then 

M(T) - M(t) = max W(u) - M(t) . t::;;u::;;T 

On the other hand, if maxt::;u::;T W(u) � M(t) , then M(T) = M(t) and 

M(T) - M(t) = o. 
In either case, we have 

M(T) - M(t) = [ max W(u) - M(t)] + 
t::;;u::;;T 

= [ max (w(u) - w(t)) - (M(t) - W(t))] + 
t::;;u::;;T 

Multiplying this equation by u and using (7.4. 1 )  and (7.4.3) , we obtain - - [ - - Y(t) ] + 
u (M(T) - M(t)) = max u (W(u) - W(t)) - log S( ) t::;;u::;;T t 

Therefore, V(t) in (7.4.5) is 

(7.4.22) 

V(t) � e-�E [ Y(t) exp { [.�r u (W(u) - W(t)) - log �gi f } i .r(t) l 
-ert]E [ e-rTS(T) i F(t)] .  (7.4.23) 

Because the discounted asset price is a martingale under P, the second term 
in (7.4.23) is -erte-rts(t) = S(t) .  For the first term, we can "take out what 
is known" (see Theorem 2.3.2(ii ) ) to obtain 
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Because Y(t) and S(t) are .F(t)-measurable and maxt�u�T u (W(u) - W(t) ) 
is independent of F(t) , we can use the Independence Lemma, Lemma 2.3.4, 
to write the conditional expectation in (7.4.24) as g (S(t) , Y(t) ) , where 

g(x, y) = E exp { [ max u (W (u) - W (t) ) - log �] + } . t�u�T X (7.4.25) 

Note that the expectation in (7.4.25) is no longer conditioned on F(t) . Putting 
this all together, we have 

V(t) = e-r'"Y(t)g (S(t) , Y(t) ) - S(t) 

or, equivalently, 
v (t, x , y) = e-rryg(x, y) - x. (7.4.26) 

It remains to compute the function g(x, y). Because 

max u (W(u) - W (t)) = u max (W(u) - W(t)) , t�u�T t�u�T 

and maxt�u�T(W(u) - W (t) ) has the same unconditional distribution under Jiii as maxo�u�,- (W(u) - W(O) ) = M(T) , the function g(x, y) of (7.4.25) can 
also be written as 

g(x, y) = IE exp { [uM(T) - log �r} 
_ - {- 1 Y } X - [ <TM(,-) ] - IP' M(T) :::; - log - + -IE e n{M( ) > � I 11. }  • 

U X y '" - a 0g ., 

We compute both terms on the right-hand side of (7.4.27) . 

(7.4.27) 

In order to compute the first term on the right-hand side of (7.4.27) , 
we use (7.2.6) with T replaced by T and m replaced by � log � · With these 
replacements, the arguments of N appearing on the right-hand side of (7.2.6) 
are 
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where O± (T, s) is defined by (7.3. 18) . The term e2"'m appearing on the right
hand side of (7.2.6) becomes 

{ 
2a y } 

{ ( 2r ) y } ( y ) ;;- - 1 
exp � log -; = exp a2 - 1 log -; = -; . 

It follows from (7.2.6) that 

P { M(T) � � log � } = N ( -L (T, �) )  - (�) ;;--1 N ( -L (T, �)) . 
(7.4.28) 

The second term on the right-hand side of (7.4.27) is computed using the 
density for M(T) under P given by (7.2.7) with T replacing T. Indeed, 

X E [ uM(T) H ] y e {M(T)� �  log � }  

= :: roo eum JM (T) (m) dm 
Y h log � 
X 1oo 2 um- ...!... (m-aT)2 d = - -- e 2T m 
Y � log � ...J2iT 

_::_ roo 2ae(u+2a)mN ( -m - aT) dm. 
Y h log � VT (7.4.29) 

We compute the first integral on the right-hand side of (7.4.29) .  Because 
1 2 TT - -(m - aT - aT) 2T 

1 2 1 2 = rT - - (m - aT) + a(m - aT) - -a T 2T 2 
= rT - � (m - aT)2 + am - (r - �a2) T - �a2T 2T 2 2 

1 2 = am - 2T ( m - aT) , 

we may write the first term on the right-hand side of (7.4.29) as 
X 1oo 2 um- ...!... (m-aT)2 d - -- e 2T m 
Y .!. Jog 11. ..j2iT " "' 

xe - ...l... (m-aT-uT)2 d 2 7"7" 100 = --- e 2T m. y.../2iT � log � 
(7.4.30) 

We make the change of variable e = aT+.fo-m ' so the lower limit of integration 
� log � becomes 

1 ( 1 y ) 1 ( X 1 2 ) ( X) v'T aT + aT - -;; log -; = av'T 
log Y + rT + 2a T = o+ T, Y . 
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With this change of variable in the integral on the right-hand side of (7.4.30) , 
we obtain the following formula for the first term on the right-hand side of 
(7.4.29) :  

X 1oo 2 um-..L (m-ar)2 d - 2xerr 1
o
+ (r, � ) _ l e2 de 

- -- e 2r m - -- e 2 " ., 
Y ;; Jog � J21IT YV'iii - oo  

= 2x:TT 
N ( 0+ ( T, �) ) . (7.4.31 )  

The second term on the right-hand side of  (7.4.29) requires a reversal 
of the order of integration over the region shown in Figure 7.4.2. Because 
a + 2a = � , this term is 

_::_ {oo 
2ae<u+2a)mN ( -m - aT) dm y }l. Jog il< VT " y 

ax ..!'i' 1.rm- l t2 rit d 2 1oo 1..1.... (-m-ar) 
= - -- e " 2 .. ...., m 

YV'iii 1. Jog 11. -oo " "' 

ax 1.rm- l t2 d dt 2 1-L (r, � ) 1-ey'T-ar 
= - -- e " 2 .,  m ., .  

YV'iii -oo 1. log 11. " "' 

The inner integral in (7.4.32) can be evaluated. Indeed, 

m = � log � 

m 

Fig. 7.4.2. Reversal of integration in (7.4.32) . 

(7.4.32) 
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But 

and 

1-e,;:F-ocr 2 2 1m=-f!..;:F-ar 
1..?:!!L 

� d U 1.!:m. _ � e " 2 m = - e " 2 
.l. log 11. 2r m=.l. log 11. a z a z 

U k(_t: 'r-ar) - .!.t;2 U .1J;. Jog 11. - l2 t;2 = -e a � v -, 2 - -e a�< :z: • 
2r 2r 

2r e e 2rf. Vr 2raT - (-F.../T - ar) - - = - - - -- - -
u 2 2 u u 

= 
-� (e + 2r.j7) 2 

+ 2r2r _ 2rar 
2 u u2 u 

2 1 ( 2r.j7) 2rr 
= - - f. +  -- + - (r - ua) 

2 u u2 

) 2 1 2r..;T 
= - 2

(F. + -
u

- + rr 

2 2r 2 .1J;. log 11. -� ( y ) ;7 -� e .. • "' 2 = - e 2 . X 
Therefore, the inner integral in (7.4.32) is 

1-t;,;:F-ar 2rm - � 
d U rr- l (t:+ 2r,/!' )2 U ( Y ) � - � 

e " 2 m = -e 2 " " - - - e 2 . 
.!. log 11. 2r 2r x " "' 

We continue (7.4.32) , making this substitution for the inner integral: 

- � ['X> 2ae<u+2a)mN (-m - aT) dm 
Y J!; log '! Vr 

_ aux - ' "' rr- l (f!.+ 2r,{T)2 A/: 1-6 (r .1( )  
- - --- e 2 " ....., 

ry.J'iir -oo 
au ( Y ) � - 1 1-L (r, '! ) - � +-- - e 2 df. 

r.J'iir x -oo 
auxerr 1-L (r, '! ) - l (f!.+ 2r,fT )2 e 2 " df. ry.J'iir -oo ( 2r 1 ( +

a
r
u �) ;2"- N (-6- T, �)) . (7.4.33) 

In the first integral on the right-hand side of (7.4.33) , we make the change of 
variable "' = f. + 2rft , and the upper limit of integration becomes 
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We conclude that 

-::_ {oo 2ae(o-+2a)m N ( -m - ar) dm 
Y h log l!i Vr 

= _ a�x err N (o+ (r, �) ) + 
a
r
u (�) !i-1 N ( -L (r, �) ) . 

(7.4.34) 

We put all the pieces together. The function v(t, x, y) for 0 ::::; t < T and 
0 < x ::::; y is given by (7.4.26) , where g(x, y) is given by (7.4.27) . We have 
computed both terms on the right-hand side of (7.4.27) . The first term is given 
by (7.4.28) ,  and the second term is itself the sum of the two terms in (7.4.29) . 
These two terms are given by (7.4.31)  and (7.4.34) . Furthermore, the term "': 
appearing in these formulas is equal to 1 - �; . We conclude that 

v(t, x , y) = e-rry [N ( -L (r, �) ) - (�) �- 1 N ( -L (r, �) ) 
+2 (�) errN (o+ (r, �) ) 
- (1 - �;) (�) errN (o+ (r, �) ) 
+ ( 1 - �;) (�) �-1 N ( -L (r, �)) ] - x. 

Simplification results in the formula 

The function u related to v by (7.4. 16) satisfies 

u (t ,  �) = ( 1 + �;) (�) N (o+ (r, �) )  + e-rr N ( -o_ (r, �) ) 
_ �>-rr (� r-!i N ( -L (r, �) ) - � -
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Making the change of variable z = � ,  we obtain 

u(t, z) = (1 + ;;) zN (c5+ (r, z ) )  + e-rrN ( - L (r, z) ) 

a2 
rr 1 2r 1 - 2r

e- z -;;IN( - L (r, z- )) - z ,  O � t < T, O < z � l . 
(7.4.36) 

7.5 Asian Options 

An Asian option is one whose payoff includes a time average of the underlying 
asset price. The average may be over the entire time period between initiation 
and expiration or may be over some period of time that begins later than the 
initiation of the option and ends with the option's expiration. The average 
may be from continuous sampling, 

1 {T 
T lo S(t) dt , 

or may be from discrete sampling, 

where 0 < lt  < t2 · · · < tm = T. The primary reason to base an option payoff 
on an average asset price is to make it more difficult for anyone to significantly 
affect the payoff by manipulation of the underlying asset price. 

The price of Asian options is not known in closed form. Therefore, in this 
section we discuss two ways to derive partial differential equations for Asian 
option prices. The first of these was briefly presented in Example 6.6. 1 .  The 
other method for computing Asian option prices is Monte Carlo simulation. 

7.5 .1  Fixed-Strike Asian Call 

Once again, we begin with a geometric Brownian motion S(t) given by 

dS(t) = rS(t) dt + aS(t) dW(t) ,  (7 .5 . 1) 

�here W(t) , 0 � t � T, is a Brownian motion under the risk-neutral measure 
IP'. Consider a fixed-strike Asian call whose payoff at time T is 

V(T) � ( � [ S(t) dt - K f (7 .5 .2) 
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where the strike price K is a nonnegative constant. The price at times t prior 
to the expiration time T of this call is given by the risk-neutral pricing formula 

V(t) = E [ e-r(T-t) V(T) I F(t) ] , 0 � t � T. (7 .5.3) 

The usual iterated conditioning argument shows that 

is a martingale under JP>. This is the quantity we wish to compute. In the next 
two subsections, we describe two different ways to undertake this. 

7.5.2 Augmentation of the State 

The Asian option payoff V(T) in (7.5 .2) is path-dependent. The price of the 
option at time t depends not only on t and S(t) , but also on the path that 
the asset price has followed up to time t. In particular, we cannot invoke the 
Markov property to claim that V(t) is a function of t and S(t) because V (T) 
is not a function of T and S(T) ; V (T) depends on the whole path of S. 

To overcome this difficulty, we augment the state S(t) by defining a second 
process 

Y(t) = 1t 
S(u) du. (7.5.4) 

The stochastic differential equation for Y(t) is thus 

dY(t) = S(t) dt . (7.5 .5) 

Because the pair of processes (S(t) , Y(t) ) is governed by the pair of stochas
tic differential equations (7.5 . 1 ) and (7.5.5) ,  they constitute a two-dimensional 
Markov process (Corollary 6.3 .2) .  Furthermore, the call payoff V (T) is a func
tion of T and the final value (S(T) , Y(T) ) of this process. Indeed, V (T) de
pends only on T and Y(T) , by the formula 

V (T) = (�Y(T) - K) 
+ (7.5.6) 

This implies that there must exist some function v ( t, x, y) such that the Asian 
call price (7.5.3) is given as 

v (t , S(t) , Y(t)) = iE [ e-r(T- t ) (�Y(T) - K) + I F(t)] 
= iE [ e-r(T-t )V(T) I F(t)) . (7.5 . 7) 

The function v (t , x, y) satisfies a partial differential equation. This equation 
and three boundary conditions are provided in the next theorem. However, 
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in order to numerically solve this equation, it would normally be necessary 
to also specify the behavior of v(t, x , y) as x approaches oo and y approaches 
either oo or -oo. This can be avoided by the method discussed in Subsection 
7.5.3; see Remark 7.5.4 below. 

Theorem 7.5 .1 .  The Asian call price function v(t , x, y) of (7. 5. 7} satisfies 
the partial differential equation 

1 2 2 Vt (t , x, y) + rxvx (t, x ,  y) + xvy (t, x, y) + 20" x Vxx (t , x, y) = rv(t , x, y) , 
0 � t < T, x � 0, y E :R., (7.5.8) 

and the boundary conditions 

v(t, O, y) = e-r(T-t> (� - K)
+

, O � t < T, y E R, (7.5.9) 

lim v(t, x, y) = 0, 0 � t < T, x � 0, (7.5 .10) y.j.-oo 

v(T, x , y) = (� - K) 
+

, x � 0, y E R. (7.5 . 1 1) 

PROOF: Using the stochastic differential equations (7.5. 1 ) and (7.5.5) and 
noting that dS(t) dY(t) = dY(t) dY(t) = 0, we take the differential of the 
P-martingale e-rtv(t) = e-rtv (t ,  S(t) , Y(t) ) . This differential is 

d (e-rtv (t ,  S(t) , Y(t) ) )  

= e-rt [ -rv dt + vt dt + vx dS + Vy dY  + �Vxx dS dS] 
= e-rt [ -rv + Vt + rSvx + Svy + �a2S2vxx] dt 

+e-rtaSvx dW(t) . (7.5. 12) 

In order for this to be a martingale, the dt term must be zero, which implies 

vt (t , S(t) , Y(t) ) + rS(t)vx (t , S(t) , Y(t) ) + S(t)vy (t , S(t) , Y(t) ) 
1 +2a2S2(t)vxx (t , S(t) , Y(t) ) = rv (t, S(t ) ,  Y(t) ) . 

Replacing S(t) by the dummy variable x and Y(t) by the dummy variable y, 
we obtain (7.5.8) . 

We note that S(t) must always be nonnegative, and so (7.5.8) holds for 
x � 0. If S(t) = 0 and Y(t) = y for some value of t , then S(u) = 0 for all 
u E [t, T) , and so Y(u) is constant on [t , T) . Therefore, Y(T) = y, and the 
value of the Asian call at time t is ( lf - K) + , discounted from T back to t . 
This gives us the boundary condition (7.5.9) . 

In contrast, it is not the case that if Y(t) = 0 for some time t, then 
Y(u) = 0 for all u � 0. Therefore, we cannot easily determine the value of 
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v(t , x, 0) , and we do not provide a condition on the boundary y = 0. Indeed, 
at least mathematically there is no problem with allowing y to be negative. If 
at time t we set Y(t) = y, then Y(T) is defined by (7.5 .5) .  In integrated form, 
this formula is 

Y(T) = y + iT 
S(u) du. (7.5. 13) 

Even if y is negative, this makes sense, and in this case we could still have 
Y(T) > 0 or even �Y(T) -K > 0, so that the call expires in the money. When 
using the differential equations (7.5. 1) and (7.5.5) to describe the "state" 
processes S(t) and Y(t) , there is no reason to require that Y(t) be nonnegative. 
(We still require that S(t) be nonnegative because x = 0 is a natural boundary 
for S(t) . ) For this reason, we do not restrict the values of y in the partial 
differential equation (7.5.8) . The natural boundary for y is y = -oo. If Y(t) = 
y, S(t) = x, and holding x fixed we let y ---+ -oo, then Y(T) approaches -oo 
(see (7.5 . 13) ) ,  the probability that the call expires in the money approaches 
zero, and the option price approaches zero. The natural boundary for y is 
y = -oo, and the boundary condition there is (7 .5 .10) . 

The boundary condition (7.5. 1 1 ) is just the payoff of the call. 0 

Remark 7. 5. 2. After we set the dt term in (7.5. 12) equal to zero, we see that 

d (e-rtv (t , S(t) , Y(t) ) )  = e-rtaS(t)vx (t , S(t) , Y(t) ) dW(t) . (7.5 .14) 
The discounted value of a portfolio that at each time t holds Ll(t) shares of 
the underlying asset is given by (see (5.2 .27) )  

(7.5 . 15) 
To hedge a short position in the Asian call , an agent should equate these two 
differentials , which leads to the delta-hedging formula 

Ll(t) = vx (t , S(t) , Y(t) ) . 

7.5.3 Change of Numeraire 

In this subsection we present a partial differential equation whose solution 
leads to Asian option prices. We work this out for both continuous and discrete 
averaging. The derivation of this equation involves a change of numeraire, 
a concept discussed systematically in Chapter 9. In this section, we derive 
formulas under the assumption that the interest rate r is not zero. The case 
r = 0 is treated in Exercise 7.8. 

We first consider the case of an Asian call with payoff 

V(T) = (� {r S(t) dt - K) +
, 

C lr-c 
(7.5. 16) 
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where c is a constant satisfying 0 < c ::::; T and K is a nonnegative constant. 
If c = T, this is the Asian call (7.5.2) considered in Subsection 7.5.2 .  Here 
we also admit the possibility that the averaging is over less than the full time 
between initiation and expiration of the call. 

To price this call , we create a portfolio process whose value at time T is 

1 1T 
X(T) = - S(u) du - K. C T-c 

We begin with a nonrandom function of time -y(t) , 0 ::::; t ::::; T, which will be 
the number of shares of the risky asset held by our portfolio. There will be no 
Brownian motion term in -y(t) , and because of this it will satisfy d-y(t) d-y(t) = 
d-y(t) dS(t) = 0. This implies that 

d ('Y(t)S(t) ) = -y(t) dS(t) + S(t) d-y(t) , 

which further implies 

d(er(T-t)-y(t)S(t)) = er(T-t)d (-y(t)S(t) ) - rer(T-t)-y(t)S(t) dt 
= er(T-t)-y(t) dS(t) + er(T-t) S(t) d-y(t) 

(7.5 . 17) 

-rer(T-t)-y(t)S(t) dt . (7.5. 18) 

Rearranging terms in (7.5. 18) , we obtain 

er(T-t)-y(t) (dS(t) - rS(t) dt) = d (er(T-t)-y(t)S(t)) - er(T-t)S(t) d-y(t) . 
(7.5 .19) 

An agent who holds -y(t) shares of the risky asset at each time t and finances 
this by investing or borrowing at the interest rate r will have a portfolio whose 
value evolves according to the equation 

dX(t) = -y(t) dS(t) + r (X(t) - -y(t)S(t) ) dt 
= r X(t) dt + -y(t) (dS(t) - rS(t) dt) . 

Using this equation and (7.5. 19) , we obtain 

d(er(T-t) X (t)} = -rer(T-t) X(t) dt + er(T-t) dX(t) 
= er(T-t)-y(t) (S(t) - rS(t) dt) 

(7.5.20) 

= d ( er(T-t)-y(t)S(t) }  - er(T-t) S(t) d-y(t) . (7.5.21 ) 
To study the Asian call with payoff (7.5 .16) , we take -y(t) to be { 1 ( rc} - 1 - e- , 0 ::::; t ::::; T - c, 

-y(t) = rc 
_!_ (1 - e-r(T-t) ) , T - c ::::; t ::::; T, rc 

and we take the initial capital to be 

(7.5.22) 
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X(O) = _.!:._ (1 - e-re)S(O) - e-rT K. 
rc 

(7 .5 .23) 

In the time interval [0, T - c] , the process -y(t) mandates a buy-and-hold 
strategy. At time zero, we buy ;e (1 - e-re) shares of the risky asset , which 
costs r

1
e ( 1 - e-re)S(O) . Our initial capital is insufficient to do this, and we 

must borrow e-rT K from the money market account. For 0 ::::; t ::::; T - c, 
the value of our holdings in the risky asset is ;e (1 - e-re) S(t) and we owe 
e-r(T-t) K to the money market account. Therefore, 

X(t) = _.!:._ ( 1 - e-re)S(t) - e-r(T-t) K, 0 :5 t $ T - c. 
rc 

In particular, 

1 X(T - c) = - (1 - e-re)S(T - c) - e-reK. 
rc 

(7.5.24) 

(7.5.25) 

For T - c ::::; t ::::; T, we have d-y(t) = - �e-r(T-t) and we compute X(t) by first 
integrating (7.5 .21 ) from T - c to t and using (7 .5 .25) and (7.5.22) to obtain 

er(T-t) X (t) 

= ere X (T - c) + £_e 
d (er(T-u)-y(u)S(u)) - £

_e 
er(T-u)S(u) d-y(u) 

= _.!:_ere (1 - e-re) S(T - c) - K + er(T-t)-y(t)S(t) 
rc 

_ _.!:_ere (1 - e-re) S(T - c) + ! t S(u) du 
rc c lr-e 

= -K + er(T-t>-y(t)S(t) + - S(u) du. 1 1t 
C T-e 

Therefore, 

X(t) = _.!:._ (1 - e-r(T-t) ) S(t) + e-r(T-t) ! t 8(u) du - e-r(T-t)K, rc c lr-e 

In particular, 

as desired, and 

1 1T 
X(T) = - S(u) du - K, 

C T-e 

T - c ::::; t ::::; T. (7.5.26) 

(7.5.27) 

V(T) = x+ (T) = max{X(T) , O} . (7.5.28) 
The price of the Asian call at time t prior to expiration is 

(7.5 .29) 
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The calculation of the right-hand side of (7.5.29) uses a change-of-numeraire 
argument , which we now exlain. Let us define 

Y t = X(t) = e-rt X(t) 
( ) 

S(t) e-rtS(t) 
· 

This is the value of the portfolio denominated in units of the risky asset 
rather than in dollars. We have changed the numeraire, the unit of account , 
from dollars to the risky asset. 

We work out the differential of Y(t) . Note first that 

d(e-rts(t) ) = -re-rts(t) dt + e-rt dS(t) = ae-rts(t) dW(t) . (7.5.30) 

Therefore, 

d [ ( e-rt S(t) ) - 1] 
= - (e-rts(t)f2d(e-rts(t) ) + (e-rts(t)f3d(e-rts(t) ) d (e-rts(t) ) 

= - ( e-rt S(t) ) -2 a ( e-rt S(t) ) dW(t) + ( e-rt S(t) ) -a ( e-rt S(t) ) 2 a2 dt 
= -a ( e-rt S(t) ) - 1 dW(t) + a2 ( e-rt S(t) ) - 1 dt. 

On the other hand, (7.5.20) and (7.5.30) imply 

d(e-rtX(t) ) = -re-rtx(t) dt + e-rt dX(t) 
= 7(t)e-rt (dS(t) - rS(t) ) dt 
= 7(t)ae-rt S(t) dW(t) . 

Ito's product rule implies 

dY(t) = d [ (e-rtx(t) ) (e-rts(t)f1] 

= e-rtX(t) d [ (e-rts(t) ) - 1 ] + (e-rts(t)f1 d (e-rtx(t) ) 

+d(e-rtx(t) ) d [ (e-rts(t) ) - 1 ] 

= -aY(t) dW(t) + a2Y(t) dt + a7(t) dW(t) - a27(t) dt 
= a ['Y(t) - Y(t)] [dW(t) - a dt] . (7.5 .31)  

The process Y(t) is not a martingale under lP because its differential 
(7.5.31 ) has a dt term. However, we can change measure so that Y(t) is a 
martingale, and this will simplify (7.5.31 ) .  We set 

W8(t) = W(t) - at (7.5.32) 
and then have 
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dY(t) = u ['Y(t) - Y(t)] dW8 (t) . (7.5.33) 

Accordil_!g to Girsanov's Theorem, Theorem 5.2 .3 ,  we can change the measure 
so that W8(t) , 0 :£ t :£ T, is a Brownian motion. In this situation, -u plays 
the role of e in Theorem 5.2 .3 ,  and W and P play the roles of W and P. The 
Radon-Nikodym derivative process of (5.2 . 1 1) is 

In other words, 

Z(t) = exp { uW(t) - �u2t} . 

e-rts(t) Z(t) = 
S(O) . 

Under the probability measure P8 defined by 

P8 (A) = L Z(T) dP for all A E :F, 

W8 (t) is a Brownian motion and Y(t) is a martingale. 

(7.5 .34) 

Under the probability measure P8 , the process Y(t) is Markov. It is given 
by the stochastic differential equation (7.5.33) , and because -y(t) is nonrandom, 
the term multiplying dW8(t) in (7.5.33) is a function of t and Y(t) and has 
no source of randomness other than Y(t) . Equation (7.5.33) is a stochastic 
differential equation of the type (6.2 . 1 ) , and solutions to such equations are 
Markov (see Corollary 6.3.2 ) . 

We return to the option price V(t) of (7.5.29) and use Lemma 5.2 .2 to 
write (7.5.29) as 

V(t) = ertiE [e-rTx+ (T) i:F(t)] 

- S(t) iE [e-rTs(T) ( e-rTX(T) ) + 
:F(t)] - e-rtS(t) e-rTS(T) 

= ��!�iE [ Z(T)Y+ (T) i :F(t)] 

= S(t)E8 [Y+ (T) I :F(t)] ' (7.5.35) 
where E8 [· · · I:F(t)) denotes conditional expectation under the probability 
measure P8 . Because Y is Markov under P8 , there must be some function 
g(t, y) such that 

g (t ,  Y(t) ) = E8 [Y+ (T) i :F(t)] . (7.5.36) 
From (7.5 .36) , we see that 

g (T, Y(T)) = E8 [Y+ (T) i :F(T)] = y+ (T) . (7.5.37) 
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We note that Y(T) = �f�t can take any value since the numerator X(T) , 
given by (7.5.27) ,  can be either positive or negative, and the denominator 
S(T) can be any positive number. Therefore, (7.5.37) leads to the boundary 
condition 

g(T, y) = y+ , y E JR. (7.5.38) 
The usual iterated conditioning argument shows that the right-hand side 

of (7.5.36) is a martingale under P8 , and so the differential of g (t , Y(t)) should 
have only a dW8(t) term. This differential is 

dg (t ,  Y(t) ) = gt (t ,  Y(t) ) dt + gy (t ,  Y(t) ) dY(t) 
1 +2gyy (t ,  Y(t) ) dY(t) dY(t) 

= [Yt (t , Y(t) ) + �u2 ('Y(t) - Y(t) ) 2gyy (t , Y(t) )] dt 

+u ('Y(t) - Y(t) )gy (t ,  Y(t)) dW8 (t) . 

We conclude that g(t , y) satisfies the partial differential equation 

gt (t, y) + �u2 ('Y(t) - y) 2gyy (t, y) = 0, 0 � t < T, y E JR. (7.5.39) 

We summarize this discussion with the following theorem. 

Theorem 7.5.3 (Vecef) .  For 0 � t � T, the price V(t) at time t of the 
continuously averaged Asian call with payoff {7. 5. 16} at time T is 

V(t) = S(t) g (t , �&?) , (7.5.40) 

where g(t, y) satisfies {7. 5. 99} and X(t) is given by (7. 5. 24} and {7. 5. 26}. The 
boundary conditions for g(t, y) are {7. 5. 98} and 

lim g(t , y) = 0, l im [g (t, y) - y] = 0,  0 � t :5 T. y--+-oo y--+oo (7.5.41 ) 

Remark 7. 5.4 (Boundary conditions). Let 0 � t � T be given. The first 
boundary condition in (7.5.41 ) can be derived from the fact that when Y(t) 
is very negative, the probability that Y(T) also is negative is near one and 
therefore the probability that Y+ (T) = 0 is near one. This causes g(t , Y(t)) 
in (7.5.36) to be near zero. The second boundary condition in (7.5.41 ) is a 
consequence of that fact that when Y(t) is large, then the probability that 
Y(T) > 0 is near one. Therefore, g (t , Y(t)) given by (7.5.36) is approximately 
equal to fE.8 [Y(T) iF(t)] , and because Y(T) is a martingale under Jiii8 ,  this 
conditional expectation is Y(t) . 

It is easier to derive these boundary conditions at y = ±oo for g(t , y) than 
it is to derive the boundary conditions for v(t , x, y) in Theorem 7.5 . 1 because 
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v(t , x, y) has two variables, x and y, that can become large. For example, it is 
not at all clear how v(t , x, y) behaves as x --+  oo and y --+  -oo. The reduction 
of the Asian option pricing problem provided by Theorem 7.5.3 reduces the 
dimensionality of the problem and simplifies the boundary conditions. It also 
removes a so-called "degeneracy" in equation (7.5.8) created by the absence 
of the Vyy (t , x, y) term. This degeneracy complicates the numerical solution 
of (7.5.8) . 0 

In the remainder of this subsection, we adapt the arguments just given to 
treat a discretely sampled Asian call. Assume we are given times 0 = t0 < 
t1 < t2 · · · < tm = T and the Asian call payoff is 

V(T) � (! t. S(t; ) - K) + 
We wish to create a portfolio process so that 

1 m 
X(T) = - L S(ti ) - K. 

m j= 1 

In place of (7.5.22) , we define 

Then 

1 m 
-y(tj ) = - L e-r(T-t; ) , j = 0, 1 ,  . . .  , m. 

m . . '=J 

(7.5.42) 

(7.5.43) 

1 -y(tj ) = -y(tj_ 1 ) - -e-r(T-ti -d , j = 1 ,  . . .  , m, (7.5.44) 
m 

and -y(T) = -y(tm) = -;k .  We complete the definition of -y(t) by setting 

(7.5.45) 
This defines -y(t) for all t E [0 , T] . In this situation, (7.5 .21 ) still holds, but 
now d-y (t) = 0 in each subinterval (tj_ 1 , tj ) · Integrating (7.5 .21 ) from tj_ 1 to 
ti and using (7.5.44) and the fact that -y(t) = -y(tj ) for t E (tj_ 1 , tj ] ,  we obtain 

er(T-t3 )X (tj ) _ er(T-ti-dX(tj-d 
= -y(tj ) [er(T- ti )S(tj ) - er(T-ti-dS(tj_ I )] 

= -y(tj )er(T-ti lS(tj ) - ( -y(tj-d - � e-r(T-ti - d) er(T-ti-dS(tj-d 

= -y(tj )er(T-ti lS(tj ) - -y(ti_ l )er(T-ti - dS(ti_ I )  + __!_S(ti_ I ) .  
m 

Summing this equation from j = 1 to j = k ,  we see that 
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We set 
X (0) = e-rT [ -y(O)erT - �] S(O) - e-rT K, 

so this equation becomes 

or, equivalently, 

In particular, 
1 m 

X(T) = X(tm) = - L S(ti ) - K 
m i=l 

as desired. 

(7.5.46) 

(7.5.47) 

To determine X(t) for tk :5 t :5 tk+l • we integrate (7.5 .21) from tk to t to 
obtain 

er(T-t)X(t) = er(T-t,. )X (tk ) + 'Y(tk+t ) [er(T-t)S(t) - er(T-t,. )S(tk )] 

= -y(tk )er(T-t,. ) S(tk ) + ..!_ I: S(ti ) - K + -y(tk+ l )er(T-t) S(t) m i=l 

Therefore, 

- ( -y(tk ) - � e-r(T-t,. )) er(T-t,. )S(tk ) 
k 

= -y(tk+t )er(T-t)S(t) + ..!_ L S(ti ) - K. m i=l 

1 k 
X(t) = -y(tk+t )S(t) + e-r(T-t ) - L S(ti ) - e-r(T-t) K, tk :5 t :5 tk+l · m i=l 

(7.5.48) 
We now proceed with the change of numeraire as before. This leads again 

to Theorem 7.5 .3 for the discretely sampled Asian call with payoff (7.5.42) . 
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The price at time t is given by (7.5.40) , where g(t , x) satisfies (7.5.39) with 
boundary conditions (7.5.38) and (7.5.41 ) .  The only difference is that now 
the nonrandom function 7(t) appearing in (7 .5 .39) is given by (7.5.43) and 
(7.5.45) and the process X(t) in (7.5.40) is given by (7.5.48) . 

7.6 Summary 

Three specific exotic options on a geometric Brownian motion have been con
sidered: an up-and-out barrier call, a lookback call , and an Asian call. In 
each case, the discounted option price is a martingale under the risk-neutral 
measure, and this leads to a partial differential equation of the Black-Scholes
Merton type. However, the look back call and the Asian call equations have 
an additional state variable in this equation. 

For the barrier call and the lookback call, the option price was computed 
explicitly. The Asian option pricing problem was transformed by a change of 
numeraire to an equation with a single state variable. This transformation 
was done both for the continuously sampled and the discretely sampled Asian 
options. 

7.7 Notes 

There are scores of different exotic options, and the search for explicit pricing 
formulas can lead to complex computations. Analysis of many exotic options 
is provided by Zhang [167] and Haug [80] . Papers by a variety of authors who 
treat exotic options, including some of those cited below, have been collected 
by Lipton [ 1 10] . Exotic options are prevalent in foreign exchange markets. 
Analysis of several instruments appearing in these markets is provided by 
Hakala and Wystup [76] . Many exotic pricing formulas can be derived from 
the formulas for distributions related to Brownian motion collected by Borodin 
and Salminen [18] . 

The analysis of barrier options presented here follows Rubinstein and 
Reiner [142] . Monte Carlo simulation of barrier options normally obtains the 
price for the case when barrier crossing is checked only at discrete times. 
Broadie, Glasserman and Kou [22] provide a correction term to adjust this 
result to obtain the price for an option in which the barrier is monitored con
tinuously. The problem of large delta and gamma values for barrier options 
near expiration near the barrier can be ameliorated by placing an a priori 
constraint on the hedging strategy and pricing this constraint into the option; 
see Schmock, Shreve, and Wystup [148] . 

The change-of-numeraire approach to Asian options, explained in Subsec
tion 7.5 .3, is due to Vecef [ 155] , [156] . This methodology was extended to 
jump processes by Vecef and Xl' [ 157] . Other partial differential equations for 
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pricing Asian options are provided by Andreasen [4] , Lipton [109] , and Rogers 
and Shi [139] . 

Geman and Yor [71] obtain a closed-form formula for a Laplace transform 
of the Asian option price. Fu, Madan, and Wang [67] compare Monte Carlo 
and Laplace transform methods for Asian option pricing. 

7.8 Exercises 

Exercise 7.1 (Black-Scholes-Merton equation for the up-and-out call) .  
This exercise shows by direct calculation that the function v(t , x) of (7.3.20) 
satisfies the Black-Scholes-Merton equation (7 .3 .4) . 
(i) Recall that T = T - t, so �; = - 1 .  Show that O± (T, s) given by (7 .3 . 18) 

satisfies 
:t 8± (r, s) = - 2�8± (r, �) . 

(ii) Show that for any positive constant c, 

a ( x ) 1 �0± T, - = '- ' uX C XO'y T  
(iii) Show that 

!._8± (r, !:..) = _ _  1 _ _  ax X XO'VT 

N' (8+ (r, s)} e-rr 
N' (L (r, s)} = -s-

and hence 

(iv) Show that 

and hence 

(v) Show that 8+ (r, s) - L (r, s) = aJT. 
(vi) Show that 

(vii) Show that N"(y) = -yN' (y) .  

(7 .8 . 1 ) 

(7.8 .2) 

(7.8.3) 

(7.8.4) 

(7.8.5) 

(7.8.6) 

(7.8 .7) 
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(viii) Use (i) to compute V
t
(t , x) and (7.8.3)-(7.8.5) to simplify it , obtaining 

V
t
(t, x) 

= - 2jrN' (8+ (r, �) ) - x;::;;> log �N' (8+ (r, �)) 

+ 2n; (�) -� N' (8+ (r, ;:) ) 
-re-rr K [ N ( 8_ ( T, �)) - N ( 8_ ( T, �)) ] 

+re-rrK (�)
-�+l [N (L (r, ;:)) - N (L (r, !))] . (7.8.8) 

(ix) Use (ii) to compute vx (t , x) and (7.8.3) and (7.8.4) to simplify it , obtaining 

Vx (t , x) 

= [N (8+ (r, �)) - N (8+ (r, �) ) ] -
2
�u-:

) 
N' (8+ (r, �) ) 

+ !: (�) 
-�- l [N (8+ (r, ;:) ) - N (8+ (r, !) ) ] 

+ e-; 
K ( _ :: + 1) ( �)

-� 

x [N (8- (r, ;:) ) - N (8_ (r, !) ) ] . (7.8.9) 

(x) Use (ii) and (7.8.9) to compute Vxx (t , x) and (7.8.3) and (7.8.4) to simplify 
it , obtaining 

(7.8. 10) 

(xi) Now verify that v(t , x) satisfies the Black-Scholes-Merton equation (7.3.4) . 
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Exercise 7.2 (Boundary conditions for the up-and-out call) . In this 
exercise, it is verified that the up-and-out call price v (t, x) given by (7.3.20) 
satisfies the boundary condition (7.3.6) . Furthermore, the limit as x ..j.. 0 sat
isfies (7.3.5) and the limit as t t T satisfies (7.3.7) . 

(i) Verify by direct substitution into (7.3.20) that (7.3.6) is satisfied. 
(ii) Show that , for any positive constant c, 

lim o± (T, �) = -oo, x.j_O C 
lim O± (T, !:..) = oo. x.j_O X (7.8. 1 1 )  

Use this to show that for any p E JR. and positive constants c1 and c2 , we 
have 

(7.8. 12) 

(7.8. 13) 

If p ;::: 0, (7.8. 12) and (7.8. 13) are immediate consequences of (7.8. 1 1 ) .  
However, i f  p < 0, one should first use L'Hopital 's rule and then show 
that 

�ill xP exp { - �o! (T, �) } = o, �ill xP exp { -�o! (T, ;) } = o. 
(7.8. 14) 

To establish (7.8. 14) , you may wish to prove and use the inequality 
1 2a2 - b2 ::; (a + b)2 for all a, b E JR.. 

Conclude that limx.J-0 v(t, x) = 0 for 0 $ t < T. 
(iii) Show that , for any positive c, 

{ -oo if 0 < c < 1 ,  
lim o± (T, c) = 0 i f  c = 1 ,  
r.j_O 

00 if C > 1 .  

Use this to show that limr.J-0 v( t ,  x) = (x - K)+ for 0 < x < B. 

(7.8. 15) 

(7.8. 16) 

Exercise 7.3 (Markov property for geometric Brownian motion and 
its maximum to date) . Recall the geometric Brownian motion S(t) of 
(7.4. 1 )  and its maximum-to-date process Y(t) of (7.4.3) . According to Defini
tion 2.3 .6 ,  in order to show that the pair of processes (S(t) , Y(t) ) is Markov, 
we must show that whenever 0 ::; t ::;  T and f(x, y) is a function, there exists 
another function g(x, y) such that 

lE [f (S(T) , Y(T) ) IF(t)] = g (S(t) , Y(t) ) . (7.8. 17) 

Use the Independence Lemma, Lemma 2.3.4, to show that such a function 
g(x, y) exists. 
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Exercise 7.4 (Cross variation of geometric Brownian motion and its 
maximum to date) . Let S(t) be the geometric Brownian motion (7.4. 1 ) 
and let Y(t) be the maximum-to-date process (7.4.3) . Let T be fixed and let 
0 = to < t1 < . . .  tm = T be a partition of [0, T] . Show that as the number of 
partition points m approaches infinity and the length of the longest subinterval 
ma.xj=1 , . .  ,m ti - tj- 1 approaches zero, the sum 

m 

L (Y(tj ) - Y(tj-d) (S(tj ) - S(tj-d) 
j=1 

has limit zero. 

Exercise 7.5 (Black-Scholes-Merton equation for lookback option) . 
We wish to verify by direct computation that the function v (t , x, y) of (7.4.35) 
satisfies the Black-Scholes-Merton equation (7.4.6) . As we saw in Subsection 
7.4.3, this is equivalent to showing that the function u defined by (7.4.36) 
satisfies the Black-Scholes-Merton equation (7.4. 18) . We verify that u(t, z) 
satisfies (7 .4 . 18) in the following steps. Let 0 :::; t < T be given, and define 
T = T - t. 
(i) Use (7.8 . 1 ) to compute Ut (t, z), and use (7.8.3) and (7.8.4) to simplify the 

result , thereby showing that 

Ut (t , z) = re-rrN ( - L (r, z)) - �a2e-rrz1-�N( - L (r, z- 1 ) ) 

-�N' (8+ (r, z)) . (7.8. 18) 

(ii) Use (7.8.2) to compute Uz (t, z) , and use (7.8.3) and (7.8.4) to simplify the 
result , thereby showing that 

Uz (t, z) = (1 + �:)N(8+ (r, z)) 

+ (1 - �:)e-rrz-�N( - L (r, z- 1 ) ) - 1 .  (7.8. 19) 

(iii) Use (7.8. 19) and (7.8.2) to compute Uz (t, z) , and use (7.8.3) and (7.8.4) 
to simplify the result , thereby showing that 

Uzz (t, z) = (1 - 2: ) e-rr z-�- 1 N( - L (r, z- 1 )) + 2 
.r,;-N' (8+ (r, z) ) .  0" ZO" y T  

(7.8.20) 
(iv) Verify that u(t, z) satisfies the Black-Scholes-Merton equation (7.4. 18) . 
(v) Verify that u(t, z) satisfies the boundary condition (7.4 .20) .  

Exercise 7.6 (Boundary conditions for lookback option) . The look
back option price v(t , x, y) of (7.4.35) must satisfy the boundary conditions 
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(7.4.7)-(7.4.9) . As we saw in Subsection 7.4.3, this is equivalent to the function 
u(t, z) of (7.4. 16) given by (7.4.36) , 

u(t, z) = (1 +  ;:) zN (o+ (T, z) ) + e-r'"N ( - L (T, z) ) 

u2 2r 
- 2r e-r'"z1-;;-2"N ( - L (T, z-1 ) ) - z, O S. t < T, O < z $. 1 , 

satisfying the boundary conditions (7.4. 19)-(7.4.21 ) . This function was shown 
to satisfy boundary condition (7.4.20) in Exercise 7.5(v) . Here we verify by 
direct computation that the limit of u(t, z) as z ..j.. 0 satisfies (7.4. 19) and the 
limit of u(t, z) as t t T (T ..j.. 0) satisfies (7.4.21 ) . 
(i) If you have not worked Exercise 7 .2 , then verify (7.8. 1 1 ) , the second equal

ity in (7.8. 14) and (7.8. 16) . 
(ii) Use (7.8. 1 1 ) and the second part of (7.8. 14) to show that limz.(.O u(t, z) = 

e-r,- for 0 '5. t < T. 
(iii) Use (7.8. 16) to show that lim,-.J_o u(t, z) = 1 - z for 0 < z '5. 1. 
Exercise 7. 7 (Zero-strike Asian call) .  Consider a zero-strike Asian call 
whose payoff at time T is 

1 {T 
V(T) = T Jo S(u) du. 

(i) Suppose at time t we have S(t) = x 2:: 0 and J� S(u) du = y 2:: 0. Use the 
fact that e-rus(u) is a martingale under lP to compute 

Call your answer v(t , x, y) . 
(ii) Verify that the function v(t, x, y) you obtained in (i) satisfies the Black

Scholes-Merton equation (7.5.8) and the boundary conditions (7.5.9) and 
(7.5. 1 1 ) of Theorem 7.5. 1 . (We do not try to verify (7.5. 10) because the 
computation of v(t, x, y) outlined here works only for y 2:: 0.) 

(iii) Determine explicitly the process Ll(t) = Vx (t , S(t) , Y(t) ) , and observe that 
it is not random. 

(iv) Use the lt6--Doeblin formula to show that if you begin with initial capital 
X(O) = v (O, S(O) , O) and at each time you hold Ll(t) shares of the under
lying asset , investing or borrowing at the interest rate r in order to do 
this , then at time T the value of your portfolio will be 

1 {T 
X(T) = T Jo S(u) du. 
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Exercise 7.8. Consider the continuously sampled Asian option of Subsection 
7.5.3 , but assume now that the interest rate is r = 0. Find an initial capital 
X(O) and a nonrandom function 7(t) to replace (7.5.22) so that 

1 1T 
X(T) = - S(u) du - K C T- c 

(7.5 .27) 

still holds. Give the formula for the resulting process X(t) , 0 � t � T, to re
place (7.5.24) and (7 .5 .26) . With this function 7(t) and process X(t) , Theorem 
7.5.3 still holds . 

Exercise 7.9. Let g(t, y) be the function in Theorem 7.5.3 . Then the value of 
the Asian option at time t is V(t) = v(t, S(t) , X(t) ) ,  where v(t, s, x) = sg(t, y) 
and y = � - The process S(t) is given by (7.5. 1 ) . For the sake of specificity, 
we consider the case of continuous sampling with r i 0, so 7(t) is given by 
(7.5.22) and X(t) is given by (7.5 .24) and (7.5.26) . 
(i) Verify the derivative formulas 

Vt (t, S ,  x) = S9t (t , y) , 
V8 (t , s ,  x) = g(t, y) - ygy (t , y) , 
Vx (t , s , x) = gy (t, y) , 

y2 
V8s (t , S, x) = -gyy (t, y) , 

s 
y 

Vsx (t ,  S, x) = --gyy (t, y) ,  
s 

1 
Vxx (t ,  S, x) = -gyy (t, y) . 

s 

(ii) Show that e-rtv (t , S(t) , X(t) ) is a martingale under JPi by computing its 
differential, writing the differential in terms of dt and dW, and verifying 
that the dt term is zero. (Hint: Use the fact that g(t, y) satisfies (7.5.39) . )  

(iii) Suppose we begin with initial capital v(O, S(O) , X(O)) and at each time t 
take a position Ll(t) in the risky asset , investing or borrowing at the inter
est rate r in order to finance this. We want to do this so that the portfolio 
value at the final time is ( � f::-c S(u) du - K) + . Give a formula for Ll(t) 
in terms of the function v and the processes S(t) and X(t) .  (Warning: 
The process X(t) appearing in Theorem 7.5.3 and in this problem is not 
the value of the hedging portfolio. For example, X(O) is given by (7.5 .23) , 
and this is different from v(O, S(O) , X(O) ) ,  the initial value of the hedging 
portfolio. ) 
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8 

American Derivative Securities 

8. 1 Introduction 

European option contracts specify an expiration date , and if the option is 
to be exercised at all , the exercise must occur on the expiration date. An 
option whose owner can choose to exercise at any time up to and including the 
expiration date is called American. Because of this early exercise feature, such 
an option is at least as valuable as its European counterpart . Sometimes the 
difference in value is negligible or even zero, and then American and European 
options are close or exact substitutes . We shall see in this chapter that the 
early exercise feature for a call on a stock paying no dividends is worthless; 
American and European calls on such a stock have the same price. In other 
cases, most notably put options, the value of this early exercise feature, the 
so-called early exercise premium, can be substantial. An intermediate option 
between American and European is Bermudan, an option that permits early 
exercise but only on a contractually specified finite set of dates. 

Because an American option can be exercised at any time prior to its ex
piration, it can never be worth less than the payoff associated with immediate 
exercise. This is called the intrinsic value of the option. 

In contrast to the case for a European option, whose discounted price 
process is a martingale under the risk-neutral measure, the discounted price 
process of an American option is a supermartingale under this measure. The 
holder of this option may fail to exercise at the optimal exercise date, and 
in this case the discounted option price has a tendency to fall; hence, the 
supermartingale property. During any period of time in which it is not optimal 
to exercise, however, the discounted price process behaves as a martingale. 

To price an American option, just as with a European option, we could 
imagine selling the option in exchange for some initial capital and then con
sider how to use this capital to hedge the short position in the option. In this 
case, we would need to be ready to pay off the option at all times prior to the 
expiration date because we do not know when it will be exercised. We could 
determine when, from our point of view, is the worst time for the owner to 
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exercise the option. From the owner's point of view, this would be the optimal 
exercise time, and we shall call it that . We could then compute the initial 
capital we need in order to be hedged against exercise at the optimal exercise 
time. Finally, we could show how to invest this capital so that we are hedged 
even if the owner exercises at a nonoptimal time. In the subsequent sections, 
we do all these things but begin the analysis at a different point than for Eu
ropean options. We define the price of American options using a risk-neutral 
pricing formula and then show that this price is the smallest initial capital 
that permits construction of the hedge just described. 

For the binomial model , the program described above was carried out in 
Chapter 4 of Volume I. Here we revisit these matters in a continuous-time 
setting. We treat first the perpetual American put (Section 8.3) , which is not 
actually traded. The analysis of this option provides lessons that we apply 
in the subsequent sections. In Section 8.4, we discuss the finite-expiration 
American put , an option that is traded. Section 8.5 treats the American call. 
In the case of a non-dividend-paying stock, we show that the American and 
European calls have the same price. However, if the stock pays dividends, 
these prices can differ. We show how to compute the American call price in 
this latter case. 

8.2 Stopping Times 

Throughout this chapter, we need the concept of stopping times. These were 
defined and discussed in the binomial model in Section 4.3 of Volume I. A 
stopping time is a random variable T that takes values in [0, oo] . The stopping 
times we shall encounter are the times at which an American option is exer
cised. The decision of an agent to exercise this option may depend on all the 
information available at that time but may not depend on future information. 
We provide a mathematical formulation of this property in Definition 8.2 . 1 
below. Before stating this definition, we seek to motivate it. 

In the N-period model of Volume I, where the filtration is generated by coin 
tossing and there are only finitely many dates , we defined a stopping time to 
be a random variable T taking values 0, 1 ,  . . .  , N or oo and having the property 
that if T (wl . . .  WnWn+l · . .  wN) = n, then T (w1 . . .  WnW�+l ·  . .  w�) = n for all 
w�+l . . .  w� . This condition guarantees that the decision to stop at time n 
does not depend on the coin tosses that come after time n. 

One way to try to capture this same idea in continuous time is to require 
that for each nonrandom t ;:::: 0, the set { T = t} = { w E n; T( w) = t} should 
be in :F(t) (i.e. , the agent stops (exercises the option) at time t based on the 
information available at time t) . However, we shall be interested in sets of ws 
of the form {w E n; T1 � T(w) � T2} ,  and these cannot be gotten by taking 
countable unions of sets of the form {w E n; T(w) = t} . Therefore, we impose 
the slightly stronger condition of Definition 8.2 . 1  below. 
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Definition 8.2.1 .  A stopping time T is a mndom variable taking values in 
[0, oo] and satisfying 

{T ::::; t} E :F(t) for all t 2:: 0 . (8 .2 . 1 )  

Remark 8. 2. 2. Let t 2:: 0 be given. Note that (8 .2 . 1 ) and the properties of a
algebras imply that { T > t - � }  = { T ::::; t - � }c E :F ( t - �)  for all positive 
integers n. Since every set in :F (t - �)  is also in :F(t) , we conclude that 
{ T > t - � }  is in :F(t) for every n, and hence 

{T = t} = {T :S t} n c�l { T > t - � }) 
is also in :F(t ) .  In other words, by Definition 8 .2 . 1 , a stopping time T has the 
property that the decision to stop at time t must be based on information 
available at time t. 

Example 8. 2. 3 {First passage time for a continuous process). Let X(t) be an 
adapted process with continuous paths, let m be a number, and set 

Tm = min{t 2:: 0; X(t) = m} . (8 .2 .2) 

This is the first time the process X(t) reaches the level m. If X(t) never 
reaches the level m, then we interpret Tm to be oo. Intuitively, Tm must be 
a stopping time because the value of Tm is determined by the path of X(t) 
up to time T m . An agent can exercise an option the first time the underlying 
asset price reaches a level; this exercise strategy does not require information 
about the underlying price movements after the exercise time. 

We use Definition 8 .2 . 1 and the properties of a-algebras to show mathe
matically that T m is a stopping time. Let t 2:: 0 be given. We need to show 
that {T ::::; t} is in :F(t ) .  

If t = 0, then { T :S t} = { T = 0} is either fl or 0, depending On whether 
X(O) = m or X(O) =f. m. In either case, {T ::::; 0} E :F(O) . 

We consider the case t > 0. Suppose w E  n satisfies T(w) ::::; t. Then there 
is some number s ::::; t such that X(s,w) = m, where we indicate explicitly the 
dependence of X on w. For each positive integer n, there is an open interval 
of time containing s for which the process X is in ( m - � ,  m + � ) .  In this 
interval, there is a rational number q ::::; s ::::; t. Therefore, w is in the set 

00 { 1 1 } A =  n u m - n < X(q) < m + n . n=l O�q9,q rational 

We have shown that { T ::::; t} C A. 
On the other hand, if w E A, then for every positive integer n there is a 

rational number Qn ::::; t such that 
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1 1 m - - < X ( Qn , w ) < m + - . n n 
The infinite sequence {qn }�=l must have an accumulation point s in the 
closed, bounded interval [0, t] . In other words, there must exist a number 
s E [0, t] and a subsequence { Qnk }k=l such that limk--+oo Qnk = s. But 

1 1 m - - < X ( Qnk , w) < m + - for all k = 1 ,  2, . . . .  nk nk 
Letting k -+ oo in these inequalities and using the fact that X has continuous 
paths, we see that X (s , w) = m. It follows that r(w) � t. We have shown that 
A C {r � t } .  Therefore A =  {r � t } .  

Because X is adapted to the filtration, for each positive integer n and 
rational q E [0, t] , the set 

{ m - � < X (q) < m + � } 
is in F(q) and hence in the larger a-algebra F(t) . Because there are only count
ably many rational numbers q in [0, t] , they can be arranged in a sequence, 
and the union 

Bn = U . { m - � < X ( q) < m + � } 
O:$q:::;t ,q rational 

is really a union of a sequence of sets in F(t) .  The set Bn must therefore also 
be in F(t) . Because Bn is in F(t) for every positive integer n, the intersection 
n�=1Bn = A is also in F(t) . We have already shown that A = {r � t} . We 
conclude that { T � t} E F(t) .  D 

Suppose now that we have an adapted process X(t) and a stopping time 
T. We define the stopped process X(t 1\ r) , where 1\ denotes the minimum of 
two quantities (i.e. , t 1\ T = min{t, T} ) . The stopped process X(t 1\ r) agrees 
with X(t) up to time T, and thereafter it is frozen at the value of X (r) . See 
Figure 8.2 . 1 .  

Theorem 8.2.4 (Optional sampling) . A martingale stopped a t  a stop
ping time is a martingale. A supermartingale {or submartingale) stopped at a 
stopping time is a supermartingale (or submartingale, respectively). 

While the proof of Theorem 8.2 .4 is technical and will not be given here, 
the intuition is clear. If M(t) is a martingale, then the stopped process M (tl\r) 
agrees with M(t) before time T and thus is also a martingale. After time T, 
the stopped process is frozen (i.e. , it no longer changes with time) , and this 
is a trivial martingale. A martingale goes neither up nor down "on average." 
After being frozen, a process goes neither up nor down, path-by-path. The 
only way the martingale property could be violated is if the stopping decision 
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Fig. 8.2. 1 .  A stopped process. 

looked ahead. Suppose that a martingale is stopped (frozen) if it will go up 
in the near future but is allowed to continue if it will go down. Then stopping 
introduces a downward bias by removing the upward possibility. Figure 8.2.2 
shows a martingale in a discrete-time model under the assumption that the 
probability of H (an up move) is jj = � and the probability of T (a down 
move) is ij = � - Figures 8.2 .2-8.2 .4 are taken from Section 4.3 of Volume I, 
where the martingale in Figure 8.2.2 is a discounted stock price under a risk
neutral measure. Figure 8.2.3 shows a random time p that is not a stopping 
time; this random time p causes stopping at time 0 if there is an H on the 
first toss (an up move) but lets the process continue if there is a T on the first 
toss. Similarly, if there is a T on the first toss and an H on the second toss, p 
stops the martingale at time 1 but lets it continue to time 2 if there is a T on 
the first toss and an H on the second toss . The stopped martingale is shown 
in Figure 8.2 .4, and it is not a martingale. For example, 

- 1 lEM2/\p = 4 ( 4 + 4 + 1 .60 + 0 .64) = 2.56 < M0 = 4, 

whereas the expectation of a martingale does not change over time. Our def
inition of stopping time rules out this kind of stopping. 

Similar intuition applies to supermartingales. A stopped supermartingale 
is a supermartingale before being frozen, and after being frozen it is a mar
tingale, which is a special case of a supermartingale. The situation with sub
martingales is analogous. Again, the stopping must be done at a stopping time. 
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/ M2(HH) = 10.24 

M1 (H) = 6.40 

/ � 
Mo = 4 M2(HT) = M2(TH) = 2.56 

Mo = 4  

� / 
M1 (T) = 1.60 

� M2(TT) = 0.64 

Fig. 8.2.2. Martingale under p = ij = � -

p(HH) = p(HT) = 0 

� 
M1 (T) = 1 .60 
p(TH) = 1 � M2(TT) = 0.64 

p(TT) = 2 

Fig. 8.2.3. Non-stopping time p. 

M21,p(HH) = 4 

MoAT = 4 

M2"p(T H) = 1 .60 

M2"p(TT) = 0.64 

Fig. 8 .2.4. Martingale stopped at the non-stopping time p. 
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Looking ahead to make the stopping decision can ruin the supermartingale 
(respectively, submartingale) property. 

8.3 Perpetual American Put 

The simplest interesting American option is the perpetual American put. It is 
interesting because the optimal exercise policy is not obvious, and it is simple 
because this policy can be determined explicitly. Although this is not a traded 
option, we begin our discussion with it in order to present in a simple context 
the ideas behind the subsequent analysis of more realistic options. 

The underlying asset in most of this chapter (except in Subsection 8.5 .2 , 
where the asset pays dividends) has the price process S(t) given by 

dS(t) = rS(t) dt + uS(t) dW(t) , (8.3 . 1 )  

where the interest rate r and the volatility u are strictly positive constants 
and W(t) is a Brownian motion under the risk-neutral probability measure Jiii. 
The perpetual American put pays K - S(t) if it is exercised at time t. This 
is its intrinsic value. 

Definition 8.3. 1 .  Let T be the set of all stopping times. The price of the 
perpetual American put is defined to be 

v. (x) = maxlE [e-rr (K - S(r)} ) , 
rET (8.3 .2) 

where x = S(O) in {8. 3. 2} is the initial stock price. In the event that T = oo, 
we interpret e-rr (K - S(r) ) to be zero. 

The idea behind Definition 8 .3 . 1 is that the owner of the perpetual Amer
ican put can choose an exercise time T, subject only to the condition that she 
may not look ahead to determine when to exercise. The mathematical formu
lation of this "not look ahead" restriction is that T must be a stopping time. 
The price of the option at time zero is the risk-neutral expected payoff of the 
option, discounted from the exercise time back to time zero. If the option is 
never exercised, its payoff is zero. This explains the term under the expecta
tion on the right-hand side of (8.3.2) . The owner of the option should choose 
the exercise strategy that maximizes this expected payoff, discounted back to 
time zero, and thus we define the price of the option to be the maximum over 
T E T of the discounted expected payoffs. 

This risk-neutral pricing definition of the perpetual American put price 
appears to differ from the construction of the price of a European call in 
Section 4.5 . There we took the price to be the initial capital required by an 
agent holding a short position in the option in order for this agent to hedge the 
short position (i.e . , invest in the stock and money market account in such a 
way that at expiration of the option the resulting portfolio value is the payoff 
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of the option) . It turns out that v* (x) defined above is the initial capital 
required for an agent to hedge a short position in the American put regardless 
of the exercise strategy T used by the owner of the put; see Corollaries 8 .3.6 
and 8.3 .7 . 

The owner of the perpetual American put can exercise at any time. In 
particular, there is no expiration date after which the put can no longer be 
exercised. This makes every date like every other date; the time remaining to 
expiration is always the same (i .e. , infinity) . Because every date is like every 
other date, it is reasonable to expect that the optimal exercise policy depends 
only on the value of S(t) and not on the time variable t. The owner of the put 
should exercise as soon as S(t) falls "far enough" below K. In other words, it 
is reasonable to expect that the optimal exercise policy is of the form 

"Exercise the put as soon as S(t) falls to the level L* ." 
We have two questions to answer: 
(i) What is the value of L* and how do we know it corresponds to optimal 

exercise? 
(ii) What is the value of the put? 
For the perpetual American put, we can base the answers to these questions 
on explicit computations. 

8.3.1 Price Under Arbitrary Exercise 

Theorem 8.3.2 (Laplace transform for first passage time of drifted 
BrowniaE motion) . Let W(t) be a Brownian motion under a probability 
measure IP', let J.L be a real number, and let m be a positive number. Define 
X(t) = J.Lt + W(t) , and set 

Tm = min{t � O; X(t) = m} , 

so that Tm is the stopping time of Example 8.2. 3. If X(t) never reaches the 
level m, then we interpret Tm to be oo. Then 

(8.3.3) 

where we interpret e->-rm to be zero if Tm = oo. 

PROOF: Define u = -J.L + J J.L2 + 2.A so that u > 0 and 

1 1 ( )
2 

UJ.L + 2u
2 = -J.L2 + J.LV J.L2 + 2.A + 2 -J.L + J J.L2 + 2.A 

1 1 = -J.L2 + J.LV J.L2 + 2.A + 2J.L2 - J.LV J.L2 + 2.A + 2J.L
2 + A 

= .A . 
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Then 

- -
which is a martingale under lP' (its differential has a dW(t) term and no dt 
term) . According to Theorem 8.2 .4 (optional sampling) , the stopped martin
gale 

is also a martingale. Therefore, for each positive integer n, 

1 = M(O) = EM(n) 
= jE [ eO'X(nMm)->.(nMm)] 

= E [ eO'm->.Tm H{ Tm:Sn} ] + E [ eO'X{n)->.nn{ .,.,>n} ] . (8.3.4) 

The nonnegative random variables eO'm->..,.,n{.,.,::;n} increase with n, and their 
limit is eO'ffi-A7'.n n{ 7'm <oo} 0 In other words, 

and 

0 < O'm->-.,., n  < O'm->-.,., n < I t I _ e {T,.$ 1 }  _ e {Tm:S2} _ . . .  a mos sure y, 

I. O'm->..,. n O'm->..,. n 1 1 1m e "' {.,. <n} = e "' {.,. <oo} a most sure y. n-+cx:> m _  m. 
The Monotone Convergence Theorem, Theorem 1 .4.5, implies 

I. IE- ( O'm->..,.,.,. n  ] IE- ( O'm->..,.,n ] n�� e {Tm:Sn} = e {T,<oo} • 

On the other hand, the random variable eO'X(n)->.nn{.,.,.>n} satisfies 

0 < eO'X(n)->.nn < eO'm->.n < eO'm almost surely - {T,>n} - -

(8.3.5) 

because X(n) S m for n < Tm and a is positive. Because A is positive, we 
have 

lim eO'X(n)->.nn{.,. >n} < lim eO'm->.n = 0. n-+oo "' - n-+oo 
According to the Dominated Convergence Theorem, Theorem 1 .4.9, 

nl�� IE [eO'X(n)->.nn{.,.,.,.>n} J = 0. 

Taking the limit in (8.3.4) and using (8.3.5) and (8.3.6) , we obtain 

or, equivalently, 

1 IE- [ O'm->..,.,.,. n ] = e {T,.,.<oo} 

iE [e->-.,.,.,.n{.,.,.<oo}] = e-O'm = e-m(-!l+VIl2+2>.) for all A > 0.  

This is (8.3.3) when we interpret e->..,., to be zero if Tm = oo . 

(8.3.6) 

(8 .3 .7) 

0 
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Remark 8.3. 3. We used the strict positivity of A to derive (8.3.7) , but now that 
we have it, we can take the limit as A .j.. 0. The random variables e-Arm n{ rm <oo} 
are nonnegative and increase to H{rm<oo} as A .j.. 0, and the Monotone Conver
gence Theorem allows us to conclude that 

P{Tm < oo} = fEn{rm<oo} = �U} e-m(-tt+Vtt2+2A) = emtt-mlttl . 
If J.L ;:::: 0, the drift in X(t) is zero or upward, toward level m, and JP{rm < 
oo} = 1 ;  the level X ( t) is reached with probability one. On the other hand, if 
J.L < 0, the drift in X (t ) is downward, away from level m, and JP{rm < oo} = e-2mltt l < 1 ;  there is a positive probability of never reaching m. 0 

The solution to (8.3 . 1 )  is 

S(t) = S(O) exp { aW(t) + (r - �a2) t} . (8.3.8) 

Suppose the owner of the perpetual American put sets a positive level L < K 
and resolves to exercise the put the first time the stock price falls to L. If the 
initial stock price is at or below L, she exercises immediately (at time zero) . 
The value of the put in this case is vL (S(O)) = K - S(O) . If the initial stock 
price is above L, she exercises at the stopping time 

T£ = min{t ;:::: 0; S(t) = L} ,  (8.3.9) 

where T£ is set equal to oo if the stock price never reaches the level L. At the 
time of exercise, the put pays K - S(rL) = K - L. Discounting this back to 
time zero and taking the risk-neutral expected value, we compute the value 
of the put under this exercise strategy to be 

vL (S(O)) = (K - L)fEe-rrL for all S(O) ;:::: L. (8.3. 10) 

On those paths where T£ = oo, we interpret e-rrL to be zero. (Recall our as
sumption at the beginning of this section that r is strictly positive. ) Although 
not explicitly indicated by the notation, the distribution of T£ depends on the 
initial stock price S(O) ,  so the right-hand side (8.3. 10) is a function of S(O) .  
Lemma 8.3.4. The function vL (x) is given b y  the formula 

{ K - x, 0 :::; X :::; L, VL (x) = 
(K - L) (f ) -� ' x ;:::: L. 

(8.3 . 1 1 )  

PROOF: We only need to establish the second line of (8.3. 1 1 ) .  I f x = L, then 
T£ = 0 and (8.3. 10) implies vL (x) = K - L. 

We consider the case S(O) = x > L. The stopping time T£ is the first time 

S(t) = x exp { aW(t) + (r - �a2) }  
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reaches the level L. But S(t) = L if and only if 

-W(t) - - r - -u t = - log - .  
- 1 ( 1 2) 1 X 

u 2 u L 

We now apply Theorem 8.3.2 with X(t) in that theorem replaced by -W(t) 
� (r - �u2) t (the processes W(t) and -W(t) are both Brownian motions 
under P) ,  with A replaced by r, with J.L replaced by -�  (r - �u2) ,  and with 
m replaced by � log f ,  which is positive. With these replacements, T m m 

Theorem 8.3.2 is T£ and 

Therefore, 

J.L2 + 2A = � (r2 - ru2 + �u4) + 2r u2 4 

= � (r2 + ru2 + �u4) u2 4 

= � (r +  �u2) 2 u2 2 

-J.L + J J.L2 + 2A = - r - -u2 + - r + -u2 = - . 1 ( 1 ) 1 ( 1 ) 2r 
u 2 u 2 u 

Equation (8.3.3) implies - { 1 x 2r } ( x ) -� JE_.,..,.L = exp --;; log L · � = L · 

The second line in (8.3. 1 1 ) follows. 

8.3.2 Price Under Optimal Exercise 

0 

Figure 8.3. 1 shows the function vL (x) for three different values of L. The 
function V£, (x) in that figure actually lies below the intrinsic value K - x for 
x between L1 and L2 . If the initial stock price is between L1 and L2 , then the 
strategy of exercising the first time the stock price falls to L1 is obviously a 
poor one; it would be better to exercise at time zero and receive the intrinsic 
value. The function V£2 (x) agrees with the intrinsic value for 0 � x � L2 and 
follows the indicated curve for x ;::: L2 . The function v L. ( x) agrees with the 
intrinsic value for 0 � x � L. and follows the indicated curve for x ;::: L • .  

For x ;::: L. , the function v L. ( x) is strictly larger than the function v L2 ( x) , 
and hence the strategy of exercising the first time the stock price falls to L. 
is better than exercising the first time the stock price falls to L2 . 

As Figure 8.3. 1 suggests, for any value of L smaller than L. , the function 
vL (x) agrees with the intrinsic value for 0 � x � L, lies below the intrinsic 
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vL (x) 

K 

I I 
I \ 
I \ 
I \ 
\ \ 
I \ 
\ \ 
\ \ 

\ 
\ 
\ 

\ 

: VL1 (x) , 
: Ll :::; X :::; £2 

L. K 

2r 
Fig. 8.3.1 .  ( K - L) (f ) -;;-2" for three values of L. 

X 

value immediately to the right of L, and lies below VL. (x) everywhere to the 
right of L. For any value of L larger than L. , the function vL (x) agrees with 
the intrinsic value for 0 :::; x :::; L and lies below VL. (x) for all x 2:: L • .  Thus, 
among those exercise policies of the form 

"Exercise the put as soon as S(t) falls to the level L," 
the best one is obtained by choosing L = L • .  We expect therefore that VL. (x) 
is the price of the put v. (x) of Definition 8.3. 1 .  We prove this below. 

We must first determine the value of L • .  We note that 
2r 2r VL (x) = (K - L)L;;-2" x-;;-2" for all x 2:: L. 

From Figure 8.3. 1 ,  we know that L. is the value of L that maximizes this 
quantity when we hold x fixed. We thus define 

2r g(L) = (K - L)L;;-2" 

and seek the value of L that maximizes this function over L 2:: 0. Because � 
is strictly positive, we have g(O) = 0 and limL-+oo g(L) = -oo. Moreover, 

g' (L) = -L� + 2r (K - L)L�- 1 = - 2r + a2 
L� + 2r KL�-1 . a2 a2 a2 

Setting this equal to zero, we solve for 



8.3 Perpetual American Put 351 

2r L. = 2 2 K. (8.3 .12) r + u 

This is a number between 0 and K. Furthermore, 
2r q2 ( 2r ) ;;'2" 2r+l2 

L. = K " g( ) 2r + u2 2r + q2 

is strictly positive. Therefore, the graph of y = g(L) must be as shown in 
Figure 8.3.2, and L. given by (8.3 .12) is the point where g(L) attains its 
maximum. 

y 

y = g(L) 

L. 

Fig. 8.3.2.  Graph of g(L) . 

8.3.3 Analytical Characterization of the Put Price 

We have 

so that 

2r { K - x, 0 � X � L. , 
VL. (X) = X - �  (K - L. ) (L. ) , x ?:. L. , 

{ -1 ,  0 � X � L. , 
v�. (x) = 

- (K - L. ) :;x (L ) -� ' x ?:. L • .  

L 

(8 .3 .13) 

(8.3. 14) 

If we evaluate the second line in (8.3. 14) at x = L. , we get the right-hand 
derivative 

v� (L.+) = -� ( K _ L. ) = _ 2r K + 2r = _ 2r . 2r + u2 + 2r = - l , • u2L. u2L. u2 q2 2r q2 



352 8 American Derivative Securities 

which agrees with the left-hand derivative v�. (L* -) = -1  provided by the 
first line in (8 .3 . 14) . The derivative of VL. (x) is continuous at x = L* . This is 
known as smooth pasting. The two parts of the definition of V£. (x) fit together 
at x = L* so that both v L. ( x) and vL ( x) are continuous. This is because the 

2r graph of the function y = ( K - L* ) ( t_ ) - ;;-2" is tangent to the line y = K - x 
at x = L* , as one can see from Figure 8.3. 1 .  In fact , we could have used the 
smooth pasting condition to solve for L* (see Exercise 8. 1 ) .  

The second derivative of v( x) has a jump at x = L* , and hence is undefined 
at this point . Indeed, 

0 � X <  L* , { 0, 
vZ. (x) = 

(K _ L ) 2r(2r + a2 ) (�) - � 
L * 4 2 L ' X >  * • a x * 

(8.3 .15) 

The left-hand and right-hand second derivatives at x = L* are v(L* -) = 0 
and v"(L*+) = (K - L* ) 2r(2Iif2 l > 0. (7 • 

For x > L* , we can verify by direct computation that 

0. (8.3. 16) 

On the other hand, for 0 � x < L* , 

1 rvL. (x) - rxv�. (x) - 2a2x2vZ. (x) = r(K - x) + rx = rK. (8 .3 .17) 

In particular, we see that V£. (x) satisfies the so-called linear complementarity 
conditions 

v(x) 2: (K - x)+ for all x 2: 0, 
1 rv(x) - rxv' (x) - 2a2x2v"(x) 2: 0 for all x 2: 0, and 

for each x 2: 0, equality holds in either (8 .3 .18) or (8.3. 19) . 

(8 .3 .18) 

(8.3. 19) 

(8.3.20) 
The point L* is slightly problematical in (8.3. 19) since vZ. (L* ) is undefined. 
However, if we replace vZ. (L* ) in (8 .3 .19) by either vZ. (L* -) or vZ. (L*+) ,  
the inequality holds. 

The linear complementarity conditions (8 .3 .18)-(8.3.20) determine the 
function VL. (x) . More precisely, the function VL. (x) given by (8.3. 13) is the 
only bounded continuous function having a continuous derivative that satisfies 
these conditions; see Exercise 8.3. 
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8.3 .4 Probabilistic Characterization of the Put Price 

Theorem 8.3.5. Let S(t) be the stock price given by {8. 3. 1} and let T£. be 
given by {8.3. 9} with L = L • .  Then e-rtvL. (S(t)) is a supermartingale under 
P, and the stopped process e-r(t/\n. >vL. (S(t 1\ T£. ) )  is a martingale. 

PROOF: Fortunately, the ltO-Doeblin formula applies to functions whose sec
ond derivatives have jumps, provided the first derivative is continuous (see 
Exercise 4.20 for a discussion related to this) . We may thus compute 

d [e-rtVL. (S(t) ) ) 

= e-rt [ -rvL. (S(t) ) dt + vL (S(t) ) dS(t) + �v�. (S(t) ) dS(t) dS(t)] 

= e-rt [ -rvL. (S(t) ) + rS(t)v�. (S(t) ) + �a2S2 (t)v�. (S(t)) ] dt 

+e-rtaS(t)vL (S(t) ) dW(t) . 

Because of (8.3.16) and (8.3. 17) , the dt term in this expression is either 0 or 
-rK, depending on whether S(t) > L. or S(t) < L • .  If S(t) = L. , v£. (S(t)) 
is undefined, but the probability S(t) = L. is zero so this does not matter. 
We thus have 

d [e-rtvL. (S(t) ) )  = -e-rtrKH{s(t) <L* }  dt + e-rtaS(t)v�. (S(t) ) dW(t) . 
(8 .3 .21 ) 

Because the dt term in (8 .3 .21) is less than or equal to zero, e-rtvL. (S(t) ) is 
a supermartingale; when S(t) < L. it has a downward tendency. If the initial 
stock price is above L. , then prior to the time T£. when the stock price first 
reaches L. , the dt term in (8.3 .21) is zero and hence e-r(tML. >v(S(t 1\ T£. ) )  
is a martingale. Indeed, integration of (8.3 .21) yields 

Ito integrals are martingales, and hence the Ito integral above stopped at the 
stopping time n. is a martingale. 0 

Corollary 8.3.6. Recall that T is the set of all stopping times, not just those 
of the form (8.3. 9} . We have 

VL. (x) = maxi [e-rr (K - S(r)) ] , 
rET 

where x = S(O) is the initial stock price. In other words, vL. (x) is the perpetual 
American put price of Definition 8. 3. 1 .  
PROOF: Because e-rtvL. (S(t) ) i s  a supermartingale under P,  we have from 
Theorem 8.2 .4 (optional sampling) that , for every stopping time T E T, 
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(8.3.22) 

Because VL. (S(t 1\ r)) is bounded, we may let t ---+ oo in (8.3.22) ,  using the 
Dominated Convergence Theorem, Theorem 1 .4.9 , to conclude that 

VL. (x) ;:=: lE [e-rrVL. (S(r)} )  ;:=: lE [e-rr (K - S(r)} ) , 
where we have gotten the last inequality from (8.3. 18) . Because this inequality 
holds for every T E T, we have 

VL. (x) ;:=: max7 lE [e-rr (K - S(r)} ) . 
rE 

On the other hand, if we replace T by T£. ,  we obtain equality in (8.3.22) 
because e-r(tML. >v (S(t 1\ TL. )) is a martingale under P. Letting t ---+ oo and 
using the Dominated Convergence Theorem, we obtain 

VL. (x) = lE [e-rrL. VL. (S(TL. ) ) ] . 
Since 

e-rrL. VL. (S(TL. ) ) = e-rrL. VL. (L. ) = e-rrL. (K-L.) = e-rrL. (K- S(TL. )) 
if T£. < oo (and is interpreted to be zero if T£. = oo) , we see that 

VL. (x) = lE [e-rrL. (K - S(rL. ) ) ] . (8.3.23) 
It follows that 

VL. (x) � maxiE [e-rr (K - S(r) } ) . 
rET 0 

Discounted European option prices are martingales under the risk-neutral 
probability measure. Discounted American option prices are martingales up 
to the time they should be exercised. If they are not exercised when they 
should be, they tend downward. Since a martingale is a special case of a 
supermartingale, and processes that tend downward are supermartingales, 
discounted American option prices are supermartingales. An agent who is 
short an American option can hedge that short position in the usual way 
during the time the discounted option price is a martingale. If the option 
is not exercised when it should be, then the agent can continue the hedge 
and take money off the table. The following corollary illustrates this for the 
perpetual American put of this section. 
Corollary 8.3.7. Consider an agent with initial capital X(O) = VL. (S(O) ) ,  
the initial perpetual American put price. Suppose this agent uses the portfolio 
process Ll(t) = vL (S(t) ) and consumes cash at rate C(t) = rKH{s(t) <L• }  
{i. e. , consumes cash at rate rK whenever S(t) < L* ) . Then the value X(t) of 
the agent 's portfolio agrees with the option price VL. (S(t)) for all times t until 
the option is exercised. In particular, X(t) ;:=: (K - S(t))+ for all t until the 
option is exercised, so the agent can pay off a short option position regardless 
of when the option is exercised. 
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PROOF: The differential of the agent 's portfolio value process is 

dX(t) = Ll(t) dS(t) + r (X (t) - Ll(t)S(t) ) dt - C(t) dt , 

so the differential of the discounted portfolio value process is 

d ( e -rt X ( t) ) = e -rt ( - r X ( t) dt + dX ( t) ) 
= e-rt (Ll(t) dS(t) - rLl(t)S(t) dt - C(t) dt) 
= e-rt (Ll(t)aS(t) dW(t) - C(t) dt) . (8.3.24) 

Substituting Ll(t) = vL (S(t)) and C(t) = rKH{s(t)<L* }  into (8.3 .24) and 
comparing it to (8.3 .21 ) ,  we see that d(e-rtx(t)) = d [e-rtvL. (S(t))] . In
tegrating both sides of this equation and using the initial equality X(O) = 
vL. (S(O) ) , we obtain X(t) = VL. (S(t)) for all t prior to exercise. 0 

Remark 8.3. 8. During any period in which S(t) < L* , the agent in Corollary 
8.3 .7 has stock position Ll(t) = v�. (S(t)) = -1 (i .e. , is short one share of 
stock) and has a total portfolio value X(t) = VL. (S(t)) = K - S(t) . There
fore, the agent has K invested in the money market . If the owner of the put 
exercises, the agent in Corollary 8.3. 7 receives a share of stock, which covers 
his short position, and pays out K from his money market account . If the 
owner of the put does not exercise, the agent holds his position and consumes 
the interest from the money market investment (i.e. , consumes cash at rate 
rK per unit time) . 0 

The argument in Corollary 8.3 . 7 applies generally. In a complete market, 
whenever some discounted price process is a supermartingale, it is possible to 
construct a hedging portfolio whose value tracks the price process. This port
folio may sometimes consume. In the case of the perpetual American put , the 
supermartingale property for the discounted put price follows from (8.3. 19) . 
If, in addition, the price process dominates some intrinsic value (see (8.3. 18) 
for the perpetual American put) ,  then a short position in the American op
tion with that intrinsic value can be hedged. There are always two conditions 
on the price of any American option, corresponding to (8.3 .18) and (8.3 .19) . 
These conditions guarantee that the price is sufficient to satisfy the seller of 
the put . 

However, conditions (8.3 .18) and (8.3 .19) alone are not enough to deter
mine the price of the perpetual American put. There can be functions that 
satisfy these conditions but are strictly greater than the price VL. (x) we con
structed in (8.3 .13) (see Exercise 8.2) . There must be some additional con
dition that guarantees that the price is satisfactory for the purchaser of the 
put. One version of this condition for the perpetual American put is (8.3.20) . 
Condition (8.3 .20) guarantees that there exists an exercise strategy that per
mits the owner of the put to capture the full value of the put. It says that if 
we divide the half-line [0, oo ) into two sets, the stopping set 
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and the continuation set 

C = {x 2:: 0; V£. (x) > (K - x)+ } , 

(8.3.25) 

(8.3.26) 

then equality holds in (8 .3 .19) for x E C. If the initial stock price is in S, then 
the owner of the put can get full value by exercising it immediately. On the 
other hand, if the initial stock price is in C, then the put is more valuable 
than its intrinsic value, and the owner of the put can capture this extra value 
by waiting until the stock price enters S to exercise, if it ever does enter S. 
The time of entry into the set S is in fact T£. in Theorem 8.3.5. We saw in 
(8.3.23) that 

In conclusion, the three linear complementarity conditions have counter
parts that can be stated probabilistically rather than analytically (i.e. , without 
writing conditions on the derivatives of v (x) ) . Let V(t) = e - rtv(S(t) )  be the 
value of the perpetual American put. The stochastic process V(t) satisfies the 
following three conditions: 

(i) V(t) 2:: (K - S(t) ) + for all t 2:: 0, 
(ii) e - rtv(t) is a supermartingale under iP, and 
)ii) there exists a stopping time T* such that 

These three conditions determine the value of V(O) . 

8.4 Finite-Expiration American Put 

In this section, we consider an American put on a stock whose price is the 
geometric Brownian motion (8.3 . 1 ) , but now the put has a finite expiration 
time T. 

Definition 8.4. 1 .  Let 0 :::; t :::; T and x 2:: 0 be given. Assume S(t) = x. 
Let :F�t) , t :::; u :::; T, denote the a-algebm genemted by the process S (v) as v 
mnges over [t, u] , and let Tt,r denote the set of stopping times for the filtmtion 
:F�t) , t :::; u :::; T, taking values in [t, T] or taking the value oo . In other words, 
{T :::; u} E :F�t) for every u E [t, T] ; a stopping time in Tt,r makes the decision 
to stop at a time u E [t, T] based only on the path of the stock price between 
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times t and u. The price at time t of the American put expiring at time T is 
defined to be1 

v (t, x) = max iE [ e-r(r-t ) (K - S(T)) I S(t) = x] . 
rETt,T 

(8.4. 1 ) 

In the event that T = oo, we interpret e-rr (K - S(T) ) to be zero. This is the 
case when the put expires unexercised. 

In Subsection 8.4. 1 we present without proof the primary analytical prop
erties of the finite-expiration American put price v(t , x) . These are time
dependent versions of the properties developed in Section 8.3 for the perpetual 
American put . In Subsection 8.4.2 , we show that the only function possessing 
the analytical properties presented in Subsection 8.4. 1 is v(t, x) defined by 
(8.4. 1 ) .  

8.4. 1 Analytical Characterization of  the Put Price 

The finite-expiration American put price function v( t, x) satisfies the linear 
complementarity conditions (cf. (8.3. 18)-(8.3.20) ) 

v(t, x) ;:::: (K - x)+ for all t E [0, T] , x ;:::: 0, (8.4.2) 
rv(t, x) - Vt (t, x) - rxvx (t, x) - �a2x2Vxx (t, x) ;:::: 0 

for all t E [0 , T) , x ;:::: 0, and (8.4.3) 
for each t E [0, T) and x ;:::: 0, equality holds in either (8.4.2) or (8.4.3) . 

(8.4.4) 

As with the perpetual American put, the owner of the finite-expiration Amer
ican put should wait until the stock price falls to a certain level at or below K 
before exercising, but now this level L(T- t) depends on the time to expiration 
T- t. The level L. of (8.3. 12) for the perpetual American put is limr-+oo L(T) .  
At the other extreme, L(O) = K; at expiration, one should exercise the put if 
the stock price is below K, one should not exercise if the stock price is above 
K, and one is indifferent between exercising and not exercising if the stock 
price is equal to K. No formula is known for the function L(T - t) , but this 
function can be determined numerically from the analytic characterization of 
the put price provided in the next subsection. It is known that L(T) decreases 
wtih increasing T, as shown in Figure 8.4. 1 .  The set { ( t, x) ; 0 � t � T, x ;:::: 0} 
can be divided into two regions, the stopping set 

S = { (t, x) ; v(t, x) = (K - x)+ } (8.4.5) 

and the continuation set 
1 Here we use v(t, x) rather than v. (x) as in Section 8.3 to denote the put price 

because in this section we do not consider functions of t and x other than the put 
price itself. 
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C = { (t, x) ; v(t, x) > (K - x)+ } .  (8.4.6) 

The graph of the function x = L(T - t) forms the boundary between C and 
S and belongs to S. Because of (8.4.4) , equality holds in (8.4.3) for (t, x) in 
C, t =f. T. For (t, x) in S, strict inequality holds in (8.4.3) except on the curve 
x = L(T - t) , where equality holds in (8.4.3) .  Because v(t, x) = (K - x)+ = 
K - x for 0 :::; x :::; L(T - t) , we have (see Figure 8.4. 1) 

) 1 2 2 rv(t, x) - Vt (t, x) - rxvx (t, x - 2u x Vxx (t, x) = rK for x E C. 

C = { (t, x) ; v ( t ,  x) > (K - x)+ } v(T, x) = 0 
rv - Vt - rxv., - �u2x2v.,., = 0 

K 

v(T, x) = K - x  

S = { (t , x) ; v(t, x) = K - x} 
rv - Vt - rxv., - �u2x2v.,., = rK 

T t 

Fig. 8.4.1 .  Finite-expiration American put . 

Because v(t, x) = K - x for 0 :::; x :::; L(T - t) , we also have the left
hand derivative Vx (t, x-) = -1 on the curve x = L(T - t) . The put price 
v(t, x) satisfies the smooth-pasting condition that vx (t, x) is continuous, even 
at x = L(T - t) . In other words, 

Vx (t, x+) = Vx (t, x-)  = -1 for X = L(T - t ) ,  0 $; t < T. (8.4. 7) 

The smooth-pasting condition does not hold at t = T. Indeed, 

L(O) = K and v(T, x) = (K - x)+ ,  (8.4.8) 

so vx (T, x-) = -1 , whereas vx (T, x+) = 0 for x = L(O) . Also, Vt (t, x) and 
Vxx (t , x) are not continuous along the curve x = L(T - t) . 

The equations 

rv(t, x) - Vt (t, x) - rxvx (t, x) - �u2x2vxx (t, x) = 0, x � L (T - t) , 
v (t , x) = K - x, 0 :::; x ·:::; L(T - t) , 
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together with the smooth-pasting condition (8.4.7) , the terminal condition 
(8.4.8) , and the asymptotic condition 

lim v(t, x) = 0, x-+oo (8.4.9) 
determine the function v(t , x ) .  Using these equations, one can set up a finite
difference scheme to simultaneously compute v(t , x) and L(T - t) .  

8.4.2 Probabilistic Characterization of the Put Price 

Theorem 8.4.2. Let S(u) , t ::;  u ::;  T, be the stock price of (8. 3. 1} starting 
at S(t) = x and with the stopping set S defined by (8.4 . 5} . Let 

r. = min{u E [t , T] ; (u, S(u)) E S}, (8.4. 10) 

where we interpret r. to be oo if (u, S(u) ) doesn't enter S for any u E [t , T] . 
Then e-ruv(u, S(u) ) , t ::; u ::; T, is a supermartingale under Jiii, and the 
stopped process e -r(uM, ) v(u, S(u 1\ r. ) ) ,  t ::;  u ::;  T, is a martingale. 

PROOF: The It6-Doeblin formula applies to e -ruv(u, S(u) ) ,  even though 
Vu (u, x) and Vxx (u, x) are not continuous along the curve x = L(T - u) be
cause the process S(u) spends zero time on this curve. All that is needed for 
the It6-Doeblin formula to apply is that vx (u, x) be continuous (see Exercise 
4.20 for a discussion related to this ) ,  and this follows from the smooth-pasting 
condition (8.4.7) . We may thus compute 

d [e-ruv (u, S(u)) ]  

= e-ru [ - rv (u, S(u)) du + vu (u, S(u)) du + vx (u, S(u)) dS(u) 

+�Vxx ( u, S(u)) dS(u) dS(u)] 
= e-ru [ -rv (u, S(u)) + vu (u, S(u)) + rS(u)vx (u, S(u)) 

1 ] -
+2u2S2 (u)vxx (u, S(u)) du + e-ruuS(u)vx (u, S(u)) dW(u) .  

(8.4. 1 1 ) 

According to Figure 8.4. 1 , the du term in (8.4. 1 1 ) is -e-rurKH{s(u)<L(T-u) } · 
This is nonpositive, and so e-ruv(u, S(u)) is a supermartingale under Jiii. In 
fact, starting from u = t and up until time r. , we have S(u) > L(T-u) ,  so the 
du term is zero. Therefore, the stopped process e-r(uM, )v (u 1\ r. , S(u 1\ r. ) ) ,  
t ::; u ::; T, i s  a martingale. 0 

Corollary 8.4.3. Consider an agent with initial capital X (O) = v(O, S(O)) , 
the initial finite-expiration put price. Suppose this agent uses the portfolio pro
cess Ll(u) = vx (u, S(u) )  and consumes cash at rate C(u) = rKH{s(u)<L(T-u) } 
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per unit time. Then X(u) = v(u, S(u) ) for all times u between u = 0 and the 
time the option is exercised or expires. In particular, S(u) � (K - S(u))+ for 
all times u until the option is exercised or expires, so the agent can pay off a 
short option position regardless of when the option is exercised. 

PROOF:  The differential of the agent's discounted portfolio value is given by 
(8.3.24) .  Substituting for Ll(u) and C(u) in this equation and comparing it 
to (8.4. 1 1 ) ,  we see that d(e-ru X(u)) = d[e-ruv(u, S(u) )] . Integrating this 
equation and using X(O) = v(O, S(O) ) ,  we obtain X(t) = v(t, S(t)) for all 
times t prior to exercise or expiration. 0 

Remark 8.4 .4 .  The proofs of Theorem 8.4.2 and Corollary 8.4.3 use the ana
lytic characterization of the American put price captured in Figure 8.4. 1 plus 
the smooth-pasting condition that guarantees that vx (t, x) is continuous even 
on the curve x = L(T-t) so that the lt6-Doeblin formula can be applied. Here 
we show that the only function v( t, x) satisfying these conditions is the func
tion v(t, x) defined by (8.4. 1 ) . To do this, we first fix t with 0 :::; t :::; T. The 
supermartingale property for e-rtv (t , S(t)) of Theorem 8.4.2 and Theorem 
8.2.4 (optional sampling) implies that 

For T E 7t,r , we have t 1\ T = t, whereas T 1\ T = T if T < oo and T 1\ T = T if 
T = oo. Therefore, for T E  7t,r , 

e-rtv ( t, S(t)) � iE [ e-rr v ( T, S( r) )n { r<oo} + e-rT v (T, S(T) )n { r=oo} I F(t)) 
� E [ e-rrv (r, S(r)) i F(t)] , (8.4. 12) 

where, as usual , we interpret e-rrv (r, S(r)) = 0 if T = oo. Inequality (8.4.2) 
and the fact that (K - S(t))+ � K - S(t) imply that 

(8.4.13) 
Putting (8.4. 12) and (8.4. 13) together, we conclude that 

(8.4. 14) 

Because S(t) is a Markov process, the right-hand side of (8.4. 14) is a function 
of t and S(t) . In particular, if we denote the value of S(t) by x, we may rewrite 
(8.4. 14) as 

e-rtv(t , x) = iE [ e-rr (K - S(r) ) I S(t) = x] . (8.4. 15) 
Since (8.4. 1 5) holds for any T E 7t,r, we conclude that 

v(t, x) � max fE [e-r(r-t) (K - S(r)) i S(t) = x] . 
rETt .T 

(8.4. 16) 
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For the reverse inequality, we recall from Theorem 8.4.2 that the stopped 
process e-r(tM' >v (tl\r. , S(tl\ r. ) )  is a martingale, where r. defined by (8.4. 10) 
is such that v(r. , S(r. ) )  = K - S(r. )  if r. < oo. Replacing T by r. in (8.4. 12) ,  
we make the first inequality into an equality. If r* = oo, we have (T, S(T) ) E C 
(i.e. , S(T) > K), so v(T, S(T) )H{r. =oo} = 0. This makes the second inequality 
in (8.4 . 12) into an equality. Finally, because v(r, S(r)) = K - S(r) on n{r<oo} ' 
the inequality in (8.4. 13) is an equality, and hence (8.4. 15) becomes 

(8.4. 17) 
Equation (8.4. 17) shows that equality must hold in (8.4. 16) , and this is (8.4. 1 ) . 
0 

8.5 American Call 

In this section, we treat the American call, first on the usual geometric Brow
nian motion asset of (8.3. 1 ) and then on a variation of this asset that pays 
dividends at discrete dates. In the first case, presented in Subsection 8.5 . 1 ,  we 
see that the American call price is the same as the European call price. In the 
second case, presented in Subsection 8.5 .2 , we provide a recursion formula for 
computing the American call price. 

8.5.1 Underlying Asset Pays No Dividends 

We begin with a case slightly more general than a call option. Consider a 
stock whose price process S(t) is given by 

dS(t) = rS(t) dt + aS(t) dW(t), (8 .5 . 1 ) 

where the interest rate r and the volatility a are strictly positiv� and W(t) is 
a Brownian motion under the risk-neutral probability measure IP'. 

Lemma 8.5 .1 .  Let h(x) be a nonnegative, convex function of x ::::: 0 satisfying 
h(O) = 0. Then the discounted intrinsic value e-rth(S(t)) of the American 
derivative security that pays h(S(t) ) upon exercise is a submartingale. 

Proof: Because h(x) is convex, for 0 $ A $ 1 and 0 $ x1 $ x2 , we have 

(8 .5 .2) 

See Figure 8.5 . 1 for the case of a call payoff, h(x) = (x - K)+ . 
Taking x1 = 0, x2 = x, and using the fact that h(O) = 0, we obtain from 

(8 .5 .2) that 
h(Ax) $ Ah(x) for all x ::::: 0, 0 $ A $ 1 .  (8.5.3) 
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Fig. 8.5.1.  The convex function h(x) = (x - K)+ . 

For 0 $ u $ t $ T, we have 0 $ e-r(t-u) $ 1 ,  and (8.5.3) implies 

The conditional Jensen's inequality (Theorem 2.3.2(v) )  implies 

lE [ h (e-r(t-u) S(t)) I F(u)] 2: h (i [ e-r(t-u)S(t) I F(u)] )  

X 

(8.5.4) 

= h ( erui [ e-rt S(t) I F(u)] ) . (8 .5 .5) 

Because e-rts(t) is a martingale under iP, we have 

Putting (8.5.4)-(8.5.6) together, we conclude that 

or, equivalently, 

This is the submartingale property for e-rth(S(t) ) .  

(8.5.6) 

(8.5.7) 

(8 .5 .8) 

D 
Theorem 8.5.2. Let h(x) be a nonnegative, convex function of x 2: 0 satis
fying h(O) = 0. Then the price of the American derivative security expiring 
at time T and having intrinsic value h(S(t) ) , 0 $ t $ T, is the same as the 
price of the European derivative security paying h(S(T)) at expiration T. 

PROOF: Replacing t by T in (8.5 . 7) ,  we obtain 
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In other words, the European derivative security price always dominates the 
intrinsic value of the American derivative security. This shows that the option 
to exercise early is worthless, and the price of the American derivative security 
agrees with the price of the European security. 0 

Corollary 8.5.3. The price of an American call on an asset not paying a 
dividend is the same as the price of the European call on the same asset with 
the same expiration. 

PROOF: Take h(x) = (x - K)+ in Theorem 8.5 .2 . 0 

The idea behind Corollary 8.5.3 is that the discounted process e-rt (S(t) 
K)+ is a submartingale under JPi and hence tends to rise. Therefore, it is 
optimal to wait until expiration before deciding whether to exercise. There are 
two factors that contribute to the submartingale property for e-rt (S(t) -K)+ . 
One is the discounting of the strike. In fact, e-rt (S(t) -K) (without the + ) is a 
submartingale because e-rt S(t) is a martingale under the risk-neutral measure 
JPi and -e-rt K increases as t increases (throughout this chapter, we assume 
a strictly positive interest rate r ) . When we reinstate the + , we are taking a 
convex function of a submartingale and, because of Jensen's inequality, this 
reinforces the upward trend. 

The previous argument does not apply to the American put , whose dis
counted intrinsic value e-rt (K - S(t) ) (without the + ) is a supermartingale 
(e-rt K falls and -e-rts(t) is a martingale) . Jensen's inequality creates an up
ward trend that competes with this supermartingale property, and the analysis 
becomes complicated. 

If the underlying asset pays a dividend, the case considered in the next 
subsection, the argument above no longer applies to the American call. In this 
case, e-rts(t) is a supermartingale and tends to fall because of the dividend 
outflow. 

8.5.2 Underlying Asset Pays Dividends 

In this subsection, we consider an American call on an asset whose price 
process is a geometric Brownian motion governed by (8.5. 1 ) between dividend 
payment dates. We assume there are times 0 < h < t2 < · · · < tn < T, 
and at each time ti the dividend paid is aiS(ti -) , where S(tj- )  denotes the 
asset price just prior to the dividend payment. The asset price S(tj ) after 
the dividend payment is the asset price before the dividend payment less the 
dividend payment: 

(8.5.9) 
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We assume that each a3 , j = 1 , . . .  , n, is a number between 0 and 1 .  We set 
t0 = 0, but this is not a dividend payment date. We also assume that T is not 
a dividend payment date, although it is not difficult to modify the analysis 
given below to handle the case when T is a dividend payment date. 

We shall see that it is not optimal to exercise an American call on this 
asset except possibly immediately before a dividend payment. The price of 
the call will be seen to satisfy the Black-Scholes-Merton partial differential 
equation between dividend payment dates. At dividend payment dates , the 
price of the call is the maximum of the call 's intrinsic value and the price 
of the call after the dividend is paid and the stock price is reduced by the 
amount of the payment. These observations lead to a recursive algorithm for 
determining the price, and that is developed in this subsection. 

The asset price process in this section was considered in Subsection 5.5.4. 
For t3 � t < t3+1 ,  we have 

which implies 

S(tJ+ l -)  = S(t3 ) exp { a (W(tj+1 ) - W(t3 )) + (r - �a2
) (tj+l - t3 ) } 

(8.5 . 10) 
and 

S(t3+1 )  

= ( 1 - aj+l )S(tj ) exp { a (W(tJ+I ) - W(t3 ) ) + (r - �a2
) (tJ+1 - t3 ) } . 

(8 .5 . 1 1 )  

We also have 

S(T) = S(tn ) exp { a (W(T) - W(tn)) + (r - �a2
) (T - tn) } . (8.5. 12) 

We consider an American call expiring at time T with strike price K. For 
tn � t � T, the discounted asset price e-rts(t) is a martingale under JP, and 
Lemma 8.5. 1 can be invoked to show that e-rt (S(t) - K)+ is a submartingale. 
Therefore, 

(8.5. 13) 
This shows that , for all t E [tn , T] , the price of the European call at time t, 
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is greater than the intrinsic value of the American call, ( S ( t) - K) + . Conse
quently, the early exercise feature of the American call is worthless, and the 
prices at time t of the European and American calls agree for tn � t � T. 
This price is given by the Black-Scholes-Merton formula 

en (t, x) = xN(d+ (T - t, x)) - Ke-r(T-t) N (d- (T - t, x)) , (8.5 .14) 

where 
d± (r, x) = a� [log ; + (r ± �a2) r] . 

Although one cannot simply substitute x = 0 into (8 .5 .14) ,  we have c(t, 0) = 0; 
see equation (4.5. 17) and Exercise 4.9. Formula (8 .5. 14) can be determined by 
computing the conditional expectation in (8 .5 .13) under the condition S(t) = 
x. In the case t = tn , using (8 .5 . 12) ,  this leads to 

en(tn , x) 

= iE [e-r{T-tn )(x exp { a (W(T) -W(tn )) + (r- �a2) (T - tn ) } - K) +] · 

(8.5. 15) 

The function en ( t , x) also satisfies the Black-Scholes-Merton differential equa
tion 

and the terminal condition 

en (t, x) = (x - K)+ , x ;::: 0. (8.5 . 17) 

The function cn (tn , x) is convex in x. This is well-known, but we establish 
it here anyway to demonstrate a method we need later. To show convexity in 
x, we show that, whenever 0 � x1 � x2 and 0 � A �  1 , we have 

(8.5. 18) 

We begin with the observation that, for any number a, the function (ax-K) + 
is convex in x, and therefore 

( x exp { a (W(T) - W(tn )) + (r - �a2) (T - tn) } - K) + 
is convex in x. It follows that 
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Cn (tn , ( 1 - A)XI + AX2) 

= lE [e-r{T-tn ) ( ( ( 1 - A)XI + AX2) exp { a (W(T) - W(tn) ) 

+ (r - �a2) } - K) +] 
� ( 1 - A)lE [ e-r(T-tn ) (xi exp { a (W(T) -W(tn ) )  + (r- �a2) }  - K) +] 

+AlE [ e-r(T-tn ) ( X2 exp { a (W(T) - W(tn)) + (r - �a2) }  - K) +] 
= ( 1 - A)en (tn , x! ) + ACn (tn , x2 ) .  (8 .5 .19) 

This proves (8 .5 . 18) .  
At time tn , immediately before the dividend payment, the owner of the 

American call has two choices. She can exercise the option and receive 
S(tn-)  - K, or she can decline to exercise, permit the dividend to be paid 
(not to her) and the asset price to fall to S(tn ) = ( 1 - an)S(tn-) ,  and have 
an option valued at Cn (tn , ( 1 - an)S(tn-) ) .  The optimal decision is to ex
ercise if S(tn-) - K > Cn (tn , ( 1 - an)S(tn-) )  and to decline to exercise if 
S(tn-) - K < Cn (tn , ( 1 - an )S(tn- ) ) .  If S(tn-) - K = Cn (tn , ( 1 - an)S(tn-) ) ,  
i t  does not matter whether she exercises or  declines to exercise. Therefore, the 
call value at time tn immediately before the dividend is paid is hn (S(tn )- ) ,  
where 

hn (x) = max{x - K, Cn (tn , ( 1 - an)x) } ,  X �  0. (8.5 .20) 
We show that hn (x) satisfies the assumptions of Lemma 8.5. 1 .  It is clear 

that hn (x) � 0 for all x � 0 because Cn (tn , ( 1 - an )x) � 0 for all x � 0. It 
is also clear that hn (O) = 0 because Cn (tn , (1 - an )O) = 0. To establish the 
convexity of hn (x) ,  we recall from (8.5. 18) that Cn (tn , x) is convex in x. For 
0 � XI � x2 and 0 � A � 1 , we replace XI in (8.5. 18) by ( 1  - an)XI and 
replace x2 by ( 1 - an )x2 to obtain 

This shows that cn (t, ( 1 - an)x) is a convex function of x. The maximum of 
two convex functions is convex (see Exercise 8.7) ,  and therefore hn (x) defined 
by (8.5.20) is convex. 

Starting from time t, where tn- I � t < tn , the owner of the American call 
can exercise at any time u E [t , tn ) ,  and if she does, she receives S(u) - K. 
If she does not exercise prior to tn , then at time tn , immediately before the 
dividend payment, she owns a call whose value we have just determined to be 
hn (S(tn-) ) .  Therefore, for tn- I :S t < tn , the American call expiring at time 
T has the same price as the American call expiring immediately before the 
dividend payment at date tn and paying hn (S(tn- ) )  upon expiration. 
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Because the underlying asset evolves as a geometric Brownian motion after 
the dividend is paid at time tn- 1 until the dividend is paid at time tn , Lemma 
8.5 . 1  implies that e-rthn (S(t) ) is a submartingale for tn- 1 � t < tn . In 
particular, 

and letting u t tn , we obtain 

(8.5.21 ) 

By the definition of hn (x) , 

hn (S(t) ) ;::: S(t) - K. (8 .5 .22) 

This shows that the value of the European call expiring at time tn imme
diately before the dividend is paid and paying hn (S(tn-) )  upon expiration, 
which is the left-hand side of (8 .5 .21 ) ,  is greater than or equal to the intrinsic 
value of the American call, which is the right-hand side of (8 .5 .22) . There
fore, the option to exercise the American call before time tn is worthless , and 
the American call value is the same as the value of the European call just 
described. 

Because S(t) is a Markov process, there is some function Cn- 1 (t, x) such 
that the left-hand side of (8.5 .21 ) ,  the European call value, is 

(8.5 .23) 

The function Cn- 1 (t , x) can be determined by computing the conditional ex
pectation in (8.5 .23) under the condition S(t) = x. In the case t = tn-b using 
(8.5 .10) , this leads to 

Cn-1 (tn- I , X) 

= JE [e-r(tn -tn-d (8.5 .24) 

Xhn ( x exp { a (W(tn ) - W(tn-d) + (r - �a2) (tn - tn-d }) ] . 

(8 .5 .25) 

The function Cn- 1 (t, x) also satisfies the Black-Scholes-Merton differential 
equation 

[) [) 1 2 2 [)2 
[)t Cn- 1 (t , X) + TX ax Cn- 1 (t, X) + 20" X [)x2 Cn- 1 (t, X) = TCn- 1 (t , x) , 

tn-1 � t < tn , X ;::: 0, (8.5.26) 
and the terminal condition 
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We repeat this process, defining 

(8.5 .27) 

We can show as above that hn- 1 (x) satisfies the hypotheses of Lemma 8.5. 1 , 
and we continue. 

In conclusion, we obtain an algorithm for the American call price on an 
asset paying dividends at the dates t� , t2 , . . .  , tn . Solve recursively for j = 
n, n - 1 , . . .  , 0, the partial differential equation 

{) {) 1 2 2 ()2 
Ot Cj- 1 (t, x) + rx ax Cj- 1 (t, x) + 2a x ax2 Cj- 1 (t, x) = rcj- 1 (t, x) ,  

tj- 1 � t < tj , X ;:::: 0, (8.5.28) 

with the terminal condition 

(8.5.29) 

The functions cn (t, x) and hn (x) needed to get started are given by (8.5 .14) 
and (8.5 .20) ,  and the function h3_1 (x) needed for the next step is given by 

(8.5.30) 
For t3_ 1 � t < t3 , if S(t) = x, then c3_ 1 (t , x) is the American call price. 
Within each interval [t3_ � ,  t3 ) , the American call price is actually the price of 
a European call expiring at t3 • The optimal exercise time is immediately prior 
to the dividend payment at the smallest time t3 for which S(t3 -) - K exceeds 
c3 (t3 , ( 1 - a3 )S(t3- ) ) . If there is no t3 for which this condition is satisfied, 
then optimal exercise takes place at time T if S(T) > K, and otherwise the 
option should be allowed to expire unexercised. 

8.6  Summary 

This chaper discusses American puts and calls . To do this , we introduce the 
notions of stopping times and optional sampling in Section 8.2 . The value of 
an American option can then be defined as the maximum over all stopping 
times of the discounted, risk-neutral payoff of the option evaluated at the 
stopping time. We do this for the perpetual American put in Section 8.3 and 
for the finite-horizon American put in Section 8.4. This definition of option 
value gives the no-arbitrage price. Starting with initial capital given by this 
definition, a person holding a short position in the option can hedge in such 
a way that, regardless of when the option is exercised, he will be able to pay 
off the short position. Furthermore, this definition of American option price 
is the smallest initial capital that permits such hedging. In particular, there 
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is an optimal stopping time, and if the option owner exercises at this time, 
she captures the full value of the option. 

The American put has an analytical characterization, which we present as 
linear complementarity conditions in Subsections 8.3.3 and 8.4. 1 .  According 
to this characterization, there are two regions in the space of time and stock 
prices (t , x) , one in which it is optimal to exercise the put (the stopping set) 
and another in which it is optimal not to exercise (the continuation set) . 
The put price v(t, x) and its first derivative vx (t , x) are continuous across the 
boundary between these two regions (smooth pasting) , and this fact tells us 
that vx (t, x) = -1 on this boundary. Using this smooth-pasting condition, 
one can solve numerically for the American put price. 

The American call on a stock that pays no dividends has the same price as 
the corresponding European call ; see Section 8.5. 1 .  If the stock pays dividends, 
the American call can be more valuable than the European call. In Section 
8.5 .2 , we work out an algorithm for the American call price when dividends 
are paid at discrete dates . 

8 . 7  Notes 

The use of stopping times with martingales was pioneered by Doob [53) ,  who 
provided Theorem 8.2.4. A modern treatment can be found in many texts, 
including Chung [35] and Williams [161] in discrete time and Karatzas and 
Shreve [101] in continuous time. 

The perpetual American put problem was first solved by McKean [1 19) ,  
who also wrote down the analytic characterization of the finite-horizon Amer
ican put price. The fact that this analytic characterization determines the 
finite-horizon American put price follows from the optimal-stopping theory 
developed by van Moerbeke [ 153] . For the particular case of the American 
put , a simpler derivation of this fact is provided by Jacka [93] , and this is 
presented in Section 2. 7 of Karatzas and Shreve [102] . Although the price of 
the American put cannot be computed explicitly, it is possible to give a vari
ety of characterizations of the early exercise premium, the difference between 
the American put price and the corresponding European put price; see Carr, 
Jarrow, and Myneni [27) ,  Jacka [93) ,  and Kim [103] . 

The probabilistic characterization of the American put price is due to 
Bensoussan [9] and Karatzas [100] . This is also reported in Section 2 .5 of 
Karatzas and Shreve [102] . A survey of all these things , and a wealth of 
other references, are provided by Myneni [ 127] . Merton [ 122] observed that 
an American call on a stock paying no dividends has the same value as a 
European call. 

There are two principal ways to compute option prices numerically: finite
difference schemes and Monte Carlo simulation. A finite-difference scheme 
for the American put is described in Wilmott ,  Howison, and Dewynne [165] . 
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Monte Carlo methods are more difficult to develop because one must simulta
neously determine the price of the put and determine the boundary between 
the stopping and continuation sets . A novel method to deal with this was 
recently provided by Longstaff and Schwartz [112) and Tsitsiklis and Van Roy 
[152) . Results on convergence of a modification of the Longstaff-Schwartz algo
rithm can be found in Clement , Lamberton, and Protter [37) and Glasserman 
and Yu [75) . Papers that use binomial trees and analytic approximations are 
listed in Section 2.8 of Karatzas and Shreve [102) . 

8.8 Exercises 

Exercise 8.1 (Determination of L,. by smooth pasting) . Consider the 
function VL (x) in (8.3. 1 1 ) .  The first line in formula (8.3. 1 1 )  implies that the 
left-hand derivative of VL (x) at x = L is vL (L- ) = - 1 .  Use the second line 
in formula (8.3. 1 1 )  to compute the right-hand derivative vL (L+) .  Show that 
the smooth-pasting condition 

v�. (L,.- ) = vL (L,.+) 

is satisfied only by L,. given by (8.3 . 12) . 

Exercise 8.2. Consider two perpetual American puts on the geometric Brow
nian motion (8.3. 1 ) .  Suppose the puts have different strike prices , K1 and K2 , 
where 0 < K1 < K2. Let v1 (x) and v2 (x) denote their respective prices, 
as determined in Section 8.3.2. Show that v2 (x) satisfies the first two linear 
complementarity conditions, 

v2 (x) � (K1 - x)+ for all x � 0, 
1 rv2 (x) - rxv; (x) - 2u2x2v� (x) � 0 for all x � 0, 

(8.8. 1 )  

(8.8.2) 

for the perpetual American put price with strike K1 but that v2 (x) does not 
satisfy the third linear complementarity condition: 

for each x � 0, equality holds in either (8.8. 1 )  or (8.8.2) or both. (8.8.3) 

Exercise 8.3 (Solving the linear complementarity conditions).  Sup
pose v(x) is a bounded continuous function having a continuous derivative 
and satisfying the linear complementarity conditions (8.3. 18)-(8.3.20) . This 
exercise shows that v(x) must be the function VL. (x) given by (8.3. 13) with 
L,. given by (8.3. 12) . We assume that K is strictly positive. 
(i) First consider an interval of x-values in which v(x) satisfies (8.3 . 19) with 

equality, i .e. , where 

(8.8.4) 
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Equation (8.8.4) is a linear, second-order ordinary differential equation, 
and it has two solutions of the form xP , the solutions differing because 
of different values of p. Substitute xP into (8.8.4) and show that the only 
values of p that cause xP to satisfy (8.8.4) are p = - ;� and p = 1 .  

2r 
(ii) The functions x- -;;I and x are said to be linearly independent solutions 

of (8.8.4) , and every function that satisfies (8.8.4) on an interval must be 
of the form 

2r 
f(x) = Ax- -;;I + Bx 

for some constants A and B. Use this fact and the fact that both v ( x) 
and v' (x) are continuous to show that there cannot be an interval [x1 , x2] ,  
where 0 < x 1  < x2 < oo ,  such that v(x) satisfies (8.3. 19) with equality 
on [x� , x2] and satisfies (8.3. 18) with equality for x at and immediately to 
the left of x1 and for x at and immediately to the right of x2 unless v(x) 
is identically zero on [ x� , x2] .  

(iii) Use the fact that v(O) must equal K to show that there cannot be a 
number x2 > 0 such that v(x) satisfies (8.3. 19) with equality on [O, x2] .  

(iv) Explain why v(x) cannot satisfy (8.3.19) with equality for all x 2:: 0. 
(v) Explain why v(x) cannot satisfy (8.3. 18) with equality for all x 2:: 0. 
(vi) From (iv) and (v) and (8.3.20) , we see that v(x) sometimes satisfies 

(8 .3 .18) with equality and sometimes does not satisfy (8.3. 18) with equal
ity, in which case it must satisfy (8.3. 19) with equality. From (ii) and (iii) 
we see that the region in which v(x) does not satisfy (8.3. 18) with equal
ity and satisfies (8.3. 19) with equality is not an interval [x� , x2] ,  where 
0 � x1 < x2 < oo, nor can this region be a union of disjoint intervals 
of this form. Therefore, it must be a half-line [x� , oo ) , where x1 > 0. In 
the region [O, xi ] ,  v (x) satisfies (8.3. 18) with equality. Show that X1 must 
equal L* given by (8.3 .12) and v(x) must be VL. (x) given by (8.3. 13) . 

Exercise 8.4. It was asserted at the end of Subsection 8.3.3 and established 
in Exercise 8.3 that VL. (x) given by (8.3. 13) is the only bounded continuous 
function having a continuous derivative and satisfying the linear complemen
tarity conditions (8.3. 18)-(8.3.20) . There are, however, unbounded functions 
that satisfy these conditions. Let 0 < L < K be given, and assume that 

2r 
2 2 K > L. r + u  

(8 .8 .5) 

(i) Show that, for any constants A and B, the function 
2r 

f(x) = Ax- -;;I + Bx (8.8.6) 

satisfies the differential equation 

1 rf(x) - rxf' (x) - 2u2x2 J"(x) = 0 for all x 2:: 0. (8 .8 .7) 
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(ii) Show that the constants A and B can be chosen so that 

f(L) = K - L, f' (L) = -1 .  (8.8.8) 

(iii) With the constants A and B you chose in (ii ) ,  show that f (x) � (K - x)+ 
for all x � L. 

(iv) Define 
v (x) = { K - x, 0 � x � L, 

f (x) , x � L. 
Show that v(x) satisfies the linear complementarity conditions (8 .3 .18)
(8.3.20) ,  but v(x) is not the function VL. (x) given by (8.3. 13) .  

(v) Every solution of the differential equation (8 .8 .7) is of the form (8.8.6) . 
In order to have a bounded solution, we must have B = 0. Show that in 
order to have B = 0, we must have L = 2r2_;u2K, and in this case v(x) 
agrees with the function VL. (x) of (8.3 .13) . 

Exercise 8.5 (Perpetual American put paying dividends) . Consider a 
perpetual American put on a geometric Brownian motion asset price paying 
dividends at a constant rate a > 0. The differential of this asset is 

dS(t) = (r - a)S(t) dt + uS(t) dW(t) ,  (8.8.9) 
where W(t) is a Brownian motion under a risk-neutral measure JPi. (Equation 
(8.8.9) can be obtained by computing the differential in (5.5.8) . ) 
(i) Suppose we adopt the strategy of exercising the put the first time the 

asset price is at or below L. What is the risk-neutral expected discounted 
payoff of this strategy? Write this as a function vL (x) of the initial asset 
price x. (Hint : Define the positive constant 

I' = � (r - a - �u2) + � � � (r - a - �u2) 2 + 2r u2 2 u u2 2 

and write vL (x) using I'· ) 
(ii) Determine L. , the value of L that maximizes the risk-neutral expected 

discounted payoff computed in (i) . 
(iii) Show that , for any initial asset price S(O) = x, the process e-rtvL. (S(t) ) is 

a supermartingale under JPi. Show that if S(O) = x > L. and e-rtvL. (S(t) ) 
is stopped the first time the asset price reaches L. , then the stopped 
supermartingale is a martingale. (Hint : Show that 

1 
r + (r - a)/' - 2u

2')'(/' + 1 ) = 0. ) (8.8. 10) 
(iv) Show that , for any initial asset price S(O) = x, 

VL. (x) = max fE [e-r,. (K - S(r)) ] . 
TEl 

(8.8. 1 1 ) 
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Exercise 8.6. There is a second part to Theorem 8.2.4 (optional sampling) , 
which says the following. 

Theorem 8.8.1 (Optional sampling - Part II) . Let X(t) , t 2:: 0, be a 
submartingale, and let r be a stopping time. Then IEX(t l\r) :::; IEX(t) . If X(t) 
is a supermartingale, then IEX(t 1\ r) 2:: IEX(t) . If X(t) is a martingale, then 
IEX(t A r) = IEX(t) . 

The proof is technical and is omitted. The idea behind the statement about 
submartingales is the following. Submartingales tend to go up. Since t A r :::; t , 
we would expect this upward trend to result in the inequality lEX ( t A r) ::=; 
IEX(t) . When r is a stopping time, this intuition is correct . Once we have 
Theorem 8.8. 1 for submartingales, we easily obtain it for supermartingales by 
using the fact that the negative of a supermartingale is a submartingale. Since 
a martingale is both a submartingale and a supermartingale, we obtain the 
equality IEX(t A r) = IEX(t) for martingales. 

Use Theorem 8.8. 1 and Lemma 8.5 . 1 to show in the context of Subsection 
8.5 . 1  that 

(8.8 . 12) 

where as usual we interpret e-rr (S(r) - K)+ to be zero if r = oo. The right
hand side is the American call price analogous to Definition 8.4. 1 for the 
American put price. The left-hand side is the European call price. 

Exercise 8. 7. A function f ( x) defined for x 2:: 0 is said to be convex if, for 
every 0 :::; x1 :::; x2 and every 0 :::; A :::; 1 ,  the inequality 

holds. Suppose f(x) and g(x) are convex functions defined for x 2:: 0. Show 
that 

h(x) = max{!(x) , g(x) } 
is also convex. 



This page intentionally left blank 



9 

Change of N umeraire 

9 . 1  Introduction 

A numeraire is the unit of account in which other assets are denominated. One 
usually takes the numeraire to be the currency of a country. One might change 
the numeraire by changing to the currency of another country. As this example 
suggests , in some applications one must change the numeraire in which one 
works because of finance considerations. We shall see that sometimes it is 
convenient to change the numeraire because of modeling considerations as 
well. A model can be complicated or simple, depending on the choice of the 
numeraire for the model . 

In this chapter, we will work within the multidimensional market model 
of Section 5.4. In particular, our model will be driven by a d-dimensional 
Brownian motion W(t) = (W1 (t) , . . .  , Wd(t) ) ,  0 � t � T, defined on a prob
ability space (!?, .1', IP') . In particular, W1 , . . .  , Wd are independent Brownian 
motions. The filtration F(t) , 0 � t � T, is the one generated by this vector of 
Brownian motions. There is an adapted interest rate process R(t) , 0 � t � T. 
This can be used to create a money market account whose price per share at 
time t is 

M(t) = ef; R(u)du . 

This is the capital an agent would have if the agent invested one unit of 
currency in the money market account at time zero and continuously rolled 
over the capital at the short-term interest rate. We also define the discount 
process 

D(t) = e- J; R(u)du = _1_ . M(t) 
There are m primary assets in the model of this chapter, and their prices 

satisfy equation (5.4.6) ,  which we repeat here: 

d 
dSi (t) = ai (t)Si (t) dt + Si (t) L aij (t) dWj (t) , i = 1 ,  . . .  , m. 

1= 1 
(9. 1 . 1 ) 
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We assume there is a unique risk-neutral measure lP (i.e. , there is a unique 
d-dimensional process B(t) = (81 (t) , . . .  , 8d (t)) satisfying the market price 
of risk equations (5.4. 18) ) .  The risk-neutral measu�e is constructed using the 
multidimensional Girsanov Theorem 5.4. 1 .  Under IP', the Brownian motions 

are independent of one another. According to the Second Fundamental Theo
rem of Asset Pricing, Theorem 5.4.9, the market is complete; every derivative 
security can be hedged by trading in the primary assets and the money market 
account . 

Under JP, the discounted asset prices D(t)Si (t) are martingales , and so 
the discounted val_ue of every portfolio process is also a martingale. The risk
neutral measure lP' is thus associated with the money market account price 
M(t) in the following way. If we were to denominate the ith asset in terms 
of the money market account , its price would be Si (t)/M(t) = D(t)Si (t) . In 
other words, at time t, the ith asset is worth D(t)Si (t) shares of the money 
market account . This process, the value of the ith asset denominated in shares 
of the money market account , is a martingale under JP. We say the measure lP 
is risk-neutral for the money market account numeraire. 

When we change the numeraire, denominating the ith asset in some other 
unit of account , it is no longer a martingale under JP. When we change the 
numeraire, we need to also change the risk-neutral measure in order to main
tain risk neutrality. The details and some applications of this idea are devel
oped in this chapter. 

9 . 2  Numeraire 

In principle, we can take any positively priced asset as a numeraire and de
nominate all other assets in terms of the chosen numeraire. Associated with 
each numeraire, we shall have a risk-neutral measure. When making this as
sociation, we shall take only non-dividend-paying assets as numeraires. In 
particular, we regard lP as the risk-neutral measure associated with the do
mestic money market account , not the domestic currency. Currency pays a 
dividend because it can be invested in the money market . In contrast, in our 
model , a share of the money market account increases in value without paying 
a dividend. 

The numeraires we consider in this chapter are: 
• Domestic m£ney market account. We denote the associated risk-neutral 

measure by IP'. It is the one discussed in Section 9. 1 .  
• Foreign money market account . We denote the associated risk-neutral mea

sure by jpf . It is constructed in Section 9.3 below. 
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• A zero-coupon bond maturing at time T. We denote the associated risk
neutral measure by jp>T . It is called the T -forward measure and is used in 
Section 9.4. 
The asset we take as numeraire could be one of the primary assets given 

by (9. 1 . 1 )  or it could be a derivative asset . Regardless of which asset we take, 
it has the stochastic representation provided by the following theorem. 

Theorem 9.2.1 (Stochastic representation of assets) . Let N be a 
strictly positive price process for a non-dividend-paying asset, either primary 
or derivative, in the multidimensional market model of Section 9. 1 .  Then there 
exists a vector volatility process 

v(t) = (v1 (t) , . . .  , vd (t) ) 

such that 
dN(t) = R(t)N(t) dt + N(t)v(t) · dW(t) . (9.2 . 1 )  

This equation is equivalent to each of the equations 

d (D(t)N(t)) = D(t)N(t)v(t) · dW(t) , (9.2.2) 

D(t)N(t) = N(O) exp {lot v(u) · dW(u) - � 1t l l v(u) l l 2 du} , (9.2.3) 

N(t) = N(O) exp {lot v(u) · dW(u) + 1t ( R(u) - � l l v(u) l l 2) du} . 

(9.2.4) 
In other words, under the risk-neutral measure, every asset has a mean return 
equal to the interest rate. The realized risk-neutral return for assets is char
acterized solely by their volatility vector processes (because initial conditions 
have no effect on return). 

PROOF: Under the risk-neutral measure P, the discounted price process 
D(t)N(t) must be a martingale. The risk-neutral measure is constructed to 
enforce this condition for primary assets, and it is a consequence of the risk
neutral pricing formula for derivative assets. According to the Martingale 
Representation Theorem, Theorem 5.4.2, 

d 
d (D(t)N(t)) = L fj (t) dWj (t) = f(t) . dW(t) 

j=l 

for some adapted d-dimensional process f{t) = (h (t) , . . .  , fd(t) ) .  Because 
N(t) is strictly positive, we can define the vector v(t) = (v1 (t) , . . .  , vd(t) ) by 

fj (t) Vj (t) = D (t)N(t) . 
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Then 
d (D(t)N(t)) = D(t)N(t)v(t) · dW(t) , 

which is (9.2.2) . 
The solution to (9 .2 .2) is (9.2.3) , as we now show. Define 

so that 

Then 

X(t) = lot 
v(u) · dW(u) - � lot 

l l v(u) l l 2 du 
d 1t 1 d t 

= L Vj (u) dW; (u) - 2 L f vJ (u) du, 
i=l o i=l 

lo 

-- 1 dX(t) = v(t) · dW(t) - 2 1 1 v(t) l l 2 dt 
d 1 d 

= L Vj (t) dWi (t) - 2 L vJ (t) dt. 
j=l j=l 

d 
dX(t) dX(t) = L vJ (t) dt = l l v(t) l l 2 dt . 

i= l 
Let f(x) = N(O)ex , and compute 

df(X(t)) = f' (X(t)) dX(t) + �f" (X(t)) dX(t) dX(t) 

= f(X(t))v(t) · dW(t) . 

We see that f(X(t)) solves (9 .2 .2) , f(X(t) ) has the desired initial condition 
f(X(O)) = N(O) , and f(X(t)) is the right-hand side of (9 .2 .3) . 

From (9.2 .3) , we have immediately that (9.2.4) holds. Applying the ItO-
Doeblin formula to (9.2.4) , we obtain (9 .2 . 1 ) . D 

According to the multidimensional Girsanov Theorem, Theorem 5.4. 1 , we 
can use the volatility vector of N(t) to change the measure. Define 

--(N) -- . 1t 
wj (t) = - 0 Vj (u) du + Wj (t) , J = 1 ,  . . .  ' d, 

and a new probability measure 

(9 .2 .5) 

p(N) (A) = N�O) L D(T)N(T) dP for all A E F. (9.2.6) 

We see from (9.2 .3) that D('�A�t> is the random variable Z(T) appearing 
in (5.4. 1 ) of the multidimensional Girsanov Theorem if we replace ei (t) by 
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-vj (t) for j = 1 ,  . . .  , m. Here we are using the probability measure JPi in 
place of lP' i!l_ Theorem 5.4_: 1 and using the d-dimensional Brownian motion 
(W1 (t) , . . . , Wd(t) ) under lP' in place of the d-dimensional Brownian motion 
(W1 (t) , . . . , Wd(t) ) under IP'. 

With these replacements, Theorem 5.4. 1 implies that , under jpiCN) , the pro
cess W(Nl (t) = (W{N) (t) , . . .  , wJNl (t)) is a d-dimensional Brownian motion. 
In particular, under jpi(N) ' the Brownian motions wiN) ' . . .  wJN) are indepen
dent of one another. The expected value of an arbitrary random variable X 
under jpi(N) can be computed by the formula 

More generally, 

-(N) - 1 - [ ] IE X - N(O) IE X D(T)N(T) . 

D(t)N(t) = iE [ D(T)N(T) I :F( )] N(O) N(O) t ' 0 :::; t :::; T, 

(9.2 .7) 

is the Radon-Nikodym derivative process Z(t) in the Theorem 5.4. 1 , and 
Lemma 5.2 .2 implies that for 0 :::; s :::; t :::; T and Y an :F(t)-measurable 
random variable, 

jECNl [Y j:F(s)] = 
D(s)�(s)

E [YD(t)N(t) i:F(s)] . (9.2.8) 

Theorem 9.2.2 (Change of risk-neutral measure) . Let S(t) and N(t) 
be the prices of two assets denominated in a common currency, and let u(t) = 
(u1 (t) , . . .  , ud(t) ) and v(t) = (v1 (t) , . . .  , vd (t)) denote their respective volatility 
vector processes: 

d (D(t)S(t) ) = D(t)S(t)u(t) · dW(t) , d (D(t)N(t) ) = D(t)N(t)v(t) · dW(t) . 

Take N(t) as the numeraire, so the price of S(t) becomes S(Nl (t) = �l�).  
Under the measure jpi(N) ' the process sCNl (t) is a martingale. Moreover, 

(9.2 .9) 
Remark 9. 2. 3. Equation (9.2 .9) says that the volatility vector of sCNl (t) is the 
difference of the volatility vectors of S(t) and N(t) . In particular, after the 
change of numeraire, the price of the numeraire becomes identically 1 , 

N(Nl (t) = N(t) = 1 N(t) ' 

and this has zero volatility vector: 
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We are not saying that volatilities subtract when we change the numeraire. 
We are saying that volatility vectors subtract. The process N(t) in Theo
rem 9.2 .2 has the stochastic differential representation (9.2. 1 ) ,  which we may 
rewrite as 

where 
dN(t) = R(t)N(t) dt + l l v(t) I IN(t)dBN (t) , 

N t �  Vj (U) -
B (t) = Jo � l l v(u) l l  

dWu(t) . 

(9.2. 10) 

According to Levy's Theorem, Theorem 4.6.4, BN (t) is a one-dimensional 
Brownian motion. From (9.2 .10) ,  we see that the volatility (not the volatility 
vector) of N(t) is l l v(t) l l · Similarly, the volatility of S(t) in Theorem 9.2.2 is 
l la(t) I I · Application of the same argument to equation (9.2.9) shows that the 
volatility of S(N) (t) is l la(t) - v(t) I I · This is not the difference of the volatilities 
l l a(t) l l - l l v(t) l l  unless the volatility vector a(t) is a positive multiple of the 
volatility vector v(t) . 

Remark 9.2.4 .  If we take the money market account as the numeraire in The
orem 9.2.2 (i .e. , N(t) = M(t) = v(t) ) ' then we have d (D(t)N(t) ) = 0. The 
volatility vector for the money market account is v(t) = 0, and the volatility 
vector for an asset S(N) (t) denominated in units of money market account 
is the same as the volatility vector of the asset denominated in units of cur
rency. Discounting an asset using the money market account does not affect 
its volatility vector. 
Remark 9. 2. 5. Theorem 9.2 .2 is a special case of a more general result . When
ever M1 (t) and M2(t) are martingales under a measure lP', M2(0) = 1 , and 
M2(t) takes only positive values, then M1 (t)/M2(t) is a martingale under the 
measure JP>{M2 ) defined by 

See Exercise 9. 1 . 
PROOF OF THEOREM 9 . 2 . 2 :  We have 

D(t)S(t) = S(O) exp {lot a(u) · dW(u) - � 1t l la(u) l l 2 du} , 

D(t)N(t) = N(O) exp {lot v(u) · dW(u) - � 1t l l v(u) l l 2 du} , 

and hence 

S(N) (t) = !�� exp { 1t (a(u) - v(u) ) · dW(u) 

- �  1t ( l l a(u) l l 2 - l l v(u) l l 2 ) du} . 
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To apply the ItO-Doeblin formula to this , we first define 

t 1 t X(t) = lo (a(u) - v(u) ) · dW(u) - 2 lo ( l l a(u) l l 2 - l l v(u) l l 2 ) du, 

so that 
- 1 

dX(t) = (a(t) - v(t) ) · dW(t) - 2 ( l la(t) l l 2 - l l v(t) l l 2 ) dt 
d 1 d 

= L (aj (t) - vj (t) ) dWj (t) - 2 L (a] (t) - v] (t) ) dt, 
j= l  j=l 
d 

dX(t) dX(t) = L (aj (t) - Vj (t) )
2 dt 

j=l 
d 

= L (a] (t) - 2aj (t)vj (t) + vJ (t) ) dt 
j=l 

= l l a(t) l l 2 dt - 2a(t) · v(t) dt + l l v(t) l l 2 dt . 

With f(x) = �t��ex , we have s<Nl (t) = f(X(t)) and 

dS(N) (t) = df(X(t)) 

= f' (X) dX + �f" (X) dX dX 

= S(N) [(a - v) · dW - � lla l l 2 dt + � l l v l l 2 dt 2 2 

+� l l a l l 2 dt - a · v dt + � l l v l l 2 dt] 
= S(N) [(a - v) · dW - v · (a - v) dt] 
= S(N) (a - v) · ( -vdt + dW) 
= S(N) (a - v) · dW(N) . 

Since w<Nl (t) is a d-dimensional Brownian motion under p(N) , the process 
s<Nl (t) is a martingale under this measure. D 

9 . 3  Foreign and Domestic Risk-Neutral Measures 

9.3. 1 The Basic Processes 

We now apply the ideas of the previous section to a market with two curren
cies , which we call foreign and domestic. This model is driven by 
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W(t) = (W1 (t) , W2 (t) ) ,  

a two-dimensional Brownian motion on some ( n, .r ,  IP) . In particular, we are 
assuming that W1 and W2 are independent under IP. We begin with a stock 
whose price in domestic currency, S(t) , satisfies 

dS(t) = o(t)S(t) dt + o-1 (t)S(t) dW1 (t) . (9.3 . 1 )  

There i s  a domestic interest rate R(t) , which leads to a domestic money market 
account price and domestic discount process 

M(t) = ef� R(u)du , D(t) = e- J� R(u)du . 

There is also a foreign interest rate Rf (t) , which leads to a foreign money 
market account price and foreign discount process 

Finally, there is an exchange rate Q(t) , which gives units of domestic cur
rency per unit of foreign currency. We assume this satisfies 

dQ(t) = l'(t)Q(t) dt + u2 (t)Q(t) [p(t) dW1 (t) + \/1 - p2 (t) dW2 (t)] . (9.3.2) 

We define 

(9.3.3) 

By Levy's Theorem, Theorem 4.6 .4 , W3 (t) is a Brownian motion under JP. We 
may rewrite (9.3.2) as 

dQ(t) = l'(t)Q(t) dt + u2 (t)Q(t) dW3 (t) , (9.3.4) 

from which we see that Q(t) has volatility u2 (t) . 
We assume R(t) , Rf (t) , u1 (t) , u2 (t) , and p(t) are processes adapted to the 

filtration .F(t) generated by the two-dimensional Brownian motion W(t) = 
(W1 (t) , W2 (t) ) ,  and 

O"l (t) > 0, 0"2 (t) > 0, -1 < p(t) < 1 
for all t almost surely. Because 

dS(t) dQ(t) 
S(t) · Q(t) = p(t)u1 (t)u2 (t) dt, 

the process p(t) is the instantaneous correlation between relative changes in 
S(t) and Q(t) . 
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9.3.2 Domestic Risk-Neutral Measure 

There are three assets that can be traded: the domestic money market account, 
the stock, and the foreign money market account . We shall price each of these 
in domestic currency and discount at the domestic interest rate. The result 
is the price of each of them in units of the domestic money market account . 
Under the domestic risk-neutral measure, all three assets priced in units of the 
domestic money market account must be martingales. We use this observation 
to find the domestic risk-neutral measure. 

We note that the first asset , the domestic money market account , when 
priced in units of the domestic money market , has constant price 1 .  This is 
always a martingale, regardless of the measure being used. 

The second asset , the stock, in units of the domestic money market account 
has price D(t)S(t) , and this satisfies the stochastic differential equation 

d(D(t)S(t) ) = D(t)S(t) [ ( a(t) - R(t) ) dt + u1 (t) dW1 (t)) . (9.3.5) 

We would like to construct a process 

that permits us to rewrite (9.3.5) as 

d (D(t)S(t) ) = u1 (t)D(t)S(t) dW1 (t) . (9.3.6) 

Equating the right-hand sides of (9.3.5) and (9.3.6) , we see that 81 (t) must 
be chosen to satisfy the first market price of risk equation 

u1 (t)81 (t) = a(t) - R(t) . (9.3.7) 
The third asset available in the domestic market is the following. One can 

invest in the foreign money market account and convert that investment to 
domestic currency. The value of the foreign money market account in domes
tic currency is Mf(t)Q(t) , and its discounted value is D(t)Mf (t)Q(t) . The 
differential of this price is 

d(D(t)Mf (t)Q(t) ) = D(t)Mf (t)Q(t) [ (Rf (t) - R(t) + l'(t) ) dt 
+u2 (t)p(t) dW1 (t) + u2 (th/1 - p2(t) dW2 (t)) . (9.3.8) 

One can derive this using the fact that 

using Ito's product rule to compute 

d (Mf (t)Q(t) ) = Mf (t)Q(t) [ (Rf (t) + l'(t) ) dt 
+u2 (t)p(t) dW1 (t) + u2 (t) JI - p2 (t) dW2 (t) ] , 
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and then using Ito's product rule again on D(t) · Mf (t)Q(t) to obtain (9.3.8) . 
The mean rate of change of Q(t) is -y(t) . When we inflate this at the foreign 
interest rate and discount it at the domestic interest rate, (9.3.8) shows that 
the mean rate of return changes to Rf (t) - R(t) + -y(t) . The volatility terms 
are unchanged. _ 

In addition to the process W1 ( t) , we would like to construct a process 

W2(t) = lot 
82(u) du + W2(t) 

so that (9.3.8) can be written as 
d(D(t)Mf (t)Q(t) ) 

= D(t)Mf (t)Q(t) [a2 (t)p(t) dW1 (t) + a2 (t)J1 - p2 (t) dW2(t)] . (9.3.9) 
Equating the right-hand sides of (9.3.9) and (9.3.8) , we obtain the second 
market price of risk equation 

a2 (t)p(t)81 (t) + a2 (t) J1 - p2 (t) e2 (t) = nt (t) - R(t) + -y(t) . (9.3. 10) 
The market price of risk equations (9.3. 7) and (9.3 . 10) determine processes 

81 (t) and 82(t) . We can solve explicitly for these processes by first solving 
(9.3.7) for el (t) , substituting this into (9.3. 10) , and then solving (9.3. 10) for 
82 (t) . The conditions a1 (t) > 0, a2 (t) > 0, and -1 < p(t) < 1 are needed to 
do this . 

The particular formulas for 81 (t) and 82 (t) are irrelevant. What mat
ters is that the market price of risk equations have one and only one solu
tion, and so there is a unique risk-neutral measure lP given l?l. the �ulti
dimensional Girsanov Theorem. Under this measure, W(t) = (W1 (t) , W2 (t)) 
is a two-dimensional Brownian motion and the processes 1 , D(t)S(t) , and 
D(t)Mf (t)Q(t) are martingales. In the spirit of (9.3.3) , we may also define 

W3(t) = lot p(u) dW1 (u) + lot 
J1 - p2 (u) dW2 (t) . (9.3. 1 1 )  

Then W3(t) i s  a Brownian motion under JP, and 

(9.3. 12) 
We can write the price processes 1 , D(t)S(t) and D(t)Mf (t)Q(t) in undis

counted form by multiplying them by M(t) = D(t) and using the formula 
dM(t) = R(t)M(t) dt and Ito's product rule. This leads to the formulas 

dM(t) = R(t)M(t) dt , (9.3. 13) 
dS(t) = S(t) [R(t) dt + a1 (t) dW1 (t)] , (9.3. 14) 

d (Mf (t)Q(t) ) = Mf(t)Q(t) [R(t) dt + a2 (t)p(t) dW1 (t) 
+a2 (t) J1 - p2 (t) dW2 (t) ] 

= Mf(t)Q(t) [R(t) dt + a2 (t) dW3(t) ] . (9.3. 15) 
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All these price proce�es have mean rate of return R(t) under the domestic 
risk-neutral measure JP>. We constructed the domestic risk-neutral measure so 
this is the case. 

We may multiply Mf(t)Q(t) by Df (t) and use Ito's product rule again to 
obtain 

dQ(t) = Q(t) [ (R(t) - Rf (t) } dt + a2 (t)p(t) dW1 (t) + a2 (t)J1 - p2 (t) dW2(t)] 
= Q(t) ( ( R(t) - Rf (t) } dt + a2 (t) dW3(t)) . (9.3. 16) 

Under the domestic risk-neutral measure, the mean rate of change of the 
exchange rate is the difference between the domestic and foreign interest rates 
R(t) - Rf (t) .  In particular, it is not R(t) , as would be the case for an asset. If 
one regards the exchange rate as an asset (i.e. , hold a unit of foreign currency 
whose value is always Q(t) ) ,  then it is a dividend-paying asset. The unit of 
foreign currency can and should be invested in the foreign money market , and 
this pays out a continuous dividend at rate Rf (t) . If this dividend is reinvested 
in the foreign money market, then we get the asset in (9.3. 15) , which has mean 
rate of return R(t) ; if the dividend is not reinvested, then the rate of return 
is reduced by Rf (t) and we have (9.3 .16) (cf. (5.5.6) ) .  

I t  is important to  note that (9.3. 16) tells u s  about the mean rate of change 
of the exchange rate under the domestic risk-neutral measure. Under the ac
tual probability measure JP>, the mean rate of change of the exchange rate can 
be anything. There are no restrictions on the process 'Y(t) in (9.3.2) . 

9.3.3 Foreign Risk-Neutral Measure 

In this model, we have three assets: the domestic money market account , the 
stock, and the foreign money market account. We list these assets across the 
top of Figure 9.3. 1 ,  and down the side of the figure we list the four ways of 
denominating them. 

ln_the previous subsection, we constructed the domestic risk-neutral mea
sure JP> under which the three entries in the second line of Figure 9.3. 1 are 
martingales. In this subsection, we construct the foreign risk-neutral measure 
under which the entries in the fourth line are martingales. (We cannot make 
all the entries in the first line be martingales because every path of the pro
cess M(t) is increasing, and thus this process is not a martingale under any 
measure. The same applies to the entries in the third line, which contains the 
increasing process M f ( t) . )  

We observe that the fourth line in Figure 9.3. 1 i s  obtained by dividing 
each entry of the second line by D(t)Mf (t)Q(t) . In other words, to find the 
foreign risk-neutral measure, we take the foreign money market account as the 
numeraire. Its value at time t, denominated in units of the domestic money 
market account, is D(t)Mf (t)Q(t) , and denominated in units of domestic 
currency, it is Mf(t)Q(t) . The differential of Mf(t)Q(t) is given in (9.3 . 15 ) ,  
and from that formula we see that its volatility vector is 
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(v1 (t) , v2 (t) ) = (a2 (t)p(t) , a2 (t)\h - p2(t) ) , 
the same as the volatility vector of Q(t) . 

Domestic Foreign 
money money 
market Stock market 

Domestic currency M(t) S(t) Mf (t)Q(t) 

Domestic money market 1 D(t)S(t) D(t)Mf (t)Q(t) 

Foreign currency M(t)/Q(t) S(t)/Q(t) Mf (t) 

Foreign money market M(t)Df (t)/Q(t) Df (t)S(t)/Q(t) 1 

Fig. 9.3. 1 .  Prices under different numeraires. 

According to Theorem 9.2 .2 , the risk-neutral measure associated with the 
numeraire Mf(t)Q(t) is given by 

jpf (A) = Q�O) l D(T)M f (T)Q(T) dlP for all A E F, (9.3. 1 7) 
where we have used the fact that D(O) = Mf (0) = 1 . Furthermore, the process 
Wf(t) = (W/ (t) , W{(t)) given by 

W/(t) = - 1t a2 (u)p(u) du + W1 (t) , (9.3. 18) 

W{ (t) = - 1t a2(u)\h - p2(u) du + W2(t) , (9.3. 19) 

is a two-dimensional Brownian motion under jpf . We call jpf the foreign risk
neutral measure. Following (9.3 . 1 1 ) , we may also define 

W/ (t) = 1t p(u) dW{ (u) + 1t vii - p2 (u) dW{ (t) 

= 1t p(u) ( - a2(u)p(u) du + dW1 (u)) 

+ 1t J1 - p2(u) ( - a2 (u)J1 - p2(u) + dW2(u)) 

= - 1t a2 (u) du + 1t (p(u) dW1 (u) + J1 - p2(u) dW2(u) ) 

= - lot a2(u) du + W3(t) . (9.3.20) 
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Then W f ( t) is a Brownian motion under jpif , and 

dW{ (t) dWf (t) = p(t) dt , dW{ (t) dWf (t) = V1 - p2 (t) dt. (9.3.21 )  

Instead of relying on Theorem 9.2.2, one can verify directly by Ito calculus 
that the first two entries in the last row of Figure 9.3 . 1  are martingales under 
jpif (the third entry, 1 , is obviously a martingale) .  One can verify by direct 
computation that 

(9.3.22) 

Because W { ( t ) ,  W f ( t ) ,  and W f ( t) are Brownian motions under jpif , the pro
cesses above are martingales under this measure. The Brownian motions 
W { ( t) and W f ( t) are independent under jpif , whereas W f ( t) has instanta
neous correlations with W{(t) and W{(t) given by (9.3.21 ) .  

9.3.4 Siegel's Exchange Rate Paradox 

In (9.3 . 16) ,  we saw that under the domestic risk-neutral measure IP', the mean 
rate of change for the exchange rate Q(t) is R(t) - Rf (t) . From the foreign 
perspective, the exchange rate is Q(t ) , and one should expect the mean rate of 
change of Q(t ) to be Rf (t) - R(t) . In other words, one might expect that if the 
average rate of change of the dollar against the euro is 5%, then the average 
rate of change of the euro against the dollar should be -5%. This turns out 
not to be as straight forward as one might expect because of the convexity of 
the function f(x) = � -

For example, an exchange rate of 0.90 euros to the dollar would be l . l l l l  
dollars to the euro. If the dollar price of euro falls by 5%, then price of the 
euro would be only 0.95 x l . l l l l  = 1 .0556 dollars. This is an exchange rate of 
0.9474 euros to the dollar. The change from 0.90 euros to the dollar to 0.9474 
euros to the dollar is a 5.26% increase in the euro price of the dollar, not a 
5% increase. 

The convexity effect seen in the previous paragraph makes itself felt when 
we compute the differential of Q(t ) " We take f(x) = � so that f' (x) = -� 
and f" (x) = � - Using (9.3. 16) , we obtain 
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d (�) = df(Q) 

= f'(Q) dQ + if"(Q) dQ dQ 

= � [(Rf - R) dt - a2dW3] + �a� dW3 dW3 

= 
Q�t) [(Rf - R + a�) dt - a2dW3] . (9.3.24) 

The mean rate of change under the domestic risk-neutral measure is Rf (t) 
R(t) + a� , not Rf (t) - R(t) . 

However, the asymmetry introduced by the convexity of f(x) = � is re
solved if we switch to the foreign risk-neutral measure, which is the appropri
ate one for derivative security pricing in the foreign currency. First recall the 
relationship (9 .3 .20) 

dW/ (t) = -a2 (t) dt + dW3(t) . 

In terms of W/ (t) , we may rewrite (9.3.24) as 

d (�) = (�) [ (nJ - R) dt - a2dwl] . (9.3.25) 

Under the foreign risk-neutral measure, the mean rate of change for b is 
Rf - R, as expected. 

Under the actual probability measure JP>, however, the asymmetry remains. 
When we begin with (9.3 .4) , which shows the mean rate of change of the 
exchange rate to be -y(t) under lP and is repeated below as (9.3.26) , and then 
use the It6-Doeblin formula as we did in (9.3 .24) , we obtain the formula 
(9.3.27) below: 

dQ(t) = -y(t)Q(t) dt + a2 (t)Q(t) dW3(t) , 

d ( Q�t) ) = 
Q�t) ( - -y(t) + a�(t) ) dt -

Q�t) a2 (t) dW3(t) . 

(9.3 .26) 
(9.3.27) 

Both Q and b have the same volatility. (A change of sign in the volatility 
does not affect volatility because Brownian motion is symmetric. ) However, 
the mean rates of change of Q and b are not negatives of one another. 

9.3.5 Forward Exchange Rates 

We assume in this subsection that the domestic and foreign interest rates are 
constant and denote these constants by r and rf , respectively. Recall that 
Q is units of domestic currency per unit of foreign currency. The exchange 
rate from the domestic viewpoint is governed by the stochastic differential 
equation (9.3 . 16) 
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e- (r-r' ) tQ(t) 
is a martingale under JP>, the domestic risk-neutral measure. 

At time zero, the (domestic currency) forward price F for a unit of foreign 
currency, to be delivered at time T, is determined by the equation 

fE [e-rT (Q(T) - F) ] = 0. 
The left-hand side is the risk-neutral pricing formula applied to the derivative 
security that pays Q(T) in exchange for F at time T. Setting this equal to zero 
determines the forward price. We may solve this equation for F by observing 
that it implies 

e-rTp = fE [e-rTQ(T)] = e-r'TfE [e- (r-r' )TQ(T)] = e-r'TQ(O) , 

which gives the T-forward (domestic per unit of foreign) exchange rate 

F = e<r-r' )T Q(O) . 
The exchange rate from the foreign viewpoint is given by the stochastic 

differential equation (9.3.25) 

d (Q�t) ) 
= ( Q�t) ) [(rf - r) dt - a2 (t)p(t) dW{ (t) - a2 (t)Jl - p2 (t) dW{ (t)] . 

Therefore, 
- (rf -r)t 1 e 

Q(t) 
is a martingale under jpif , the foreign risk-neutral measure. 

At time zero, the (foreign currency) forward price Ff for a unit of domestic 
currency to be delivered at time T is determined by the equation 

fE! [e-r'T (-1- - pf) ] = 0 Q(T) . 

The left-hand side is the risk-neutral pricing formula applied to the derivative 
security that pays QlT) in exchange for F f (both denominated in foreign 
currency) at time T. Setting this equal to zero determines the forward price. 
We may solve this equation for pf by observing that it implies 

e-r'Tpf = fE! [e-r1T Q!T) ] = e-rTfEJ [e- (r' -r)T Q!T) ] = e-rT Q�O) ' 

which gives the T-forward (foreign per unit of domestic) exchange rate 
pf _ (r1 -r)T_l _ _ � - e 

Q(O) - F "  
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9.3.6 Garman-Kohlhagen Formula 

In this section, we assume the domestic and foreign interest rates r and rf 
and the volatility a2 are constant. Consider a call on a unit of foreign currency 
whose payoff in domestic currency is ( Q(T) - K)+ . At time zero, the value of 
this is 

Ee-rT(Q(T) - K)+ . 
In this case, (9.3. 16) becomes 

dQ(t) = Q(t) [ (r - rf) dt + a2 dW3 (t)] , 
from which we conclude that 

Define 

Q(T) = Q(O) exp { a2W3 (T) + (r - rf - �a�)r} . 

y = _ W3(T) 
y'T '  

so Y is a standard normal random variable under Jiii. Then the price of the 
call is 

Ee-rT ( Q(T) - K) + 

= IE [e-rT ( Q(O) exp { -a2VTY + (r - rf - �a�)r} - K) + ] · 
This expression is just like (5 .5 . 10) with T = T, with Q(O) in place of x, and 
with rf in place of the dividend rate a. According to (5 .5 . 12) , the call price is 

(9.3.28) 

where 
d± = 

a2� [tog Qt) + (r - rf ± �a�)r] 
and N is the cumulative standard normal distribution function. Equation 
(9.3.28) is called the Garman-Kohlhagen formula. 

9.3. 7 Exchange Rate Put-Call Duality 

In this subsection, we develop a relationship between a call on domestic cur
rency, denominated in foreign currency, and a put on a foreign currency, de
nominated in the domestic currency. 

Recall the numeraire Mf (t)Q(t) , which is the domestic price of the foreign 
money market account . The Radon-Nikodym derivative of the foreign risk
neutral measure with respect to the domestic risk-neutral measure is (see 
(9.3 . 1 7) )  



9.3 Foreign and Domestic Risk-Neutral Measures 39 1 

dWf D(T)A!f (T)Q(T) 
----:::::- = am» Q(O) 

Thus, for any random variable X, 

lEt x = IE  [D(T)A�f (T)Q(T) x] 
Q(O) 

. 

A call struck at K on a unit of domestic currency denominated in the 
foreign currency pays off ( QlT) -K) + units of foreign currency at expiration 
time T. The foreign currency value of this at time zero, which is the foreign 
risk-neutral expected value of the discounted payoff, is 

IE! [ Df (T) ( QtT) - K) + l 
= IE [D(T)A!f (T)Q(T) . Df (T) (-1- - K) +] Q(O) Q(T) 

= Q�O) IE [ D(T) ( 1 - KQ(T)) +] 
= Q%) IE [ D(T) ( � - Q(T)) + ] · 

This is the time-zero value in domestic currency of Qfo) puts on the foreign 
exchange rate. More specifically, a put struck at f< on a unit of foreign cur
rency denominated in the domestic currency pays off ( f< - Q(T)} + units of 
domestic currency at expiration time T. The domestic currency value of this 
put at time zero, which is the domestic risk-neutral expected value of the 
discounted payoff, is 

IE [ D(T) ( � - Q(T)) +] . 
The call we began with is worth Qfo) of these puts. 

The foreign currency price of the put struck at f< on a unit of foreign 
currency is 

Q�O) IE [D(T) (� - Q(T)) +] . 

The call we began with has a value K times this amount. When we denominate 
both the call and the put this way in foreign currency, we can then understand 
the final result . Indeed, we have seen that the option to exchange K units of 
foreign currency for one unit of domestic currency (the call) is the same as 
K options to exchange f< units of domestic currency for one unit of foreign 
currency (the put) . Stated in this way, the result is almost obvious. 
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9.4 Forward Measures 

Although there may be multiple Brownian motions driving the model of this 
section, in order to simplify the notation, we assume in this section that there 
is only one. It is not difficult to rederive the results presented here under the 
assumption that there are d Brownian motions. 

9.4.1 Forward Price 

We recall the discussion of Section 5.6. 1 .  Consider a zero-coupon bond that 
pays 1 unit of currency (all currency is domestic in this section) at maturity 
T. According to the risk-neutral pricing formula, the value of this bond at 
time t E (0, T) is 

1 -B(t, T) = D(t) lE [D(T) iF(t)] . (9.4. 1 ) 

In particular, B(T, T) = 1 .  
Consider now an asset whose price denominated in  currency i s  S(t) . A 

forward contract that delivers one share of this asset at time T in exchange 
for K has a time-T payoff of S(T) - K. According to the risk-neutral pricing 
formula, the value of this contract at earlier times t is 

1 -V(t) = D(t) IE [D(T) (S(T) - K) iF(t)] . 

Because D(t)S(t) is a martingale under JP, this reduces to 

K -V(t) = S(t) - D(t) lE [D(T) iF(t)] = S(t) - KB(t, T) . (9.4.2) 

The T -forward price Fors (t, T) at time t E (0, T) of an asset is the value of K 
that causes the value of the forward contract in (9.4.2) to be zero: 

S(t) Fors (t, T) = B(t, T) . 

9.4.2 Zero-Coupon Bond as Numeraire 

(9.4.3) 

A zero-coupon bond is an asset , and therefore the discounted bond price 
D(t)B(t, T) must be a martingale under the risk-neutral measure JP. According 
to Theorem 9.2 . 1 , there is a volatility process u* (t, T) for the bond (a process 
in t; T is fixed) such that 

d (D(t)B(t, T)) = -u* (t, T)D(t)B(t, T) dW(t) .  (9.4.4) 

In (9.4.4) ,  we write -u* (t, T) rather than u* (t, T) in order to be consistent 
with the notation used in our discussion of the Heath-Jarrow-Morton model 
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in Chapter 10. This has no effect on the distribution of the bond price process 
since we could just as well write (9.4.4) as 

d(D(t)B(t, T) ) = a* (t, T)D(t)B(t, T) d( - W(t)) , 

and, just like W(t) , the process -W(t) is a Brownian motion under Jiii. 
Definition 9.4. 1. Let T be a fixed maturity date. We define the T-forward 
measure Jiiir by 

-T 1 { -
lP' (A) = B(O, T) j A 

D(T) dlP' for all A E :F. (9.4.5) 

The T-forward measure corresponds to taking N(t) = B(t, T) in (9 .2 .7) 
and (9.2.8) .  According to Theorem 9.2.2, the process 

WT(t) = lot a* (u, T) du + W(t) 

is a Brownian motion under Jiiir . Furthermore, under the T-forward measure, 
all assets denominated in units of the zero-coupon bond maturing at time T 
are martingale. In other words, 

T-forward prices are martingales under the T-forward measure Jiiir . 
Furthermore, the volatility vector of the T-forward price of an asset is the 
difference between the volatility vector of the asset and the volatility vector 
of the T-maturity zero-coupon bond (see Remark 9.2.3) . 

The reason to introduce the T-forward measure is that it often simplifies 
the risk-neutral pricing formula. According to that formula, the value at time 
t of a contract that pays V (T) at a later time T is 1 -V(t) = D(t) lE [D(T)V(T) iF(t)] . (9.4.6) 

The computation of the right-hand side of this formula requires that we know 
something about the dependence between the discount factor D (T) and the 
payoff V (T) of the derivative security. Especially when the derivative security 
depends on the interest rate, this can be difficult to model. However, according 
to (9.2.8) (with t replacing s and T replacing t in that formula) , we have 

-T 1 -
I ] 1 lE (V(T) IF(t)) = D(t)B(t, T) lE [D(T)V(T) F(t) = B(t, T) V(t) . 

This gives us the simple formula 

V(t) = B(t, T)ET [V(T) iF(t)] . (9.4.7) 

If we can find a simple model for the evolution of assets under the T-forward 
measure, we can use (9.4.7) ,  in which we only need to estimate V (T) , instead 
of using (9.4.6) , which requires us to estimate D(T)V (T) . We give an example 
of the power of this approach in the next subsection. 
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9.4.3 Option Pricing with a Random Interest Rate 

The classical Black-Scholes-Merton option-pricing formula assumes a constant 
interest rate. For options on bonds and other interest-rate-dependent instru
ments, movements in the interest rate are critical . For these "fixed income" 
derivatives, the assumption of a constant interest rate is inappropriate. 

In this section, we present a generalized Black-Scholes-Merton option
pricing formula that permits the interest rate to be random. The classical 
Black-Scholes-Merton assumption that the volatility of the underlying asset 
is constant is here replaced by the assumption that the volatility of the for
ward price of the underlying asset is constant . Because the forward price is 
a martingale under the forward measure, and WT (t) is the Brownian mo
tion used to drive asset prices under the forward measure, the assumption of 
constant volatility for the forward price is equivalent to the assumption 

dFors (t, T) = aFors (t , T) dWT (t) , (9.4.8) 

where a is a constant . The bond maturity T is chosen to coincide with the 
expiration time T of the option. 

Theorem 9.4.2 (Black-Scholes-Merton option pricing with random 
interest rate) . Let S(t) be the price of an asset denominated in (domestic) 
currency, and assume the forward price of this asset satisfies (9.4 . 8} with a 
positive constant a . The value at time t E [0, T] of a European call on this 
asset, expiring at time T with strike price K, is 

V(t) = S(t)N(d+ (t)) - KB(t, T)N(d- (t) ) ,  (9.4.9) 

where the adapted processes d± (t) are given by 

(9.4. 10) 

Furthermore, a short position in the option can be hedged by holding N(d+ (t)) 
shares of the asset and shorting K N ( d_ ( t) ) T -maturity zero-coupon bonds at 
each time t .  

Remark 9.4 . 3. If the interest rate is a constant r, then B(t , T) = e-r(T-t) , 
Fors (t, T) = er(T-t) S(t) , and this theorem reduces to the usual Black-Scholes
Merton formula and hedging strategy. 

PROOF OF THEOREM 9 .4 . 2 :  We prove formula (9.4.9) for t = 0. It is not 
difficult to modify the proof to account for general t . 

We observe that Fors (O, T) = B���J..) ,  and so the solution to (9.4.8) is 
S(O) { -r 1 2 } Fors (t , T) = B(O, T) exp aW (t) - 2a t . (9.4. 1 1 ) 
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For each t, this has a log-normal distribution under jpT , the measure under 
which wr (t) is a Brownian motion. 

We need one more change of measure. Suppose we take the asset price S(t) 
to be the numeraire. In terms of this numeraire, the asset price is identically 
1. The risk-neutral measure for this numeraire is given by 

JP8 (A) = S�O) i D(T)S(T) dJP for all A E :F. 

Denominated in units of S(t) , the zero-coupon bond is 

B(t, T) 
S(t) 

1 O < t < T Fors (t, T) ' - - ' 

and, by Theorem 9.2 .2, this is a martingale under jps . 
Indeed, we can compute the differential of F1 \ ) using the ltO-Doeblin ors t ,T 

formula, the function f(x) = � ' and (9.4.8) .  Since f' (x) = -�  and f" (x) = 
� ' we have 

d (Fors�t, T) ) 
= df(Fors (t, T) )  

1 = /' (Fors (t, T) ) dFors (t, T) + 2/" (Fors (t , T)) dFors (t, T) dFors (t, T) a -- a2 
=----;-� dWT ( t) + dt Fors (t, T) Fors (t, T) a --T = - D ( T) ( - a dt + dW ) . (9.4 .12) rors t, 

Because we are guaranteed by Theorem 9.2 .2 that F1 \ ) is a martingale ors t ,T 
under jps , we conclude that 

is a Brownian motion under jps . We see also that F1 \ T) has volatility a. ors t , The solution to (9.4. 12) is 

1 B(O, T) { --8 1 2 } 
Fors (t, T) = S(O) exp -aW (t) - 2a t . (9.4. 13) 

For each t, this has a log-normal distribution under jps , the measure under 
which W8 (t) is a Brownian motion. 

At time zero, the value of a European call expiring at time T, according 
to the risk-neutral pricing formula, is 
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V(O) = iE [D(T) (S(T) - K)+] 
= iE [ D(T)S(T)H{S(T)>K} ] - KE [ D(T)H{S(T)>K} ] 

- [D(T)S(T) ] - [ D(T) ] = S(O)IE S(O) ll{s(T)>K} - K B(O, T)IE B(O, T) ll{s(T)>K} 

= S(O)P8{S(T) > K} - KB(O, T)PT{S(T) > K} 
= S(O)P8 {Fors (T, T) > K} - K B(O, T)PT {Fors (T, T) > K} 

-s { 1 1 } -r = S(O)J!D Fors (T, T) < K - K B(O, T)J!D {Fors (T, T) > K}, 

where in the next-to-last step we have used the fact that Fors (T, T) = S(T) . 
Using the fact that W8 (T) is normal with mean zero and variance T under 
P8 , we compute 

J!D < --8 { 1 1 } 
Fors (T, T) K 

-s { -s 1 2 S(O) } = J!D -uW (T) - 2u T < log K B(O, T) 

= jps { -W8(T) _1_ [l S(O) � 2r] } 
VT 

< 
uVT 

og KB(O, T) + 217 

= N(d+ (O) ) .  

Using the fact that WT(T) i s  normal with mean zero and variance T under 
pT, we obtain 

P{Fors (T, T) > K} 

= jjiiT { WT(T) _ � 2T l KB(O, T) } 17 217 > og S(O) 

= jjiiT { Wr(T) _1_ 1 [KB(O, T) � 2r] } 
VT 

> 
uVT 

og 
S(O) + 2 17 

-T { WT(T) 1 [ S(O) 1 2 ] } = J!D -
VT 

< 
uVT 

log K B(O, T) - 217 T 

= N(d- (0) ) .  

This completes the proof of (9.4.9) , at least for the case t = 0 .  
We now consider the hedge suggested by formula (9.4.9) . I t  is easier to do 

this when we take the zero-coupon bond as the numeraire rather than when 
we use currency. Dividing (9.4.9) by B(t, T) , we obtain 

V(t) 
B(t, T) = Fors (t , T)N(d+ (t)) - KN(d_ (t) ) .  (9.4. 14) 
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This gives us the option price denominated in zero-coupon bonds. Suppose 
we hedge a short position in the option by holding N(d+ (t) ) shares of the 
asset and shorting KN(d_ (t) ) zero-coupon bonds at each time t. The value of 
this portfolio, denominated in units of zero-coupon bond, agrees with (9.4. 14) . 
To be sure this short option hedge works, however, we must verify that the 
portfolio just described is self-financing. In other words, we must be sure we 
do not need to infuse cash in order to maintain the positions just described. (A 
discussion related to this, passing from discrete to continuous time, is provided 
in Exercise 4 .10 of Chapter 4.) The capital gains differential associated with 
this portfolio, again denominated in units of zero-coupon bond, is 

N(d+ (t) ) dFors (t , T) . 

(When measuring wealth in units of zero-coupon bond, there is no capital gain 
from movements in the bond price. )  The differential of the portfolio, according 
to Ito's formula, is ( V(t) ) d B(t, T) = N(d+ (t)) dFors (t , T) + Fors (t, T) dN(d+ (t)) 

+dFors (t , T) dN(d+ (t)) - K dN(d_ (t) ) .  (9.4. 15) 

In order for the portfolio to be self-financing, we must have 

Fors (t, T) dN(d+ (t) ) + dFors (t , T) dN(d+ (t)) - K dN(d_ (t)) = 0, (9.4. 16) 

so that the change of value in the portfolio is entirely due to capital gains. 
The verification of (9.4. 16) is Exercise 9.6 . 0 

9.5 Summary 

This chapter discusses the fact that when we change the units of account , the 
so-called numemire, we must change the risk-neutral measure. Fortunately, 
the Radon-Nikodym derivative process needed to effect this change of measure 
is simple; it is the numeraire itself, discounted in order to be a martingale and 
normalized by its initial condition in order to have expected value 1 .  This is 
the content of Theorem 9.2 .2 . 

In this chapter, we apply the change-of-numeraire idea in two cases: foreign 
exchange models and option pricing in the presence of a random interest rate. 
It was also used in the discussion of Asian options in Section 7.5 . 

In the context of foreign exchange models, we show that the mean rate of 
change of the exchange rate is the difference between the interest rates in the 
two economies under the risk-neutml measure for the economy in which the 
exchange rote is being considered. We show that one can derive other expected 
symmetries (e.g . ,  the forward exchange rate in one currency is the reciprocal 
of the foreign exchange rate in the other currency) ,  provided one is careful to 
use the appropriate risk-neutral measures. 
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When the interest rate is random, the classical Black-Scholes-Merton 
option-pricing formula does not apply. However, if one is willing to assume 
that the T-forward price of the underlying asset has constant volatility, then 
the price of a call expiring at time T has a simple formula and a simple hedg
ing strategy (Theorem 9 .4 .2) . This fact is exploited to build LIBOR models 
in Section 10.4. 

9.6 Notes 

The model of foreign and domestic markets presented in this chapter is a 
simplification of one in Musiela and Rutkowski [ 126) . The model in [126) ,  
drawn from Amin and Jarrow [2) , permits foreign and domestic interest rates 
to be random. The Garman-Kohlhagen formula of Subsection 9.3.6 is taken 
from Garman and Kohlhagen [68) . The option to exchange one risky asset for 
another, of which Subsection 9.3. 7 is a special case, was studied by Margrabe 
[ 1 17) .  

Theorem 9.4.2, option pricing with a random interest rate, is taken from 
Geman, El Karoui , and Rochet [70) .  It traces back at least to Geman [69) and 
Jamshidian [94) ,  who observed that the forward price of an asset is its price 
when denominated in the numeraire of the zero-coupon bond maturing at the 
delivery date. Even earlier, Merton [122) proposed hedging European options 
by using a bond maturing on the option expiration date. 

9. 7 Exercises 

Exercise 9. 1 .  This exercise provides an alternate proof of the main assertion 
of Theorem 9.2 .2 .  

(i) Use Lemma 5.2.2 to prove Remark 9.2 .5 .  
(ii) Let S(t) and N(t) be prices of two assets, denominated in a common 

currency, and assume N(t) is always strictly positive. Let JPi be the risk
neutral measure under which the discounted asset prices D(t)S(t) and 
D(t)N(t) are martingales. Apply Remark 9.2 .5 to show that S(Nl (t) = 
���) is a martingale under jpi(N) defined by (9.2.6) . 

Exercise 9.2 (Portfolios under change of numeraire) .  Consider two 
assets with prices S(t) and N(t) given by 

S(t) = S(O) exp { aW(t) + (r - �a2) t} , 
N(t) = N(O) exp {vW(t) + (r - �v2) t} , 
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where W(t) is a one-dimensional Brownian motion under the risk-neutral 
measure Jii> and the volatilities u > 0 and v > 0 are constant , as is the interest 
rate r. We define a third asset , the money market account , whose price per 
share at time t  is M(t) = ert . 

Let us now denominate prices in terms of the numeraire N, so that the 
redenominated first asset price is 

S
�
( )  = S(t) t N(t) 

and the redenominated money market account price is 

--- M(t) M(t) = 
N(t) . 

According to Theorem 9.2 .2 , iS(t) = (u-v)S(t) dW(t) , where W(t) = W(t) 
vt. 
(i) Compute the differential of NCt) . 
(ii) Compute the differential of M(t) , expressing it in terms of dW(t) . 

Consider a portfolio that at each time t holds Ll(t) shares of the first asset 
and finances this by investing in or borrowing from the money market . Ac
cording to the usual formula, the differential of the value X ( t) of this portfolio 
is 

We define 
dX(t) = Ll(t) dS(t) + r (X(t) - Ll(t)S(t) ) dt . 

r( ) = X(t) - Ll(t)S(t) t M(t) 
to be the number of shares of money market account held by this portfolio at 
time t and can then rewrite the differential of X(t) as 

dX(t) = Ll(t) dS(t) + F(t) dM(t) . 

Note also that by the definition of F(t) , we have 

X(t) = Ll(t)S(t) + F(t)M(t) . 

We redenominate the portfolio value, defining 

� X(t) X(t) = 
N(t) , 

so that (dividing (9.7.2) by N(t)) we have 

X(t) = Ll(t)S(t) + F(t)M(t) . 

(9 .7. 1) 

(9.7.2) 

(9 .7.3) 

(9. 7.4) 
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(iii) Use stochastic calculus to show that 

dX (t) = Ll (t) dS(t) + r(t) dM(t) . 

This equation is the counterpart in the new numeraire of equation (9 .7 . 1 ) 
and says that the change in X (t) is solely due to changes in the prices 
of the assets held by the portfolio. (Hint :  Start from equation (9.7.3) and 
use (9 .7 . 1 ) and (9 .7.4) along the way. ) 

Exercise 9.3 (Change in volatility caused by change of numeraire) .  
Let S(t) and N (t) be  the prices of two assets, denominated i n  a common cur
rency, and let u and v denote their volatilities , which we assume are constant. 
We assume also that the interest rate r is constant. Then 

dS (t) = rS(t) dt + uS(t) dWt (t) , 
dN (t) = rN (t) dt + vN (t) dWa (t) ,  

where W1 (t) and W3 (t) are Brownian motions under the risk-neutral measure 
P. We assume these Brownian motions are correlated, with dW1 (t) dWa (t) = 
p dt for some constant p. 

(i) Show that S(Nl (t) = ���) has volatility 'Y = Ju2
� 2puv + ::_2• In other 

words, show that there exists a Brownian motion W4 under lP' such that 

dS(Nl (t) . -
S(NJ (t) 

= (Somethmg) dt + 7 dW4 (t) . 

( ii) Show how �construct a Brownian motion W2 (t) under lP that is inde
pendent of W1 (t) such that dN (t) may be written as 

dN (t) = rN (t) dt + vN (t) [p dW1 (t) + J1 - p2 dW2 (t)] . 
(iii) Using Theorem 9.2 .2 , determine the volatility vector of s<Nl (t) . In other 

words, find a vector ( v1 , v2 ) such that 

dS(Nl (t) = S(Nl (t) (vi dWfNl (t) + v2 dWJN) (t)] , 

where W1 (t) and W2 (t) are independent Brownian motions under p(Nl . 
Show that 

Jvr + v� = Ju2 - 2puv + v2 . 

Exercise 9.4. From the differential formulas (9.3. 14) and (9.3. 15) for the 
stock and discounted exchange rate in terms of the Brownian motions under 
the domestic risk-neutral measure, derive the differential formulas (9 .3 .22) and 
(9.3.23) for the redenominated money market account and stock discounted at 
the foreign interest rate and written in terms of the Brownian motions under 
the foreign risk-neutral measure. 
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Exercise 9.5 (Quanto option) . A quanto option pays off in one currency 
the price in another currency of an underlying asset without taking the cur
rency conversion into account . For example, a quanto call on a British asset 
struck at $25 would pay $5 if the price of the asset upon expiration of the 
option is £30. To compute the payoff of the option, the price 30 is treated as 
if it were dollars, even though it is pounds sterling. 

In this problem we consider a quanto option in the foreign exchange model 
of Section 9.3. We take the domestic and foreign interest rates to be constants 
r and rf , respectively, and we assume that a1 > 0, a2 > 0, and p E ( -1 ,  1 )  
are likewise constant. 
(i) From (9.3 . 14) , show that 

S(t) = S(O) exp { a1 W1 (t) + (r - �a�) t} . 

(ii) From (9.3 . 16) , show that 

Q(t) = Q(O) exp { a2pW1 (t) + a2\!l-=pi W2(t) + (r - rf - �a�) t} . 

(iii) Show that 

where 

and 

is a Brownian motion. 

0"4 = J a� - 2pa1a2 + a� , 
a = r - rf + pa1 a2 - a� , 

(iv) Consider a quanto call that pays off 

( S(T) - K) + 

Q(T) 

units of domestic currency at time T. (Note that ���� is denominated 
in units of foreign currency, but in this payoff it is treated as if it is a 
number of units of domestic currency. ) Show that if at time t E [0, T] we 
have �m = x, then the price of the quanto call at this time is 

q(t , x) = xe-ar N(d+ (T, x) ) - e-rr KN(d_ (T, x) ) ,  
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where T = T - t and 

d± (r, x) = 
u4� [ log ; + (r - a ± �u�) r] . 

(Hint: Argue that this is a case of formula (5 .5 . 12) . )  
Exercise 9.6. Verify equation (9.4. 16) , 

Fors (t, T) dN(d+ (t)) + dFors (t, T) dN(d+ (t) ) - K dN(d- (t)) = 0, 
in the following steps. 
(i) Use (9.4. 10) to show that 

d- (t) = d+ (t) - uvT - t. 
(ii) Use (9.4. 10) to show that 

d� (t) - d2_ (t) = 2 log Fors;, T) . 

(iii) Use (ii) to show that 

Fors (t, T)e-d! (t )/2 - Ke-d� (t )/2 = 0. 
(iv) Use (9.4.8) and the It�Doeblin formula to show that 

1 Fors (t, T) 3u 1 dd+ (t) = 2u(T _ t)312 log K dt -
4� 

dt + � dW 

(v) Use (i) to show that 
q dd- (t) = dd+ (t) + 

2� dt. 

(vi) Use (iv) and (v) to show that 
dt dd+ (t) dd+ (t) = dd_ (t) dd_ (t) = 

T _ ( 
(vii) Use the lt�Doeblin formula to show that 

dN(d+ (t)) = -1-e-d! (t )/2 dd+ (t) - d+ (t) e-d! (t)/2 dt . -./2-K 2 (T - t)../2-K 
(viii) Use the lt�Doeblin formula, (v) , (i) , and (vi) to show that 

dN(d_ (t) )  = -1-e-d� (t)/2 dd+ (t) + u e-d� (t)/2 dt -./2-K J21r(T - t) 

- d+ (t) e-d� (t)/2 dt. 
2(T - t)../2-K 

(ix) Use (9.4.8) ,  (vii) ,  and (iv) to show that 

dFor (t T) dN(d (t) ) = uFors (t, T) e-d! (t )/2 dt. 8 ' + ..J27r(T - t) 
(x) Now prove (9.4. 16) . 
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Term-Structure Models 

10. 1 Introduction 

Real markets do not have a single interest rate. Instead, they have bonds of dif
ferent maturities , some paying coupons and others not paying coupons. From 
these bonds , yields to different maturities can be implied. More specifically, let 
0 = To < Tt < T2 < · · · < Tn be a given set of dates, and let B(O, Tj ) denote 
the price at time zero of a zero-coupon bond paying 1 at maturity Tj . Con
sider a coupon-paying bond that makes fixed payments Ct . C2 , . . .  , Cj at dates 
Tt . T2 , . . .  , Tj , respectively. Each of the numbers C1 , C2 , . . .  , Cj _ 1 represents a 
coupon (interest payment) ,  and Cj represents the interest plus principal paid 
at the maturity Tj of the bond. The price of this bond at time zero can be 
decomposed as 

(10. 1 . 1 )  
j=i 

On the other hand, if one is given the price of a coupon-paying bond of 
each maturity T1 , T2 , . • .  , Tn , then using (10. 1 . 1 )  one can solve recursively for 
B(O, T1 ) , . . .  , B(O, Tn ) by first observing that B(O, Tt ) is the price of the T1-
maturity bond divided by the payment it will make at Tt , then using this 
value of B(O, T1 ) and the price of the T2-maturity bond to solve for B(O, T2) ,  
and continuing in this manner. This method of determining zero-coupon bond 
prices from coupon-paying bond prices is called bootstrapping. 

In any event , from market data one can ultimately determine prices of zero
coupon bonds for a number of different maturity dates. Each of these bonds 
has a yield specific to its maturity, where yield is defined to be the constant 
continuously compounding interest rate over the lifetime of the bond that is 
consistent with its price: 

price of zero-coupon bond = face value X e -yield x time to maturity . 
The face value of a zero-coupon bond is the amount it promises to pay upon 
maturity. The formula above implies that capital equal to the price of the 
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bond, invested at a continuously compounded interest rate equal to the yield, 
would, over the lifetime of the bond, result in a final payment of the face 
value. In this chapter, we shall normalize zero-coupon bonds by taking the 
face value to be 1 .  

In summary, instead of having a single interest rate, real markets have a 
yield curve, which one can regard either as a function of finitely many yields 
plotted versus their corresponding maturities or more often as a function of 
a nonnegative real variable (time) obtained by interpolation from the finitely 
many maturity-yield pairs provided by the market. The interest rate (some
times called the short mte) is an idealization corresponding to the shortest
maturity yield or perhaps the overnight rate offered by the government, de
pending on the particular application. 

We assume throughout this chapter that the bonds have no risk of default. 
One generally regards U.S. government bonds to be nondefaultable. 

Models for interest rates have already appeared in this text, most notably 
in Section 6.5, where the partial differential equation satisfied by zero-coupon 
bonds in a one-factor short-rate model was developed and the Hull-White 
and Cox-Ingersoll-Ross models were given as examples . In Section 10.2 of this 
chapter, we extend these models to permit finitely many factors . These are 
Markov models in which the state of the model at each time is a multidimen
sional vector. 

Unlike the models for equities considered heretofore and the Heath-Jarrow
Morton model considered later, the multifactor models in Section 10.2 do not 
immediately provide a mechanism for evolution of the prices of tradeable as
sets . In the earlier models , we assume an evolution of the price of a primary 
asset or the prices of multiple primary assets under the actual measure and 
then determine the market prices of risk that enable us to switch to a risk
neutral measure. In the multifactor models of Section 10.2, we begin with the 
evolution of abstract "factors," and from these the interest rate is obtained. 
But the interest rate is not the price of an asset, and we cannot infer a market 
price of risk from the interest rate alone. If we also had prices of some primary 
assets , say zero-coupon bonds, we could determine market prices of risk. How
ever, in the models of Section 10.2, the only way to get prices of zero-coupon 
bonds is to use the risk-neutral pricing formula, and this cannot be done until 
we have a risk-neutral measure. Therefore, we build these models under the 
risk-neutral measure from the outset . Zero-coupon bond prices are given by 
the risk-neutral pricing formula, which implies that discounted zero-coupon 
bond prices are martingales under the risk-neutral measure. This implies in 
turn that no arbitrage can be achieved by trading in the zero-coupon bonds 
and the money market. After these models are built , they are calibrated to 
market prices for zero-coupon bonds and probably also some fixed income 
derivatives . The actual probability measure and the market prices of risk 
never enter the picture. 

In contrast to the models of Section 10.2, the Heath-Jarrow-Morton (HJM) 
model takes its state at each time to be the forward curve at that time. The 
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forward rate f(t, T) , which is the state of the HJM model, is the instantaneous 
rate that can be locked in at time t for borrowing at time T � t. For fixed t , 
one calls the function T t-+ f(t , T) , defined for T � t, the forward rate curve. 
The HJM model provides a mechanism for evolving this curve (a "curve" in 
the variable T) forward in time (the variable t) . The forward rate curve can be 
deduced from the zero-coupon bond prices , and the zero-coupon bond prices 
can be deduced from the forward rate curve. Because zero-coupon bond prices 
are given directly by the HJM model rather than indirectly by the risk-neutral 
pricing formula, one needs to be careful that the model does not generate 
prices that admit arbitrage. Hence, HJM is more than a model because it 
provides a necessary and sufficient condition for a model driven by Brownian 
motion to be free of arbitrage. Every Brownian-motion-driven model must 
satisfy the HJM no-arbitrage condition, and to illustrate that point we provide 
Exercise 10. 10 to verify that the Hull-White and Cox-Ingersoll-Ross models 
satisfy this condition. 

For practical applications, it would be convenient to build a model where 
the forward rate had a log-normal distribution. Unfortunately, this is not pos
sible. However, if one instead models the simple interest rate L(t, T) that one 
can lock in at time t for borrowing over the interval T to T +8, where 8 is a pos
itive constant, this problem can be overcome. We call L(t, T) forward LIBOR 
(London interbank offered rate). The constant 8 is typically 0.25 (three-month 
LIBOR) or 0.50 (six-month LIBOR) . The model that takes forward LIBOR 
as its state is often called the forward LIBOR model, the market model, or the 
Brace-Gatarek-Musiela (BGM) model. It is presented in Section 10.4. 

10.2 Affine-Yield Models 

The one-factor Cox-Ingersoll-Ross (CIR) and Hull-White models appearing 
in Section 6.5 are called affine-yield models because in these models the yield 
for zero-coupon bond prices is an affine (linear plus constant) function of the 
interest rate. In this section, we develop the two-factor, constant-coefficient 
versions of these models . (The constant-coefficient version of the Hull-White 
model is the Vasicek model. )  Models with three or more factors can be devel
oped along the lines of the two-factor models of this section. 

It turns out that there are essentially three different two-factor affine-yield 
models , one in which both factors have constant diffusion terms (and hence 
are Gaussian processes, taking negative values with positive probability) ,  one 
in which both factors appear under the square root in diffusion terms (and 
hence must be nonnegative at all times ) ,  and one in which only one factor 
appears under the square root in the diffusion terms (and only this factor is 
nonnegative at all times, whereas the other factor can become negative) . We 
shall call these the two-factor Vasicek, the two-factor CIR, and the two-factor 
mixed term-structure models , respectively. For each of these types of models , 
there is a canonical model (i.e. , a simplest way of writing the model) .  
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Two-factor affine yield-models appearing in the literature, which often 
seem to be more complicated than the canonical models of this section, can 
always be obtained from one of the three canonical models by changing vari
ables. It is desirable when calibrating a model to first change the variables 
to put the model into a form having the minimum number of parameters; 
otherwise, the calibration can be confounded by the fact that multiple sets of 
parameters yield the same result. The canonical models presented here have 
the minimmu number of parameters. 

10.2 .1  Two-Factor Vasicek Model 

For the two-factor Vasicek model, we let the factors X1 (t) and X2(t) be given 
by the system of stochastic differential equations 

dX1 (t) = (a1 - bnX1 (t) - b12X2 (t)) dt + 171 dB1 (t) , 
dX1 (t) = (a2 - b21X1 (t) - b22X2 (t) ) dt + 172 dB2 (t) , 

( 10.2. 1) 
( 10.2.2) 

where the processes B1 (t) and B2(t) are Brownian motions under a risk
neutral measure lP with constant correlation v E ( - 1 ,  1) (i.e. , dB1 (t) dB2 (t) = 
v dt) .  The constants 171 and 172 are assumed to be strictly positive. We further 
assume that the matrix 

B = [ ��� ��� ] 
has strictly positive eigenvalues ..\1 and ..\2 . The positivity of these eigenvalues 
causes the factors X1 (t) and X2(t) , as well as the canonical factors Y1 (t) and 
Y2(t) defined below, to be mean-reverting. Finally, we assume the interest rate 
is an affine function of the factors, 

( 10.2.3) 

where fo , €1 , and €2 are constants. This is the most general two-factor Vasicek 
model. 

Canonical Form 

As presented above, the two-factor Vasicek model is "overparametrized" (i.e. , 
different choices of the parameters ai , bij , l7i , and €i can lead to the same 
distribution for the process R( t ) ) .  To eliminate this overparametrization, we 
reduce the model ( 10.2 . 1 )-(10.2.3) to the canonical two-factor Vasicek model 

dY1 (t) = -..\1 Y1 (t) dt + dW1 (t) ,  
dY2 (t) = -..\21Y1 (t) dt - ..\2Y2 (t) dt + dW2 (t) , 

R(t) = 8o + 81Y1 (t) + 82Y2 (t) , 

where W1 ( t) and W2 ( t) are independent Brownian motions. 

( 10 .2.4) 
( 10.2.5) 
( 10.2 .6) 
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The canonical two-factor Vasicek model has six parameters: 

A1 > 0, A2 > 0, A21 8o , 8� , 82 . 

The parameters are used to calibrate the model . In practice, one often permits 
some of these parameters to be time-varying but nonrandom in order to make 
the model fit the initial yield curve; see Exercise 10.3. 

To achieve this reduction, we first transform B to its Jordan canonical 
form by choosing a nonsingular matrix 

such that 

p = [Pu P12 ] 
P21 P22 

K = PBP-1 = [� �J . 
If A1 =f. A2 , then the columns of p-1 are eigenvectors of B and K = 0 (i.e. , K 
is diagonal) .  If A1 = A2 , then K might be zero, but it can also happen that 
K =f. 0, in which case we may choose P so that K = 1. Using the notation 

X(t) = [X1 (t) ] A =  [a1 ] E = [ u1 0 ] B(t) = [�1 (t) ] X2 (t) ' a2 ' 0 u2 ' B2 (t) ' 

we may rewrite ( 10.2 . 1 )  and ( 10.2.2) in vector notation: 

dX(t) = A  dt - BX(t) dt + E dB(t) . 

Multiplying both sides by P and defining X(t) = PX(t) , we obtain 

dX(t) = PA dt - KX(t) dt + PE dB(t) , 

which can be written componentwise as 

dX 1 (t) = (pua1 + P12a2) dt - A1X 1 (t) dt 
+puu1 dB1 (t) + P12D"2 dB2 (t) , 

dX2 (t) = (p21a1 + P22a2 ) dt - KX1 (t) dt - A2X2 (t) dt 
+P21 0"1 dB1 (t) + P220"2 dB2 (t) . 

( 10 .2 .7) 

( 10.2.8) 

Lemma 10.2. 1 .  Under our assumptions that u1 > 0, u2 > 0, - 1 < v < 1 ,  
and P is nonsingular, we have 

are strictly positive, and 

is in ( - 1 ,  1 ) .  

i = 1 , 2, ( 10.2.9) 

( 10 .2 . 10) 
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PROOF: Because v E ( - 1 ,  1 ) , the matrix 

has a matrix square root. Indeed, one such square root is 

.fN = [ a v'1 - a2 ] 
v'1 - a2 a ' 

where a =  sign(v)V! + !v'1 - v2 • Verification of this uses the equation 

2a�h - a2 = 2sign(v) - I! + !y'1 - v2 · · 1! - !y'1 - v2 V 2  2 V 2  2 
= 2sign(v) - I! - ! ( 1 - v2) V 4 4 
= 2sign(v) · � l v l = v. 

The matrices .JN, E, and ptr are nonsingular, which implies nonsingularity 
of the matrix 

.JN:r:ptr = [puu1a + P12u2v'1 - a2 P21U1a + P22u2v'1 - a2 ] . PnU1 v'1 - a2 + P12u2a P210"1 v'1 - a2 + P22u2a 

Let c1 be the first column of this matrix and c2 the second column. Because 
of the nonsingularity of .,fN E ptr , these vectors are linearly independent, and 
hence neither of them is the zero vector, 

Therefore, 
'Yi = l l ci l l 2 > 0, i = 1 , 2. 

For linearly independent vectors, the Cauchy-Schwarz inequality implies 

This is equivalent to -1 < p < 1 . 0 

We define 

The processes B1 (t) and B2 (t) are continuous martingales starting at zero. 
Furthermore, 

dB1 (t) dB1 (t) = dB2 (t) dB2 (t) = dt. 
According to Levy's Theorem, Theorem 4.6.4, B1 (t) and B2 (t) are Brownian 
motions. Furthermore, 
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dB1 (t) dB2(t) = p dt, 
where p is defined by ( 10.2 .10) . We may rewrite ( 10.2.7) and ( 10.2 .8) as 

dX 1 (t) = (pua1 + P12a2 ) dt - A1X 1 (t) dt + ..fYl dB1 (t) , ( 10.2. 1 1 ) 
dX 2 (t) = (P21a1 + P22a2) dt - ��:X 1 (t) dt - A2X2 (t) dt + Vfi. dB2 (t) . ( 10.2 . 12) 

Setting 

X\ (t) = � ( X1 (t) _ pua1 �P12a2 ) , 

_K2 (t) = _1_ (x2(t) 
+ ��:(pua1 + P12a2 ) _ P21a1 + P22a2 ) , � A1A2 A2 

we may further rewrite ( 10.2. 1 1 ) and ( 10.2 . 12) as 

dX1 (t) = -A1X1 (t) dt + dB1 (t) , 

dX2(t) = -11: fii X1 (t) dt - A2X2 (t) dt + dB2 (t) . v � 
As the last step, we define 

W1 (t) = B1 (t) , W2(t) = R [ - pB1 (t) + B2(t)] . 1 - p2 

( 10.2. 13) 

( 10.2 . 14) 

Both W1 (t) and W2(t) are continuous martingales, and it is easily verified 
that 

According to Levy's Theorem, Theorem 4.6.4 , W1 (t) and W2(t) are indepen
dent Brownian motions. Setting 

we have 
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We may thus rewrite ( 10.2. 13) and ( 10.2. 14) as 
dY1 (t) = -AIYI (t) dt + dW1 (t) , 
dY2 (t) = -A21Y1 (t) dt - A2Y2 (t) dt + dW2 (t) , 

where 
A21 = n (-PAl + PA2 + ,., Di) . 1 - p2 v -;:;; 

These are the canonical equations ( 10.2.4) and ( 10.2 .5) . 
To obtain ( 10.2.6) , we trace back through the changes of variables: 

In vector notation, 
Y (t) = r (PX (t) + V) , ( 10.2. 15) 

where 
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We solve ( 10.2 .15) for X(t) : 

Therefore, 

where 

X(t) = p-1 (r- 1Y(t) - V) . 

R(t) = Eo + h E2)X(t) 
= Eo + [E1 E2)P-1 r- 1Y(t) - [E1 f2)P-1V 
= 8o + [81 82]Y(t) , 

8o = fo - h f2)P- 1 v, [81 82) = [€1 f2)P- 1 r- 1 . 
We have obtained ( 10.2.6) . 

Bond Prices 

We derive the formula for zero-coupon bond prices in the canonical two-factor 
Vasicek model. According to the risk-neutral pricing formula, the price at time 
t of a zero-coupon bond paying 1 at a later time T is 

B(t, T) = E [ e- It R(u)du l F(t)] , 0 ::; t ::; T. 

Because R(t) given by ( 10.2.6) is a function of the factors Y1 (t) and Y2(t) , 
and the solution of the system of stochastic differential equations ( 10.2.4) and 
{10.2.5) is Markov, there must be some function f(t, YI . Y2) such that 

B(t, T) = f (t, Y1 (t) , Y2 (t) ) . ( 10.2. 16) 

The discount factor D(t) = e- f� R(u)du satisfies dD(t) -R(t)D(t) dt 
(see (5 .2 .18) ) .  Iterated conditioning implies that the discounted bond price 
D(t)B(t, T) is a martingale under JP. Therefore, the differential of D(t)B(t, T) 
has dt term zero. We compute this differential: 

d(D(t)B(t, T) ) 
= d ( D(t)f (t , Y1 (t) , Y2 (t) ) ) 
= -R(t)D(t)f (t ,  Y1 (t) , Y2 (t) ) dt + D(t) df (t , Y1 (t) , Y2 (t) ) 

= D [ - Rf dt + ft dt + /y1 dY1 + /y2 dY2 

1 1 ] +2Jy1y1 dY1 dY1 + /y1 y2 dY1 dY2 + 2/y2y2 dY2 dY2 . 

We use equations (10.2 .4)-( 10.2.6) to take the next step: 

( 10.2. 17) 
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d (D(t)B(t , T)) 

= D [ - (8o + 81Y1 + 82Y2)f + ft - >..1Ydy, - >..21Ydy2 

1 1 ] [ - - ] 
->..2Y2/y2 + 2/y1 y1 + 2/y2y2 dt + D /y, dW1 + /y2 dW2 . 

Setting the dt term equal to zero, we obtain the partial differential equation 

- (8o + 81Y1 + 82y2)J(t, Y1 > Y2) + ft(t, Y1 , Y2) 
->..1 Ydy, (t , Y1 , Y2) - A21YdY2 (t , Yb Y2 ) - A2Y2/y2 (t , Y1 , Y2) 

1 1 +2 /y, Y> (t , Yb Y2) + 2/y2y2 (t , Yb Y2 ) = 0 ( 10.2. 18) 

for all t E [0 , T) and all Y1 E IR, Y2 E lR. We have also the terminal condition 

( 10.2. 19) 

To solve this equation, we seek a solution of the affine-yield form 

( 10.2.20) 

for some functions C1 (r) , C2 (r) , and A(r) . Here we define T = T - t to be 
the relative maturity (i.e. , the time until maturity) . So long as the model 
parameters do not depend on t, zero-coupon bond prices will depend on t and 
T only through T. The terminal condition ( 10.2. 19) implies that 

C1 (0) = C2(0) = A(O) = 0. ( 10.2 .21) 

We compute derivatives, where ' denotes differentiation with respect to T .  We 
use the fact ftCi (r) = C:(r) · ftr = -C:(r) , i = 1 ,  2 , and the similar equation 
ftA(r) = -A' (r) to obtain 

ft = [y1 C� + y2C� + A']J, /y, = -Cd, fY2 = -C2/, 
� � = �h �n = � �h �n = �f 

Equation ( 10.2 . 18) becomes [(c� + >..1C1 + >..21C2 - 8I )yl + (C� + >..2C2 - 82)Y2 + (A' + �c; + �ci - 8o) J f = o. ( 10.2.22) 

Because (10.2 .22) must hold for all Y1 and Y2 , the term C� + >..C1 + >..21 C2 -
81 multiplying y1 must be zero. If it were not , and ( 10.2.22) held for one 
value of y1 , then a change in the value of y1 would cause the equation to be 
violated. Similarly, the term C2 + >..2C2 - 82 multiplying Y2 must be zero, and 
consequently the remaining term A' +  !Cr + !C� - 80 must also be zero. This 
gives us a system of three ordinary differential equations: 
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C� (r) = -AICI (r) - A2IC2 (r) + (h , 
C� (r) = -A2C2 (r) + 82 ,  

I 1 2 1 2 A (r) = - 2 CI (r) - 2C2 (r) + Oo . 

( 10.2 .23) 
( 10.2.24) 

( 10.2 .25) 
The solution of (10.2.24) satisfying the initial condition C2 (0) = 0 (see 
(10.2 .21 ) )  is 

( 10.2.26) 
We substitute this into ( 10.2.23) and solve using the initial condition CI (0) = 

0. In particular, ( 10.2.23) implies 

d� (e"• '"CI (r) ) = e"• '" (AICI (r) + C� (r)) 

= e"• '" ( - A2IC2 (r) + ol ) 

= e"' '" (- A�:2 (1 - e->-2'" )  + oi) . 

If AI -1- A2 ,  integration from 0 to T yields 

If AI = A2 ,  we obtain instead 

C ( ) _ 1 (J: A2Io2 ) (1 --'• '") + A2I o2 _,x, ,. I T - - UI - -- - e -- Te . 
AI AI AI 

Finally, ( 10.2.25) and the initial condition A(O) = 0 imply 

( 10.2 .28) 

( 10.2 .29) 

and this can be obtained in closed form by a lengthy but straightforward 
computation. 

Short Rate and Long Rate 

We fix a positive relative maturity 'f (say, thirty years) and call the yield 
at time t on the zero-coupon bond with relative maturity 'f (i .e. , the bond 
maturing at date t +'f) the long rate L(t) . Once we have a model for evolution 
of the short rate R(t) under the risk-neutral measure, then for each t ;::: 0 the 
price of the (t + 'f)-maturity zero-coupon bond is determined by the risk
neutral pricing formula, and hence the short-rate model alone determines the 
long rate. We cannot therefore write down an arbitrary stochastic differential 
equation for the long rate. Nonetheless, in any affine-yield model, the long 
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rate satisfies some stochastic differential equation, and we can work out this 
equation. 

Consider the canonical two-factor Vasicek model. As we have seen in the 
previous discussion, zero-coupon bond prices in this model are of the form 

B(t, T) = e-Y. (t}C, (T-t) -Y2 (t )C2 (T-t) -A(T-t) , 

where C1 (r) , C2 (r) , and A(r) are given by ( 10.2.26)-( 10.2.29) . Thus, the long 
rate at time t is 

which is an affine function of the canonical factors Y1 (t) and Y2 (t) at time 
t. Because the canonical factors do not have an economic interpretation, we 
may wish to use R(t) and L(t) as the model factors. We now show how to do 
this, obtaining a two-factor Vasicek model of the form (10 .2 . 1 ) ,  (10 .2 .2) ,  and 
( 10.2.3) , where X1 (t) is replaced by R(t) and X2 (t) is replaced by L(t) . 

We begin by writing the formulas ( 10.2.6) and ( 10.2.30) in vector notation: 

[ ��:n = [ ��\7) ��:(7) J [���n + [ ��<7) J . 
We wish to solve this system for (Y1 (t) , Y2 (t) ) .  

Lemma 10.2.2. The matrix 

D _ [ <h 82 ] 
- �c� (7) �c2(7) 

is nonsingular if and only if 02 =/= 0 and 

(10.2 .31) 

(10.2.32) 

PROOF: Consider the function f(x) = 1 - e-x - xe-x , for which f(O) = 0 
and f' (x) = xe-x > 0 for all x > 0. We have f(x) > 0 for all x > 0. Define 
h(x) = � ( 1 - e-x ) . Since h' (x) = -x-2 f(x) , which is strictly negative for all 
x > 0, h(x) is strictly decreasing on (0, oo) . 

To examine the nonsingularity of D, we consider first the case .X1 =/= A2 . In 
this case, (10.2 .26) and ( 10.2.27) imply 

1 det (D) = = [81C2(7) - o2CI (7)) T 

= ol� (1 - e-.A2'f} - ol� (1 - e-.A,'f} 
A2T AIT 

+ .X21 0� [(.X1 - .X2 ) ( l - e-.A,'f} - A1 e.A2'f + A1 e.A''f] 
(.XI - A2 ).XIA2T 
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Because .X1 :/- A2 and h i s  strictly decreasing, h(A2'f) :/- h(A2'f) .  The determi
nant of D is nonzero if and only if 82 :/- 0 and ( 10.2.32) holds. 

Next consider the case .X1 = A2 . In this case, ( 10.2 .26) and ( 10.2 .28) imply 

Because .X1 'f is positive, f(.X1 'f) is not zero. In this case, (10.2 .32) is equivalent 
to 82 :/- 0 and .X21 :/- 0. The determinant of D is nonzero if and only if ( 10.2 .32) 
holds (in which case 82 :/- 0 and A21 :/- 0) . 0 

Under the assumptions of Lemma 10.2.2, we can invert ( 10.2 .31) to obtain 

( 10.2 .33) 

We can compute the differential in ( 10.2 .31) using (10.2 .4) and ( 10.2.5) . This 
leads to a formula in which Y1 (t) and Y2(t) appear on the right-hand side, 
but we can then use ( 10.2 .33) to rewrite the right-hand side in terms of R(t) , 
L(t) . These steps result in the equation 
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This is the vector notation for a pair of equations of the form ( 10.2 . 1 )  and 
( 10.2 .2) for a two-factor Vasicek model for the short rate R(t) and the long 
rate L(t) . The parameters a1 and a2 appearing in ( 10 .2 . 1 ) and ( 10.2.2) are 
given by 

The matrix B is [ bn b12 ] [ 81 82 ] [ A1 0 ] [ 81 82 ] - 1 

b21 b22 = �c1 (7) �c2 (7) .x21 .x2 �c1 (7) �C2 (7) ' 

and the eigenvalues of B are .X1 > 0, A2 > 0. With 

the processes 

a1 = Jo� + o� , a2 = �Jcr(7) + c? (7) ,  

- 1 - -
B1 (t) = - (o1 W1 (t) + o2W2(t)) , 0"1 
- 1 - -
B2 (t) = --= (C1 (7)W1 (t) + C2(7)W2 (t)) , 0"2T 

are the Brownian motions appearing in ( 10 .2 . 1 ) and ( 10.2 .2) . Finally, equation 
(10.2.3) takes the form 

R(t) = 0 + 1 · R(t) + 0 · L(t) 

(i .e. , E:o = €2 = 0, €1 = 1 ) .  

Gaussian Factor Processes 

The canonical two-factor Vasicek model in vector notation is 

dY(t) = -AY(t) + dW(t) , ( 10.2 .34) 

where 
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Recall that A1 > 0, A2 > 0. There is a closed-form solution to this matrix dif
ferential equation. To derive this solution, we first form the matrix exponential 
eAt defined by 

In either case, 
!!_eAt = AeAt = eAt A 
dt ' 

where the derivative is defined componentwise, and 

-At ( At ) - 1 e = e , 

( 10.2.35) 

( 10.2 .36) 

( 10.2 .37) 

( 10.2 .38) 

where e-At is obtained by replacing A1 , A2 , and A21 in the formula for eAt by 
-A1 , -A2 , and -A2I . respectively. 

PROOF: We consider first the case A1 :f: A2 · We claim that in this case 

n [ (A1 t)n 0 l (At) = A tn .>.j-.>.2 (A t)n ' n = 0, 1 , . . . .  21 Al -.>.2 2 ' 
( 10 .2 .39) 

This equation holds for the base case n = 0: (At )0 = [ � � l We show by 
mathematical induction that the equation holds in general . Assume ( 10.2 .39) 
is true for some value of n. Then 

(At)n+l = (At ) (Att 
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which is ( 10.2 .39) with n replaced by n + 1 .  Having thus established ( 10.2 .39) 
for all values of n, we have 

This is ( 10.2.35) .  
We next consider the case At = A2 . We claim in this case that 

( 10.2 .40) 

This equation holds for the base case n = 0. We again use mathematical 
induction to establish the equation for all n. Assume ( 10.2 .40) holds for some 
value of n. Then 

(Att+1 = (At) (Att 

= [ �t
t
t
t .X� t ] [ n.X��r:t tn (.X� t)n ] [ (At t)n+l 0 J = (.X2t .Xf + nA2t .Xf) tn+l (.Xt t)n+l [ (At t)n+l 0 J = (n + 1 )A2t.Xftn+l (Att)n+t ' 

which is ( 10.2 .40) with n replaced by n + 1 .  Having thus established ( 10.2 .40) 
for all values of n, we have 

eAt = f 2_ (At)n = [ .x L;� ;h��1)� n "oo 
O
t (A )n ] . ( 10.2 .41 ) 

n=O n! 2t Lm=O ni t - t LJn=O ni t t 

But 

Substituting this into ( 10.2 .41 ) ,  we obtain ( 10.2 .36) . 
When At =1- A2 , we have 

d At [ At e>-t t 0 ] 
dt e = � (.X e>-t t - A  e>-2 t ) A e>-2 t >.1 ->.2 t 2 2 



and 

and 
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-At [ e-.>.t t 0 ] e = ' t -.>.1 t -.>.t t · -l\2t e e 
The verification of ( 10.2 .37) and (10.2 .38) can be done by straightforward 
matrix multiplications . 0 

We use ( 10.2 .34) to compute 

d (eAtY(t) ) = eAt (AY(t) dt + dY(t)) = eAt dW(t) . 

Integration from 0 to t yields 

We solve for 

eAtY(t) = Y(O) + 1t 
eAu dW(u) . 

Y(t) = e-AtY(O) + e-At 1t 
eAu dW(u) 

= e-AtY(O) + 1t 
e-A(t-u) dW(u) . 

H At =/= .X2 , equation ( 10.2 .42) may be written componentwise as 

( 10.2 .42) 

Yt (t) = e-.>.1 tYt (O) + 1t 
e-.>.t (t-u) dWt (u) , ( 10.2.43) 

Y2 (t) = .X 
.X2\ (e-.>.1 t - e-.>.2t )Yt (O) + e-.>.2tY2 (0) 
t - 2 

+ 
A21 t (e-.>.1 (t-u) _ e-.>.2 (t -u) ) dWt (u) 

.Xt - .X2 }0 
+ 1t 

e-.>.2 (t -u) dW2 (u) . ( 10.2 .44) 

H At = .X2 , then the componentwise form of ( 10.2 .42) is 

Yt (t) = e-.>.1 tYt (O) + 1t 
e-.>.t (t-u) dW1 (u) , ( 10 .2 .45) 

Y2 (t) = -A2t te-.>.1 tYt (O) + e-.>.1 tY2 (0) 

-.X21 lot 
(t - u)e-.>.t (t-u) dWt (u) + lot 

e-.>.t (t-u) dW2(u) . ( 10 .2 .46) 
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Being nonrandom quantities plus Ito integrals of nonrandom integrands, the 
processes Y1 (t) and Y2 (t) are Gaussian, and so R(t) = 8o + 81 Y1 (t) + 82Y2 (t) is 
normally distributed. The statistics of Y1 (t) and Y2(t) are provided in Exercise 
10. 1 .  

10.2.2 Two-Factor CIR Model 

In the two-factor Vasicek model , the canonical factors Y1 (t) and Y2(t) are 
jointly normally distributed. Because these factors are driven by independent 
Brownian motions, they are not perfectly correlated and hence, for all t > 0, 

( 10 .2 .47) 

is a normal random variable with positive variance except in the degenerate 
case 81 = 82 = 0. In particular, for each t > 0, there is a positive probability 
that R(t) is strictly negative. 

In the two-factor Cox-Ingersoll-Ross model {CIR) of this subsection, both 
factors are guaranteed to be nonnegative at all times almost surely. We again 
define the interest rate by ( 10.2 .47) but now assume that 

( 10.2 .48) 

We take the initial interest rate R(O) to be nonnegative, and then we have 
R( t) � 0 for all t � 0 almost surely. 

The evolution of the factor processes in the canonical two-factor CIR model 
is given by 

dY1 (t) = (ILl - AuY1 (t) - A12Y2 (t)) dt + JYITi}dW1 (t) , ( 10.2 .49) 
dY2(t) = (IL2 - A21Y1 (t) - A22Y2 (t)) dt + JYa{t)dW2(t) . ( 10 .2 .50) 

In addition to ( 10.2 .48) , we assume 

( 10.2 .51 ) 

These conditions guarantee that although the drift term ILl - Au Yi. (t) -
A12Y2 (t) can be negative, it is nonnegative whenever Yi. (t) = 0 and Y2(t) � 0. 
Similarly, the drift term 1L2 - A21Y1 (t) - A22Y2 (t) is nonnegative whenever 
Y2(t) = 0 and Y1 (t) � 0. Starting with Y1 (0) � 0 and Y2(0) � 0, we have 
Y1 (t) � 0 and Y2(t) � 0 for all t � 0 almost surely. 

The Brownian motions W1 (t) and W2(t) in ( 10.2 .49) and ( 10.2 .50) are 
assumed to be independent. We do not need this assumption to guarantee 
nonnegativity of Y1 (t) and Y2(t) but rather to obtain the affine-yield result 
below; see Remark 10.2.4. 
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Bond Prices 

We derive the formula for zero-coupon bond prices in the canonical two-factor 
CIR model. As in the two-factor Vasicek model , the price at time t of a zero
coupon bond maturing at a later time T must be of the form 

B(t, T) = f (t, Y1 (t) , Y2(t)) 

for some function f(t , y� , Y2 ) · The discounted bond price has differential 

d(D(t)B(t , T)) 

= d ( D(t)f (t , Y1 (t) , Y2 (t) ) ) 
= -R(t)D(t)f (t , Y1 (t) , Y2 (t)) dt + D(t) df (t , Y1 (t) , Y2 (t)) 

= D [ - Rf dt + ft dt + jy1 dY1 + fy2 dY2 
1 1 

] +2fy1 y1 dY1 dY1 + fy1 y2 dY1 dY2 + 2fy2y2 dY2 dY2 

= D [ - (8o + 81Y1 + 82Y2)f + ft + (J-LI - .AuY1 - .A12Y2 )fy1 

1 1 ] 
+(J-L2 - A2lyl - A22Y2)!Y2 + 2YdY1 Y1 + 2Y2fY2Y2 dt 

+D [ JK jy1 dW1 + JY; jy2 dW2] . 

Setting the dt term equal to zero, we obtain the partial differential equation 

-(8o + 81Y1 + 82y2 )f(t , y� , y2 ) + ft (t, y� , y2 ) 
+(J-LI - AuYI - A12Y2 )fy1 (t, Y1 , Y2 ) + (J-L2 - A21Y1 - A22Y2 )fy2 (t , y� , Y2 ) 

1 1 
+2ydY1 Y1 (t , Yl ' Y2 ) + 2Y21Y2Y2 (t, Yl ' Y2) = 0 ( 10.2 .52) 

for all t E [0, T) and all y1 � 0, Y2 � 0. To solve this equation, we seek a 
solution of the affine-yield form 

( 10.2.53) 

for some functions C1 (r) , C2 (r) , and A(r) , where T = T - t. The terminal 
condition 

f (T, Y1 (T) , Y2 (T)) = B(T, T) = 1 
implies 

C1 (0) = C2(0) = A(O) = 0. ( 10.2 .54) 
With ' denoting differentiation with respect to T, we have ftCi (r) = -C:(r) , 
i = 1 , 2, ftA(r) = -A' (r) , and ( 10.2 .52) becomes 
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[ ( o� + .Xu01 + .X2102 + �o� - 81 ) Y1 ( I 1 2 ) + 02 + .x1201 + .x2202 + 2o2 - 82 Y2 

+ (A' - J.L101 - J.L202 - 8o )] f = o. ( 10.2 .55) 

Because ( 10.2 .55) must hold for all Y1 ;:::: 0 and Y2 ;:::: 0, the term 0� + An 01 + 
..\21 02+ to� -81 multiplying y1 must be zero. Similarly, the term 0�+..\1201 + 
.X2202 + 20i -82 multiplying Y2 must be zero, and consequently the remaining 
term A' - J.L1 02 - J.L202 - 8o must also be zero. This gives us a system of three 
ordinary differential equations: 

0� (7) = -.XnOI (7) - .X2102 (7) - �0� (7) + 81 ,  

0� (7) = -.X1201 (7) - .X2202 (7) - �C�(7) + 82 , 
A' (7) = /-L101 (7) + 11202 (7) + 8o . 

( 10.2 .56) 

( 10.2 .57) 
( 10.2 .58) 

The solution to these equations satisfying the initial condition ( 10.2 .54) can 
be found numerically. Solving this system of ordinary differential equations 
numerically is simpler than solving the partial differential equation ( 10.2 .52) . 

Remark 10.2.4 .  We note that if the Brownian motions W1 (t) and W2(t) in 
( 10.2 .49) and ( 10.2 .50) were correlated with some correlation coefficient p :f:. 0, 
then the partial differential equation ( 10.2 .52) would have the additional term 
pv1i1fj2 jy1y2 on the left-hand side. This term would ruin the argument that led 
to the system of ordinary differential equations ( 10.2 .56)-(10.2 .58) . For this 
reason, we assume at the outset that these Brownian motions are independent. 

10.2.3 Mixed Model 

Both factors in the two-factor CIR model are always nonnegative. In the two
factor Vasicek model, both factors can become negative. In the two-factor 
mixed model, one of the factors is always nonnegative and the other can 
become negative. 

The canonical two-factor mixed model is 

dY1 (t) = (J.L - ..\1 Y1 (t) ) dt + JK{i) dW1 (t) , 
dY2 (t) = -.X2Y2 (t) dt + u21 JK{i) dW1 (t) 

+J a + ,BY1 (t) dW2(t) . 

( 10.2.59) 

( 10.2.60) 

We assume 11 ;:::: 0, ..\1 > 0, ..\2 > 0, a ;:::: 0, ,8 ;:::: 0, and u21 E JR. The Brownian 
motions W1 (t) and W2(t) are independent . We assume Y1 (0) ;:::: 0, and we 
have Y1 ( t) ;:::: 0 for all t ;:::: 0 almost surely. On the other hand, even if Y2 ( t) is 
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positive, Y2(t) can take negative values for t > 0. The interest rate is defined 
by 

R(t) = 8o + 81Y1 (t) + 82Y2 (t) . 
In this model, zero-coupon bond prices have the affine-yield form 

B(t, T) = e-Yl (t)Ct (T-t )-Y2 (t)C2 (T-t)-A(T-t) . 

( 10.2.61 )  

( 10.2.62) 

Just as in the two-factor Vasicek model and the two-factor CIR model, the 
functions C1 (T), C2 (T) ,  and A(T) must satisfy the terminal condition 

( 10.2.63) 

Exercise 10.2 derives the system of ordinary differential equations that deter
mine the functions C1 (T), C2 (T) ,  and A(T). 

10.3 Heath-Jarrow-Morton Model 

The Heath-Jarrow-Morton (HJM) model of this section evolves the whole 
yield curve forward in time. There are several possible ways to represent the 
yield curve, and the one chosen by the HJM model is in terms of the forward 
mtes that can be locked in at one time for borrowing at a later time. In 
this section, we first discuss forward rates, then write down the HJM model 
for their evolution, discuss how to guarantee that the resulting model does 
not admit arbitrage, and conclude with a procedure for calibrating the HJM 
model . 

10.3.1 Forward Rates 

Let us fix a time horizon T (say 50 years) .  All bonds in the following discussion 
will mature at or before time T. For 0 � t � T � T, as before, we denote 
by B(t, T) the price at time t of a zero-coupon bond maturing at time T and 
having face value 1 .  We assume this bond bears no risk of default . We assume 
further that, for every t and T satisfying 0 � t � T � T, the bond price 
B(t, T) is defined. If the interest rate is strictly positive between times t and 
T, then B(t, T) must be strictly less than one whenever t < T. This is the 
situation to keep in mind, although some implementations of the HJM model 
violate it . 

At time t, we can engage in forward investing at the later time T by setting 
up the following portfolio. Here 8 is a small positive number. 
• Take a short position of size 1 in T-maturity bonds. This generates income 

B(t, T) . 
• Take a long position of size 8

8
t,f�o) in (T + 8)-maturity bonds. This costs 

B(t, T) . 
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The net cost of setting up this portfolio at time t is zero. At the later time 
T, holding this portfolio requires that we pay 1 to cover the short position in 
the T-maturity bond. At the still later time T + 8, we receive 8���:�) from 
the long position in the T+8-maturity bond. In other words, we have invested 
1 at time T and received more than 1 at time T + 8. The yield that explains 
the surplus received at time T + 8 is 

1 1 B (t , T) 
8 °

g B (t , T + 8) 
log B(t, T + 8) - log B(t, T) 

8 ( 10.3. 1 )  

This is the continuously compounding rate of  interest that, applied to the 1 
invested at time T, would return 8���:�) at time T+8. 1f the bond B(t, T+8) 
with the longer time to maturity has the smaller price, as it would if the 
interest rate is strictly positive, then the quotient 8���:�) is strictly greater 
than 1 and the yield is strictly positive. 

Note that the yield in ( 10.3. 1 )  is .F(t)-measurable. Although it is an interest 
rate for investing at time T, it can be "locked in" at the earlier time t. In fact, 
if someone were to propose any other interest rate for investing (or borrowing) 
at time T that is set at the earlier time t, then by accepting this interest rate 
and setting up the portfolio described above or its opposite, one could create 
an arbitrage. 

We define the forward mte at time t for investing at time T to be 

f( T) 1. log B(t, T + 8) - log B(t, T) t, = - lm 
� o-l.O u 

[) 
= - [)T log B(t, T) . ( 10.3.2) 

This is the limit of the yield in ( 10.3. 1 )  as 8 -I- 0 and can thus be regarded as 
the instantaneous interest mte at time T that can be locked in at the earlier 
time t. 

If we know f(t, T) for all values of 0 ::; t ::; T ::; T, we can recover B(t, T) 
for all values of 0 ::; t ::; T ::;  T by the formula 

1T f(t , v) dv = - ( log B(t, T) - log B(t, t)) = - log B(t, T) , 

where we have used the fact that B(t, t) = 1 .  Therefore, 

( 10.3.3) 

From bond prices, we can determine forward rates from ( 10.3 .2) . From 
forward rates, we can determine bond prices from ( 10.3.3) . Therefore, at least 
theoretically, it does not appear to matter whether we build a model for 
forward rates or for bond prices. In fact , the no-arbitrage condition works out 
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to have a simple form when we model forward rates. From a practical point 
of view, forward rates are a more difficult object to determine from market 
data because the differentiation in ( 10.3.2) is sensitive to small changes in the 
bond prices . On the other hand, once we have forward rates, bond prices are 
easy to determine because the integration in ( 10.3.3) is not sensitive to small 
changes in the forward rates. 

The interest rate at time t is 

R(t) = f(t, t ) .  ( 10.3.4) 

This is the instantaneous rate we can lock in at time t for borrowing at time 
t . 

10.3.2 Dynamics of Forward Rates and Bond Prices 

Assume that /(0, T) , 0 � T � T, is known at time 0. We call this the initial 
forward rate curve. In the HJM model, the forward rate at later times t for 
investing at still later times T is given by 

f(t, T) = f(O, T) + 1t a(u, T) du + 1t a(u, T) dW(u) . ( 10.3.5) 

We may write this in differential form as 

df(t, T) = a(t, T) dt + a(t, T) dW(t) , 0 � t � T. ( 10.3.6) 
Here and elsewhere in this section, d indicates the differential with respect to 
the variable t; the variable T is being held constant in ( 10.3.6) . 

Here the process W(u) is a Brownian motion under the actual measure 
JP. In particular, o(t, T) is the drift of f(t, T) under the actual measure. The 
processes o(t, T) and a(t, T) may be random. For each fixed T, they are 
adapted processes in the t variable. To simplify the notation, we assume that 
the forward rate is driven by a single Brownian motion. The case when the 
forward rate is driven by multiple Brownian motions is addressed in Exercise 
10.9. 

From ( 10.3.6) , we can work out the dynamics of the bond prices given by 
( 10.3.3) . Note first that because - Jt f(t, v) dv has a t-variable in two places, 
its differential has two terms. Indeed, 

d (-[T f(t, v) dv) = f(t, t) dt - [T df(t, v) dv . 

The first term on the right-hand side is the result of taking the differential 
with respect to the lower limit of integration t. The fact that this is the lower 
limit produces a minus sign, which cancels the minus sign on the left-hand 
side. The other term is the result of taking the differential with respect to the 
t under the integral sign. Using ( 10 .3.4) and ( 10.3 .6) , we see that 
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d ( - 1T f(t, v) dv) = R(t) dt - [T [a(t, v) dt + a(t , v) dW(t)] dv . 

We next reverse the order of the integration (see Exercise 10.8) ,  writing 

1T a(t, v) dt dv = 1T a(t, v) dv dt = a* (t, T) dt , ( 10.3.7) 

[T a(t , v) dW(t) dv = 1T a(t, v) dv dW(t) = a* (t, T) dW(t) , ( 10.3.8) 

where 

at (t, T) = 1T a(t, v) dv, a* (t, T) = 1T a(t, v) dv. 
In conclusion, we have 

( 10.3.9) 

d (- [T f(t, v) dv) = R(t) dt - a* (t , T) dt - a* (t, T) dW(t) . ( 10.3. 10) 

Let g(x) = ex , so that g' (x) = ex and g" (x) = ex . According to ( 10.3.3) , 

B(t, T) = g  ( -1T f(t, v) dv) . 
The ltO-Doeblin formula implies 

dB(t, T) = g' ( - 1T f(t, v) dv) d ( - 1T f(t, v) dv) 
+�g" (-[ f(t, v) dv) [{ [ f(t, v) d•) ] ' 

= B(t, T) [R(t) dt - a* (t, T) dt - a* (t , T) dW(t)] 

+�B(t, T) (a* (t, T) ) 2 dt 

= B(t, T) [R(t) - a* (t, T) + � (a* (t, T) ) 2] dt 

-a* (t , T)B(t, T) dW(t) . ( 10.3. 1 1 )  

10.3.3 No-Arbitrage Condition 

The HJM model has a zero-coupon bond with maturity T for every T E [0, T] . 
We need to make sure there is no opportunity for arbitrage by trading in these 
bonds. The First Fundamental Theorem of Asset Pricing, Theorem 5.4.7, says 
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that , in order to guarantee this, we should seek a probability measure lP under 
which each discounted bond price 

D(t)B(t, T) = exp { - 1t R(u) du} B(t, T) , 0 :::; t :::; T, 

is a martingale. Because dD(t) = -R(t)D(t) dt, we have the differential 

d(D(t)B(t , T)) 
= -R(t)D(t)B(t, T) dt + D(t) dB(t, T) 
= D(t)B(t, T) [ ( -a* (t, T) + � (a* (t, T) )2) dt - a* (t, T) dW(t)] . ( 10.3. 12) 

We want to write the term in square brackets as 

-a* (t, T) [6l(t) dt + dW(t)] , 

and we can then us� Girsanov's Theorem, Theorem 5.2 .3, to change to a 
probability measure lP' under which 

W(t) = 1t 6l(u) du + W(t) ( 10.3. 13) 

is a Brownian motion. Using this Brownian motion, we may rewrite ( 10.3. 12) 
as 

d(D(t)B(t , T)) = -D(t)B(t, T)a* (t, T) dW(t) .  ( 10.3. 14) 

It would then follow that D(t)B(t , T) is a martingale under lP (i .e. , lP would 
be risk-neutral) . 

For the program above to work, we must solve the equation [ ( -a* (t, T) + � (a* (t , T) )2) dt - a* (t, T) dW(t)] 
= -a* (t, T) [6l(t) dt + dW(t)] 

for 6l(t) . In other words, we must find a process 6l(t) satisfying 

-a* (t, T) + � (a* (t , T)) 2 = -a* (t, T)6l(t) . ( 10.3 . 15) 

Actually, ( 10.3. 15) represents infinitely many equations, one for each maturity 
T E (0, TJ.  These are the market price of risk equations, and we have one such 
equation for each bond (maturity) . However, there is only one process 6l(t) . 
This process is the market price of risk, and we have as many such processes 
as there are sources of uncertainty. In this case, there is only one Brownian 
motion driving the model . 

To solve ( 10.3. 1 5) ,  we recall from (10.3.9) that 
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:Ta* (t, T) = o.(t, T) ,  :Ta* (t, T) = a(t, T) . 

Differentiating ( 10.3. 15) with respect to T, we obtain 

-a (t , T) + a* (t , T)a (t , T) = -a (t , T)8(t) 

or, equivalently, 
o. (t , T) = a (t , T) [a* (t, T) + 8(t)] . ( 10.3 . 16) 

Theorem 10.3.1 (Heath-Jarrow-Morton no-arbitrage condition) . A 
term-structure model for zero-coupon bond prices of all maturities in (0, T] 
and driven by a single Brownian motion does not admit arbitrage if there 
exists a process 8(t) such that {1 0. 3. 16} holds for all 0 ::;  t ::; T ::;  T. Here 
a( t, T) and a ( t, T) are the drift and diffusion, respectively, of the forward rate 
(i. e. , the processes satisfying {1 0.3. 6}}, a* (t , T) = It a (t , v) dv ,  and e(t) is 
the market price of risk. 

PROOF: It remains only to check that if 8(t) solves ( 10.3. 16) , then it also 
satisfies ( 10.3. 15 ) ,  for then we can use Girsanov's Theorem as described above 
to construct a risk-neutral measure. The existence of a risk-neutral measure 
guarantees the absence of arbitrage. 

Suppose 8(t) solves ( 10.3. 16) . We rewrite this equation, replacing T by v :  

o.(t, v) = a (t , v) [a* (t , v) + e(t)] 0 
Integrating with respect to v from v = t to v = T, we obtain 

But because o.* (t , t) = a* (t, t) = 0, this reduces to 

a* (t , T) = � (a* (t, T) ) 2 + a* (t, T)8(t) ,  

which is ( 10.3 . 15) .  

So long as a (t, T) i s  nonzero, we can solve ( 10.3. 16) for 8(t) : 

e( ) a(t, T) * ( ) t = a (t , T) - a  t, T , 0 ::; t ::; T. 

0 

( 10.3. 1 7) 

This shows that 8(t) is unique, and hence the risk-neutral measure is unique. 
In this case, the Second FUndamental Theorem of Asset Pricing, Theorem 
5.4.9, guarantees that the model is complete (i .e. , all interest rate derivatives 
can be hedged by trading in zero-coupon bonds) . 
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10.3.4 HJM Under Risk-Neutral Measure 

We began with the formula ( 10.3.5) for the evolution of the forward rate, and 
the driving process W(u) appearing in ( 10.3.5) is a Brownian motion under 
the actual measure IP. Assuming the model satisfies the HJM no-arbitrage 
condition ( 10.3. 16) , we may rewrite ( 10.3.5) as 

df(t, T) = a(t, T) dt + u(t, T) dW(t) 
= u(t, T)u* (t , T) dt + u(t, T) [e(t) + dW(t)] 
= u(t, T)u* (t , T) dt + u(t , T) dW(t) , 

where W(t) is given by ( 10.3 . 13) . To conclude that there is no arbitrage, 
we need the drift of the forward rate under the risk-neutral measure to be 
u(t , T)u* (t , T) . We saw in the proof of Theorem 10.3 . 1  that the no-arbitrage 
condition ( 10.3.16) implies ( 10.3. 15) , and using ( 10.3. 15) we may rewrite the 
differential of the discounted bond price ( 10.3 .12) as 

d (D(t)B(t , T)) = -u* (t, T)D(t)B(t , T) [6l(t) dt + dW(t)] 
= -u* (t, T)D(t)B(t, T) dW(t) . 

Because d D(t) 
= ��g dt, the differential of the undiscounted bond price is 

dB(t, T) = d ( D�t) · D(t)B(t , T)) 
R(t) * 1 -= D(t) D(t)B(t , T) dt - u (t, T) D(t) D(t)B(t , T) dW(t) 

= R(t)B(t , T) dt - u* (t, T)B(t, T) dW(t) . 

The following theorem summarizes this discussion. 

Theorem 10.3.2 (Term-structure evolution under risk-neutral mea
sure) . In a term-structure model satisfying the HJM no-arbitrage condition 
of Theorem 10. 3. 1 , the forward rates evolve according to the equation 

df(t, T) = u(t , T)u* (t , T) dt + u(t, T) dW(t) , ( 10.3. 18) 

and the zero-coupon bond prices evolve according to the equation 

dB(t, T) = R(t)B(t , T) dt - u* (t , T)B(t, T) dW(t) , ( 10.3. 19) 

where W(t) is a Brownian motion under a risk-neutral measure Jiil . Here 
u* (t) = Jt u(t , v) dv and R(t) = f(t , t ) is the interest rate. The discounted 
bond prices satisfy 

d (D(t)B(t, T) ) = -u* (t, T)D(t)B(t , T) dW(t) , ( 10 .3 .20) 
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where D(t) = e- f� R(u)du is the discount process. The solution to the stochas
tic differential equation ( 10. 3. 19) is 

B(t , T) 

= B(O, T) exp { lot 
R(u)du - lot 

u* (u, T) dW(u) - � lo
T 
(u* (u, T) )2 du} 

= B�(t�) exp {- lot 
u* (u, T) dW(u) - � lo

T 
(u* (u, T)) 2 du} . ( 10.3.21 ) 

10.3.5 Relation to Affine-Yield Models 

Every term-structure model driven by Brownian motion is an HJM model. 
In any such model, there are forward rates. The drift and diffusion of the 
forward rates must satisfy the conditions of Theorem 10.3. 1 in order for a risk
neutral measure to exist , which rules out arbitrage. Under these conditions, 
the formulas of Theorem 10.3.2 describe the evolution of the forward rates 
and bonds under the risk-neutral measure. 

We illustrate this with the one-factor Hull-White and Cox-Ingersoll-Ross 
(CIR) models of Examples 6.5. 1 and 6.5.2 . For both these models, the interest 
rate dynamics are of the form 

dR(t) = f3 (t, R(t) ) dt + 'Y (t, R(t) ) dW(t) , 

where W(t) is a Brownian motion under a risk-neutral probability measure 
Jiil. In the case of the Hull-White model, 

{J(t, r) = a(t) - b(t)r, 'Y(t, r) = u(t) , 
for some nonrandom positive functions a(t) , b(t) , and u(t) .  For the CIR model, 

{J(t, r) = a - br, 'Y(t, r) = u.Ji, ( 10.3.22) 

for some positive constants a, b, and u. The zero-coupon bond prices are of 
the form 

B(t, T) = e-R(t)C(t ,T) -A(t ,T) , ( 10.3.23) 

where C(t , T) and A(t, T) are nonrandom functions. In the case of the Hull
White model, C(t , T) and A(t, T) are given by (6 .5 .10) and (6.5 . 1 1 ) ,  which 
we repeat here: 

C(t, T) = i
T 

e- J," b(v)dv ds , 

A(t, T) = iT ( a(s)C(s, T) - �u2 (s)C2 (s , T)) ds . 
( 10.3.24) 

( 10.3 .25) 
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In the case of the CIR model, C(t, T) and A(t , T) are given by (6.5 .16) and 
(6.5 . 17) .  According to ( 10.3.2) , the forward rates are 

{) {) {) f(t, T) = - aT log B(t, T) = R(t) {)TC(t, T) + {)TA(t, T) . 

With C' (t, T) and A' (t, T) denoting derivatives with respect to t , we have the 
forward rate differential 

df(t, T) = !c(t, T) dR(t) + R(t) :rC' (t, T) dt + !A'(t, T) dt 

= [!c(t, T),B (t, R(t)) + R(t):TC' (t, T) + !A' (t, T)] dt 
{) -+ {)TC(t, T)'y(t, R(t) ) dW(t) . 

This is an HJM model with 
{) a(t, T) = aTC(t, T)'y (t, R(t) ) . ( 10.3.26) 

Since we are working under the risk-neutral measure, Theorem 10.3.2 implies 
that the drift term should be a(t, T)a* (t, T) = a(t, T) Jt a(t, v) dv. In other 
words, for these affine-yield models, the HJM no-arbitrage condition becomes 

:TC(t, T),B (t, R(t)) + R(t) !c' (t , T) + !A' (t, T) 

= (!c(t, T)) -r (t , R(t) ) 1T 
:vC(t, v)'y (t , R(t) ) dv 

= ( !c(t, T)) -y (t , R(t)) [C(t, T) - C(t, t)] 'Y (t, R(t)) 

= (!c(t, T)) C(t, T)'y2 (t , R(t) ) . ( 10.3.27) 

We verify (10.3.27) for the Vasicek model, which is the Hull-White model 
with constant a, b, and a, and we leave the verification for the Hull-White and 
CIR models as Exercise 10. 10. For the Vasicek model, (10.3.24) and (10.3.25) 
reduce to 

and hence 

C(t, T) = � ( 1 - e-b(T-t)) , 
A'(t, T) = -aC(t, T) + �a2C2 (t, T) , 

_!_C(t T) = e-b(T-t) {)T ' ' 

!.A' (t, T) = ( �
2 

_ a) e-b(T-t) _ :
2 e-2b(T-t) . 
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Therefore, 
a(t, T) = ae-b(T-t) , 

and 

a* (t, T) = l
T a(t , u) du = a l

T e-b(T-u) du = � ( 1 - e-b(T-t) ) . 

It follows that 

!c(t, T)/3 (t , R(t)) + R(t) :rC'(t , T) + !A'(t, T) 

= e-b(T-t) (a - bR(t) ) + R(t)be-b(T-t) + ( :
2 

- a) e-b(T-t) 
(}"2 _ -e-2b(t-t) 
b 

= :
2 
( e-b(T-t) _ e-2b(T-t)) 

= a(t, T)a* (t , T) , 
as expected. 

10.3.6 Implementation of HJM 

To implement an HJM model, we need to know a(t, T) for 0 � t � T � T. 
We can use historical data to estimate this because the same diffusion process 
a(t , T) appears in both the stochastic differential equation ( 10.3.6) driven by 
the Brownian motion W(t) under the actual probability measure lP' and in 
the stochastic differential equation ( 10.3. 18) driven by the Brownian motion 
W(t) under the risk-neutral measure JP. Once we have a(t, T) , we can compute 
a* (t , T) = Jt a(t, v) dv. This plus the initial forward curve f(O, T) , 0 � T � 
T, permits us to determine all the terms appearing in the formulas in Theorem 
10.3.2. In particular, we use the initial forward curve to compute 

R(t) = f(t, t) = f(O, t) + lo
t 
a(u, t)a* (u, t) du + lo

t 
a(u, t) dW(u) . ( 10.3.28) 

Since all expectations required for pricing interest rate derivatives are com
puted under JP, we need only the formulas in Theorem 10.3.2; the market 
price of risk 8(t) and the drift of the forward rate o:(t, T) in ( 10.3.6) are irrel
evant to derivative pricing. They are relevant, however, if we want to estimate 
nondiffusion terms from historical data (e.g. , the probability of credit class 
migration for defaultable bonds) or we want to compute a quantity such as 
Value-at-Risk that requires use of the actual measure. 

Assume for the moment that a(t , T) is of the form 

a(t , T) = a(T - t) min{M, f(t , T) } ( 10 .3 .29) 
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for some nonrandom function 0:(7) ,  7 � 0, and some positive constant M. In 
(10.3 .29) , we need to have the capped forward rate min{M, f(t, T) } on the 
right-hand side rather than the forward rate f(t , T) itself to prevent explosion 
of the forward rate. This is discussed in more detail in Subsection 10.4. 1 .  
One consequence of  this fact is that forward rates (recall we are working 
here with continuously compounding forward rates; see ( 10.3.2)) cannot be 
log-normal. This is a statement about forward rates, not about the HJM 
model. Section 10.4 discusses how to overcome this feature of continuously 
compounding forward rates by building a model for simple forward rates. 

We choose a(T - t) to match historical data. The forward rate evolves 
according to the continuous-time model 

df(t, T) = a(t, T) dt + a(T - t) min{ M, f(t, T) } dW(t) . 
Suppose we have observed this forward rate at times t1 < t2 < · · · < tJ < 0 
in the past, and the forward rate we observed at those times was for the 
relative maturities 71 < 72 < · · · < 7K (i .e. , we have observed f(ti , ti + 7k) for 
j = 1 ,  . . .  , J and k = 1 ,  . . .  , K) .  Suppose further that for some small positive 
8 we have also observed f(tj + 8, ti + 7k ) · We assume that 8 is sufficiently 
small that ti + 8 < ti+ l for j = 1 ,  . . .  , J - 1 and tJ + 8 ::; 0. According to our 
model, 

/(tj + 8, tj + 7k ) - f(tj , tj + 7k ) 
� 8a(tj , tj + 7k ) + a(7k ) min{M, f(tj , tj + 7k ) } (W(tj + 8) - W(tj ) ) . 

We identify a by defining 

D · - f(tj + 8, tj + 7k ) - f(tj , tj + 7k )  
J,k - v'8 min{M, /(tj , tj + 7k) }  

and observing that 

D v'Ja(tj , tj + 7k) _ ( ) W(tj + 8) - W(tj ) j.k � min{M, f (tj , tj + 7k ) } + a 7k vfJ · 

( 10.3 .30) 

The first term on the right-hand side is small relative to the second term 
because the first term contains the factor v'J. We define 

_ W(ti + 8) - W(ti )  Xi - vfJ , j = 1 ,  . . .  , J, ( 10.3 .31) 

the expression appearing in the second term, which is a standard normal 
random variable. We conclude that 

( 10.3 .32) 

Observe that not only are X1 , . . .  , XJ standard normal random variables 
but are also independent of one another. The approximation ( 10.3 .32) per
mits us to regard Dlk , D2k , . . .  , DJk as independent observations taken at 
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times t1 . t2 , . . .  tJ on forward rates, all with the same relative maturity Tk . We 
compute the empirical covariance 

The theoretical covariance, computed from the right-hand side of ( 10.3.32) , is 

lE [a(rkJa(rk2 )xJ] = a(rk1 )a(rk2 ) . 
Ideally, we would find a(ri ) , a(r2) ,  . . .  a(TK ) so that 

( 10.3.33) 

However, we have K2 equations and only K unknowns. (Actually, for differ
ent values of k1 and k2 , the equations Ck1 ,k2 = a(Tk1 )a(Tk2 ) and Ck2 ,k1 = 
a(  Tk2 )a( Tkl ) are the same. By eliminating these duplicates, one can reduce 
the system to !K(K + 1) equations, but this is still more than the number of 
unknowns if K � 2. ) 

To determine a best choice of a(rl ) , a(r2) ,  . . .  a(TK ) , we use principal com
ponents analysis. Set 

D = [��:� ��:: : : :  ��:� ] . 
DJ,l DJ,2 · · · DJ,K 

The J rows of D correspond to observation times, and the K columns corre
spond to relative maturities. Then 

[ g:: : g::: : : : g::: l 
CK,l CK,2 . . . CK,K 

C = 

is symmetric and positive semidefinite. Every symmetric, positive semidefinite 
matrix has a principal component decomposition 

C = .\1 e1 e�r + .\2e2e�r + · · · + AKeKe� , 

where .\1 � .\2 � · · · � AK � 0 are the eigenvalues of C and the column 
vectors et , e2 , . . .  eK are the orthogonal eigenvectors, all normalized to have 
length one. We want to write 
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However, this cannot be done exactly. The best approximation is 

To get a better approximation to C, we can introduce more Brownian 
motions into the equation driving the forward rates (see Exercise 10.9) . Each 
of these has its own a vector, and these can be chosen to be VJ;2 e2 , .fJ\3 eg , 
etc. 

So far we have used only historical data. In the final step of the calibration, 
we introduce a nonrandom function s(t) into the forward rate evolution under 
the risk-neutral measure, writing 

df(t, T) = u(t, T)u'* (t , T) dt + s(t)a(T - t) min{M, f(t , T) }  dW(t) . ( 10.3.34) 

This is our final model. We use the values of a(T- t) estimated from historical 
data under the assumption s(t) = 1 .  We then allow the possibility that s(t) is 
different from 1 .  We have u(t, T) = s(t)a(T - t) min{M, f(t, T) } . Therefore, 

u* (t, T) = 1T u(t, v) dv = s (t) 1T a(v - t) min{M, f(t , v) }  dv. ( 10.3.35) 

We substitute this function into (10.3 .34) and evolve the forward rate. Even 
with this last-minute introduction of s(t) into the model , the model is free 
of arbitrage when u* (t, T) in (10 .3.34) is defined by ( 10.3 .35) . Typically, one 
assumes that s(t) is piecewise constant, and the values of these constants are 
free parameters that can be used to get the model to agree with market prices . 
Recalibrations of the model affect s(t) only. 

10.4 Forward LIBOR Model 

In this section, we present the forward LIBOR model, which leads to the Black 
caplet formula. This requires us to build a model for LIBOR (London inter
bank offered rate) and use the forward measures introduced in Section 9.4. 
We begin by explaining why the continuously compounding forward rates of 
Section 10.3 are inadequate for the purposes of this section. 

10.4. 1 The Problem with Forward Rates 

We have seen in Theorem 10.3.2 that in an arbitrage-free term-structure 
model, forward rates must evolve according to ( 10.3. 18) , 

df(t, T) = u(t, T)u* (t , T) dt + u(t, T) dW(t) , (10.3. 18) 
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where W is a Brownian motion under a risk-neutral measure JPi. In order to 
adapt the Black-Scholes formula for equity options to fixed income markets , 
and thereby obtain the Black caplet formula (see Theorem 10.4 .2 below) , it 
would be desirable to build a model in which forward rates are log-normal 
under a risk-neutral measure. To do that , we should set a( t, T) = a f ( t, T) in 
( 10.3. 18) , where a is a positive constant. However, we would then have 

a* (T, t) = lT a(t, v) dv = a lT f(t , v) dv, 

and the dt term in ( 10.3. 18) would be 

a2 f(t , T) lT f(t , v) dv. ( 10.4. 1) 

Heath, Jarrow, and Morton [83) show that this drift term causes forward 
rates to explode. For T near t, the dt term ( 10.4. 1 )  is approximately equal 
to a2 (T - t)j2 (t , T) , and the square of the forward rate creates the problem. 
With the drift term ( 10.4. 1 ) ,  equation ( 10.3. 18) is similar to the deterministic 
ordinary differential equation 

( 10.4.2) 

with a positive initial condition /(0) . The solution to ( 10.4.2) is 

/(0) f(t) = 1 - a2 f(O)t ' 

as can easily be verified by computing 

The function f(t) explodes at time t = <T2 }(o) . In fact, when the drift function 
( 10.4. 1 )  is used in ( 10.3. 18) , then ( 10.3. 18) is worse than ( 10.4.2) because the 
randomness in ( 10.3. 18) causes some paths to explode immediately no matter 
what initial condition is given. This difficulty with continuously compounding 
forward rates causes us to introduce forward LIBOR. 

10.4.2 LIBOR and Forward LIBOR 

Let 0 � t � T and 8 > 0 be given. We recall the discussion in Subsection 10.3. 1  
of how at time t one can lock in an interest rate for investing over the interval 
[T, T+8] by taking a short position of size 1 in a T-maturity zero-coupon bond 
and a long position of size 8f/�:�) in (T + 8)-maturity zero-coupon bonds. 
This position can be created at zero cost at time t, it calls for "investment'' 
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of 1 at time T to cover the short position, and it "repays" 8ft��:�) at time 
T + 8. The continuously compounding interest rate that would explain this 
repayment on the investment of 1 over the time interval [T, T + 8] is given by 
( 10.3 . 1 ) .  In this section, we study the simple interest rate that would explain 
this repayment , and this interest rate L(t , T) is determined by the equation 

investment x ( 1 + duration of investment x interest rate ) = repayment , 

or in symbols: 
B(t, T) 1 + 8L(t , T) = B(t, T + 8) 

We solve this equation for L(t , T) : 

L( T) = B(t, T) - B(t, T + 8) t ,  8B(t, T + 8) . 

( 10.4.3) 

( 10.4.4) 

When 0 � t < T, we call L(t, T) forward LIBOR. When t = T, we call it spot 
LIBOR, or simply LIBOR, set at time T. The positive number 8 is called the 
tenor of the LIBOR, and it is usually either 0.25 years or 0.50 years. 

10.4.3 Pricing a Backset LIBOR Contract 

An interest rate swap is an agreement between two parties A and B that A 
will make fixed interest rate payments on some "notional amount" to B at 
regularly spaced dates and B will make variable interest rate payments on the 
same notional amount on these same dates . The variable rate is often backset 
LIBOR, defined on one payment date to be the LIBOR set on the previous 
payment date. The no-arbitrage price of a payment of backset LIBOR on a 
notional amount of 1 is given by the following theorem. 
Theorem 10.4. 1 (Price of backset LIBOR) . Let 0 � t � T and 8 > 0 
be given. The no-arbitrage price at time t of a contract that pays L(T, T) at 
time T + 8 is 

S(t) = { B(t, T + 8)L(t , T) ,  0 � t � T, 
B(t , T + 8)L(T, T) , T � t � T + 8. ( 10.4.5) 

PROOF: There are two cases to consider. In the first case, T � t � T + 8, 
LIBOR has been set at L(T, T) and is known at time t. The value at time t 
of a contract that pays 1 at time T + 8 is B(t, T + 8) , so the value at time t 
of a contract that pays L(T, T) at time T + 8 is B(t, T + 8)L(T, T) . 

In the second case, 0 � t � T, we note from ( 10.4.4) that 
1 B(t , T + 8)L(t , T) = J [B(t, T) - B(t, T + 8)] . 

We must show that the right-hand side is the value at time t of the backset 
LIBOR contract . To do this , suppose at time t we have � [B(t, T) -B(t , T+8)] , 
and we use this capital to set up a portfolio that is: 
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• long � bonds maturing at T; 
• short ! bonds maturing at T + o. 
At time T, we receive ! from the long position and use it to buy .SB(T�TH) 
bonds maturing at time T+ o, so that we now have a position of .SB(T�T+.S) - � 
in (T + o)-maturity bonds. At time T + o, this portfolio pays 

1 1 B(T, T) - B(T, T + o) 
oB(T, T + o) - 8 = oB(T, T + o) 

= L(T, T) . 

We conclude that the capital � [ B ( t, T) - B ( t, T + o) J we used at time t to set 
up the portfolio must be the value at time t of the payment L(T, T) at time 
T + o. o 

We have proved Theorem 10.4. 1 by a no-arbitrage argument . One can also 
obtain ( 10.4.5) from the risk-neutral pricing formula. For the case t = 0, this 
is Exercise 10.12 .  

10.4.4 Black Caplet Formula 

A common fixed income derivative security is an interest rate cap, a contract 
that pays the difference between a variable interest rate applied to a principal 
and a fixed interest rate (a cap) applied to the same principal whenever the 
variable interest rate exceeds the fixed rate. More specifically, let the tenor 
o, the principal (also called the notional amount) P, and the cap K be fixed 
positive numbers. An interest rate cap pays (oPL(oj, oj)-K) + at time o(j+ 1) 
for j = 0, . . .  , n. To determine the price at time zero of the cap, it suffices 
to price one of the payments, a so-called interest rate caplet, and then sum 
these prices over the payments. We show here how to do this and obtain the 
Black caplet formula. We also note that each of these payments is of the form 
oP(L(oj, oj) - K')+ , where K' = lf,.  Thus, it suffices to determine the time
zero price of the payment (L(T, T) - K)+ at time T + o for an arbitrary T 
and K > 0. 

Consider the contract that pays L(T, T) at time T + o whose price S(t) 
at earlier times is given by Theorem 10.4. 1 .  Suppose we use the zero-coupon 
bond B(t, T + o) as the numeraire. In terms of this numeraire, the price of 
the contract paying backset LIBOR is 

S(t) { L(t, T) , 0 � t � T, 
B(t, T + o) - L(T, T) ,  T � T � T + o. ( 10.4.6) 

Recalling Definition 5.6 .1 and Theorem 5.6.2 , at least for 0 � t � T, we see 
that forward LIBOR L(t, T) is the (T+o)-forward price of the contract paying 
backset LIBOR L(T, T) at time T + o. 

If we build a term-structure model driven by a single Brownian motion un
der the actual probability measure JP> and satisfying the Heath-Jarrow-Morton 
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no-arbitrage condition of Theorem 10.3. 1 , then there is a Brownian motion 
W(t) under a risk-neutral probability measure lP such that forward rates are 
given by ( 10.3 . 18) and bond prices by (10 .3 .19) . Theorem 9.2 .2 implies that 
the risk-neutral measure corresponding to numeraire B(t, T + 8) is given by 

and 

jp;T+O (A) = B(O, � + 8) L D(T + 8) dJii> for all A E F (10.4.7) 

( 10.4.8) 

is a Brownian motion under jp;T+.S .  We call jp;TH the (T + 8)-forward measure. 
Theorem 9.2.2 implies that B(;,¥�.s) is a martingale under jpT+cS .  (See 

the discussion in Subsections 9.4. 1 and 9.4.2.) According to the Martingale 
Representation Theorem (see Corollary 5.3.2) , there must exist some process 
-y(t, T) , a process in t E [0, T] for each fixed T, such that 

dL(t, T) = -y(t, T)L(t, T) dWT+.S (t) , 0 � t � T. (10.4.9) 

We relate this process to the zero-coupon bond volatilities in Subsection 
10.4.5. The point of ( 10.4.9) is that there is no dt term, which was the term 
causing the problem with forward rates in Subsection 10.4. 1 .  The dt term 
has been removed by changing to the (T + 8)-forward measure, under which 
L(t, T) is a martingale. 

The forward LIBOR model is constructed so that -y(t, T) , defined for 0 � 
t � T � T, is nonrandom. When -y(t, T) is nonrandom, forward LIBOR 
L(t, T) will be log-normal under the forward measure jp;T+.S .  This leads to the 
following pricing result . 

Theorem 10.4.2 (Black caplet formula) .  Consider a caplet that pays 
( L(T, T) - K) + at time T+ 8, where K is some nonnegative constant. Assume 
forward LIBOR is given by (10. 4 . 9) and -y(t, T) is nonrandom. Then the price 
of the caplet at time zero is 

where 

B(O, T + 8) [L(O, T)N(d+ ) - K N(d_ )] , 

1 [ L(O, T) 1 1T 2 l d± = log K ± 2" 'Y ( t, T) dt . V f0T -y2 (t , T) dt 0 

( 10.4. 10) 

( 10.4. 1 1 )  

PROOF: According to  the risk-neutral pricing formula, the price o f  the caplet 
at time zero is the discounted risk-neutral (under P) expected value of the 
payoff, which is 
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E [n(T + 8) (L(T, T) - K) +] - [ D(T + 8) ( ) +] = B(O, T + 8)1E B(O, T + 8) L(T, T) - K 

= B(O, T + 8)iT+.S (L(T, T) - K) + . ( 10.4. 12) 

The solution to the stochastic differential equation ( 10.4.9) is 

L(T, T) = L(O, T) exp { 1T -y(t, T) dWT+6 (t) - � 1t -y2(t, T) dt} . 

Let us define ;:y(T) = J � I: -y2 (t, T) dt. According to Example 4.7.3, the Ito 
integral IoT -y(t, T) dWT+6 (t) is a normal random variable under pT+cS with 
mean zero and variance ;:y2 (T)T; we may thus write it as -;:y(T)VT X, where 
X = -'Y(T�vT I: -y(t, T) dWT+6 (t) is a standard normal random variable 
under pT+cS .  In this notation, 

L(T, T) = L(O, T)e-'Y(T)vT X- !'Y2 (T)T , 
and 

jET+6 (L(T, T) - K) + = jET+6 [ ( L(O, T)e-'f(T)vT X- !'Y2 (T)T - K) +] . 

This is the same computation as in (5.2.35) , which led to (5.2.36) . Therefore, 

jET+6 (L(T, T) - K)+ = BS(T, L(O, T) ; K, O, ;:y(T) ) 
= L(O, T)N(d+ ) - KN(d_ ) ,  

and the risk-neutral price of the caplet (10.4. 12) is (10.4. 10) . 0 

10.4.5 Forward LIBOR and Zero-Coupon Bond Volatilities 

Recall that forward LIBOR is determined by the equation (10.4.3) , which we 
can rewrite as 

1 B(t, T) L(t, T) + "J = 8B(t, T + 8) " 
We work out the evolution of L( t, T) under the forward measure pT+cS . Ac
cording to Theorem 10.3.2, 

D(t)B(t, T) 

= B(O, T) exp { - 1t a* (u, T) dW (u) - � 1t (a* (u, T) )2 du} , 

D(t)B(t, T + 8) 

= B(O, T + 8) exp { - lot a* (u, T + 8) dW(u) - � lot (a* (u, T + 8) )2 du} . 
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This implies 
1 L(t, T) + 8 

B(t, T) 
8B(t, T + 8) 

= 8B����T1 8) exp { 1t [a* (u, T + 8) - a* (u, T)] dW(u) 

+� 1t [(a* (u, T + 8)) 2 - (a* (u, T) )2] du} . 

The lt6-Doeblin formula implies 

dL(t, T) 

= ( L(t, T) + �) { [a* (t , T + 8) - a* (t, T)] dW(t) 

+� [(a* (t , T + 8))2 - (a* (t, T))2] dt 

+� [a* (t , T + 8) - a* (t, T)] 2 dW(t) dW(t) } 
= ( L(t, T) + �) { [a* (t, T + 8) - a* (t , T)] dW(t) 

+� [(a* (t , T + 8) )2 - (a* (t, T) )2 + (a* (t, T + 8) )2 

-2a* (t , T + 8)a* (t, T) + (a* (t , T))2] dt} 
= ( L(t, T) + �) { [a* (t , T + 8) - a* (t, T)] dW(t) 

+ [(a* (t , T + 8))2 - a* (t , T + 8)a* (t , T)] dt} 

= (L(t, T) + �) [a* (t , T + 8) - a* (t , T)] [a* (t , T + 8)dt + dW(t)] . 

From (10.4.8) , we have 

dWT+o (t) = a* (t , T + 8) dt + dW(t) . ( 10.4. 13) 
Therefore, 

1 -T o dL(t, T) = 8 ( 1 + 8L(t, T)) [a* (t, T + 8) - a* (t , T)] dW + (t) . ( 10.4. 14) 

Comparing this with ( 10.4.9) ,  we conclude that the forward LIBOR volatil
ity 7(t, T) of ( 10.4.9) and the (T + 8)- and T-maturity zero-coupon bond 
volatilities a* ( t, T + 8) and a* ( t, T) are related by the formula 
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10.4.6 A Forward LIBOR Term-Structure Model 

( 10.4. 15) 

The Black caplet formula of Theorem 10.4.2 is used to calibrate the forward 
LIBOR model. However, this calibration does not determine all the param
eters needed to have a full term-structure model. In this section, we discuss 
the calibration and display some of the choices left open by it . We begin by 
collecting the equations appearing earlier in this section that we need for this 
subsection: 

B(t, T) 1 + 8L(t, T) = B(t, T + 8) , 0 :5 t :5 T :5 T - 8, ( 10.4.3) 

jiiiT+6 (A) = B(O, � + 8) L D(T + 8) oi for all A E :F, 0 :::; T :::; T - 8, 
( 10.4.7) 

dWTH (t) = a* (t , T + 8) dt + dW(t) , 0 :::; t :::; T :::; T - 8, (10.4.8) 
dL(t, T) = -y(t, T)L(t, T) dWTH(t) , 0 :5 t :5 T :5 T - 8, ( 10.4.9) 

-y(t, T) = 1 ;:t.(t
;;) [a* (t, T+8) -a* (t, T)] , 0 :5 t :::; T :::; T-8. (10.4. 15) 

Suppose now, at time zero, that market data allow us to determine caplet 
prices for maturity dates Ti = j8 for j = 1 ,  . . .  , n. We can then imply the 
volatilities ;;y(Ti ) ,  j = 1 ,  . . .  , n, appearing in the proof of Theorem 10.4.2. We 
wish to build a term structure model consistent with these data. We begin by 
setting T in the equations above equal to (n + 1)8. 
• We choose nonrandom nonnegative functions 

-y(t, Ti ) ,  0 :5 t :5 Ti , j = 1 ,  . . .  , n, 

so that J .f.; f0
T; -y2 ( t, Ti ) dt = ;;y(Ti ) .  

For example, we could take -y(t, Tj ) = ;;y(Tj ) for 0 :5 t :::; Ti .  
With these volatility functions -y(t, Tj ) ,  we can evolve forward LIBORs 

by equation ( 10.4.9) ,  at least for T = Ti , j = 1 ,  . . .  , n, and the forward 
LIBORs we obtain will agree with the market cap prices . However, (10.4.9) 
with T = Ti gives us a formula for forward LIBOR L(t, Tj ) in terms of the 
forward Brownian motion WTJ+1 ( t ) ,  and these are different for different values 
of j .  Before we use ( 10.4.9) to evolve forward LIBORs, we must determine 
the relationship among these different equations. 
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Construction of Forward LIBOR Processes 

Observe from (10.4.8) that 

Similarly, 

dWTi (t) = a* (t, Ti ) dt + dW(t) , 0 � t � Ti . 

Subtracting these equations, we obtain 

dWTi (t) = [a* (t , Ti ) - a* (t, Tj+1 )) dt + dWTH1 (t) 
= -

O"f(t , Tj )L(t , Tj ) dt + dWTHl (t) 0 < t < T· 1 + 8L(t, Tj ) ' - - 1 '  (10.4. 16) 

where we have used ( 10.4_. 15) for the second equality. Setting j = 
n in 

(10.4. 16) , we have 

dwTn (t) = _ O"((t, Tn)L(t , Tn) dt + dWTn+l (t) 0 < t < T, . (10 4 17) 1 + 8L(t, Tn) ' - - n . .  

Setting j = 
n - 1 in ( 10.4.16) and using ( 10.4. 17) ,  we obtain 

Repeating this process, we conclude that 

dWTi+1 (t) = - t O"f(t , Ti )L(t, Ti ) dt + dWTn+l (t) 0 � t � Tj+l · 
i=i+l 1 + 8L(t, Ti ) ' 

(10.4. 18) 
Equation (10.4. 18) holds for j = 0, . . . , n, provided we interpret E�n+l to 
be zero. 

We return to (10.4.9) , using (10.4 .18) to write 

dL(t T· )  = (t T· )L(t T· ) [- � O"f(t , Ti )L(t , Ti )  dt + dWTn+l (t)l ' 1 "' ' 1 ' 1 L..J 1 + 8L(t 1!· ) ' 
i=j+ l  ' ' 

0 � t � Tj , j = 1 ,  . . .  , n.  ( 10.4. 19) 
Now we have a single Brownian motion driving all n equations. Thus, to 
construct the forward LIBOR model, we choose a Brownian motion, which 
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we call WTn+ t  (t) , 0 � t � Tn+I . under a probability measure we call jjiiTn+ t . 
That is , we start with a probability space (il, .F, JiiiTn+ t ) on which is defined 
a Brownian motion WTn+ t (t) , 0 � t � Tn+1 · We assume the initial forward 
LIBORs L(O, Tj ) ,  j = 1 ,  . . .  , n + 1 ,  are known from market data. With these 
initial conditions, ( 10.4. 19) generates the forward LIBOR processes L(t , Tj ) ,  
0 � t � Tj , generating first L(t , Tn ) , which has no drift in ( 10.4. 19) , then using 
L(t, Tn ) in the differential equation for L(t, Tn- 1 ) to generate that process, 
then using L(t, Tn ) and L(t , Tn-d in the differential equation for L(t, Tn-2 ) to 
generate that process , and so on. Implicit in this computation is a dependence 
among these different forward LIBOR processes . 

Construction of TrMaturity Discounted Bond Prices 

We construct the volatility u* (t ,  Tj ) for the zero-coupon bond maturing at 
Tj , j = 1 ,  . . .  , n + 1 .  The forward LIBOR model has a tenor 8 > 0, and 
while it puts constraints on the cumulative effect of processes between set 
points Tj , it does not provide fine detail about what happens between set 
points. In particular, we are free to choose the bond volatilities u* (t, Tj) for 
Tj- 1 � t < Tj . The only constraint is that 

( 10.4.20) 

This constraint is present because the bond price B(t, Tj ) converges to 1 as 
t t Ti , and so the volatility must vanish. This is also apparent in the second 
formula in ( 10.3.9) . 
• For each j = 1 , . . .  , n + 1 ,  choose u* (t ,  Tj ) for Tj- 1 � t < Tj so that 

( 10.4.20) is satisfied. 
We show that this determines u (t ,  Tj) for all values of t E [0 , Tj ) · (Again, we 
know from the outset that u(Tj ,  Tj ) = 0; that does not need to be chosen or 
determined. )  

First o f  all , the initial choice o f  u* (t ,  T1 ) determines this function for all 
relevant values of t, namely, for 0 � t < T1 • From (10.4. 15) , we have 

* ( 
T- ) _ * ( T )  8"!(t , TI )L(t , TI ) u t, 2 - u t , 1 + 1 + 8L(t, T1 ) ' 

and since u* ( t, T1 ) has been chosen for 0 � t < T1 , the function u ( t , T2) is 
determined by this equation for 0 � t < T1 . For T1 � t < T2 , u (t, T2) has 
already been chosen. Therefore, u* (t, T2) is determined for 0 � t < T2 . From 
( 10.4. 15 ) ,  we also have 

* ( T ) - * ( 
T- ) 8"1(t, T2 )L(t , T2 ) u t , 3 - u t , 2 + 1 + 8L(t , T2 ) ' 

and since u* (t , T2) has been determined for 0 � t < T2 , the function u (t , T3 ) 
is determined by this equation for 0 � t < T2 . For T2 � t < T3 , u(t , T3 ) 
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has already been chosen. Therefore, a* (t, T3 ) is determined for 0 � t < T3 • 
Continuing in this way, we determine a( t, Tj ) for all j = 1 ,  . . .  , n + 1 and 
0 � t < Tj . 

Using the bond volatilities a* (t, T) and (10.4.8) , we may write the zero
coupon bond price formula ( 10.3. 19) of Theorem 10.3.2 as 

dB(t, Tj ) = R(t)B(t , Tj ) dt - a* (t, Tj )B(t , Tj ) dW(t) 
= R(t)B(t , Tj ) dt + a* (t , Tj )a* (t , Tn+ I )B(t, Tj ) dt 

-a* (t, Tj )B(t, Tj ) dWTn+ l (t) . 

However, we have not yet determined an interest rate process R(t) , and so we 
prefer to write this equation in discounted form. For j = 1 ,  . . .  , n + 1 ,  

d (D(t)B(t , Tj )) = a* (t, Tj )a* (t, Tn+ 1 )D(t)B(t, Tj ) dt 
-T -a* (t, Tj )D(t)B(t , Tj ) dW n+� (t) , 0 � t � Tj . (10.4.21 ) 

The initial condition can be obtained from ( 10.4.3) : 
j- 1 j- 1 

) II B(O, Ti+d II ( ) - 1 D(O)B(O, Tj = B(O, Tj ) = 
i=O B(O, Ti ) 

= 
i=O 

1 + c5L(O, Ti ) . ( 10.4.22) 

This permits us to generate the discounted bond prices D(t)B(t , Tj ) ,  j 
1 ,  . . .  , n + 1 .  Indeed, the solution to ( 10.4.21 ) is 

D(t)B(t , Tj ) = B(O, Tj ) exp {- lot a* (u, Tj ) dWTn+l (u) 

- lot [� (a* (u, Tj ) ) 2 - a* (u, Tj )a* (u, Tn+ l )] du} . ( 10.4.23) 

Remark 10.4 .3. Equation (10.4.23) does not determine the discount process 
D(t) and the bond price B(t, Tj ) separately, except when t = Tj for some j .  
In the case when t = Tj , we have B(Tj , Tj ) = 1 ,  so 

D(Tj ) = D(Tj )B(Tj , Tj ) 

= B(O, Tj ) exp { - 1T3 a* (u, Tj ) dWTn+1 (u) 

- 1T3 [� (a* (u, Tj ) ) 2 - a* (u, Tj )a* ( u, Tn+ 1 )] du} . 

( 10.4 .24) 

In the special case when j = n + 1 ,  we obtain 
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Risk-Neutral Measure 

The risk-neutral measure P is related to the forward measure jpT,.+l by 
(10.4.7) , 

or, equivalently, 

pTn+t (A) = { D(Tn+l ) dP for all A E F, } A B(O, Tn+d 

P(A) = { B(O, Tn+l ) dlPTn+t for all A E F. }A D(Tn+d ( 10.4.26) 

Because we have begun with the measure pTn+l rather than P, we use (10.4.26) 
to define P. According to ( 10.4.25) , 

B���::)) = exp{ 1T"+1a* (u, Tn+l ) dWTn+t (u) - � 1Tn+1a* (u, Tn+l ) du } • 
( 10.4.27) 

and so the terms appearing on the right-hand side of ( 10.4.26) are defined. 
The following theorem justifies calling P the risk-neutral measure. 

Theorem 10.4.4. Under P given by {10.4 . 26}, the discounted zero-coupon 
bond prices given by {10.4 .21} and {10.4 .22}, or equivalently by {10.4 .23}, are 
martingales. 
PROOF: With 

W(t) = WT"+1 (t) - 1t a* (u, Tn+l ) du, 0 :::; t :::; Tn+l • 

(10.4.21) may be written as 

d(D(t)B(t, Tj ) ) = -a* (t, Tj )D(t)B(t , Tj ) dW(t) . (10.4.28) 

It suffices to show that W(t) is a Brownian motion under P defined by 
( 10.4.26) . According to Girsanov's Theorem, Theorem 5.2 .3 , with 8(u) = 
-a* (u, Tn+l ) ,  since WT"+1 (t) is a Brownian motion under jpT,.+l ,  then W(t) 
is a Brownian motion under a measure iP defined by 

P(A) = i Z(Tn+l ) dlPTn+ l for all A E F, 
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where 

From ( 10.4.27) , we see that Z(Tn+I ) = 8rir£:�il , so fiii = JPi. 0 

Remark 1 0.4 .  5. In order to complete the determination of a full term-structure 
model with bond prices for all maturities T, a discount process, and for
ward rates, it is necessary to choose -y(t, T) for 0 :::; t :::; T and T E 
(0, Tn+l ) \ {T1 , • • .  , Tn} and to also make some choices in order to deter
mine bond volatility a* (t, T) for 0 :::; t :::; T and T E (0, Tn+l ) \ {TI > . . .  , Tn} · 
This can be done, and thus the forward LIBOR model is consistent with a 
full term-structure model. However, the model obtained by exercising these 
choices arbitrarily is not a reliable vehicle for pricing instruments that depend 
on these choices. 

10.5 Summary 

We have presented three types of term-structure models: finite-factor Markov 
models for the short rate, the Heath-Jarrow-Morton model, and the forward 
LIBOR model. 

There are many finite-factor short-rate models . For all of them, one writes 
down a stochastic differential equation or system of stochastic differential 
equations for the "factors" ,  and then provides a formula for the interest rate 
as a function of these factors. One then uses the risk-neutral pricing formula 
to obtain prices of bonds and fixed income derivatives. In particular, these 
models begin under the risk-neutral measure, for otherwise there is no way to 
infer prices of assets from the factor processes and the interest rate. 

Affine-yield models belong to the class of finite-factor short-rate models, 
and we have presented the two-factor affine-yield models. In these models, the 
interest rate is given by an equation of the form 

( 10.2.6) 

where 80 , 81 > and 82 are either constants (as in the text) or nonrandom func
tions of time (as in Exercise 10.3) ,  and Y1 (t) and Y2 (t) are the factor pro
cesses. When regarded as a two-dimensional process, (Y1 (t) , Y2 (t) ) is Markov, 
and hence bond prices and the prices of interest rate derivatives are func
tions of these processes. These functions can be determined by solving partial 
differential equations with boundary conditions depending on the particular 
instrument being priced. For the boundary condition associated with zero
coupon bonds, the partial differential equations reduce to a system of ordinary 
differential equations, which permits rapid calibration of the models. 
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For the two-factor affine-yield models, the price at time t of a zero-coupon 
bond maturing at a later time T and paying 1 upon maturity is of the form 

B(t, T) = e
- Y, (t)C, (t ,T) -Y2 (t )C2 (t ,T) -A(t ,T) . ( 10.5. 1 )  

The nonrandom functions CI (t ,  T) ,  C2 (t, T) , and A(t , T) are given by a system 
of ordinary differential equations in the t variable and the boundary condition 

CI (T, T) = C2 (T, T) = A(T, T) = 0. 

When the model coefficients, both Oo , oi , and 82 in ( 10.2.6) and the coefficients 
in the differential equations satisfied by the factor processes, are constant, the 
functions CI (t, T) , C2(t, T) ,  and A(t , T) depend on t and T only through their 
difference T = T - t . 

The affine-yield models are calibrated by choosing the coefficients in 
( 10.2.6) and/or in the stochastic differential equations for the factor processes. 
To introduce more variables for the calibration, it is customary to take the 
coefficients to be nonrandom, often piecewise constant , functions of time. It 
is helpful before beginning the calibration to make sure that the models are 
written in their most parsimonious form so that one cannot obtain the same 
model statistics from two different sets of parameter choices. The canonical 
forms presented here are "most parsimonious" in this sense. 

There are three canonical two-factor affine-yield models, which we call the 
two-factor Vasicek model, the two-factor Cox-Ingersoll-Ross model, and the 
two-factor mixed model. In the first of these, both factors can become negative. 
In the second, both factors are guaranteed to be nonnegative. In the third, one 
factor is guaranteed to be nonnegative and the other can become ne�tive. 
All three of these models are driven by independent Brownian motions WI (t) , 
W2 (t) under a risk-neutral measure JPl. 

The canonical two-factor Vasicek model is 

dY1 (t) = -AI YI (t) dt + dW1 (t) , 
dY2 (t) = -A21Y1 (t) dt - A2Y2 (t) dt + dWI (t) , 

( 10.2 .4) 
( 10.2.5) 

where AI > 0 and A2 > 0. These factors are Gaussian processes, and their 
statistics and the statistics of the resulting interest rate R(t) can be deter
mined (Exercise 10.2) . The functions C1 (T - t) , C2 (T - t) , and A(T - t) 
in ( 10.5 . 1 )  are determined by the system of ordinary differential equations 
( 10.2.23)-(10.2 .25) , and the solution to this system is given by ( 10.2 .26)
( 10.2.29) . The canonical two-factor Cox-Ingersoll-Ross model is 

dY1 (t) = (JLI - AnYI (t) - AI2Y2 (t) ) dt + JK(t) dW1 (t) , 
dY2 (t) = (JL2 - A2IYI (t) - A22Y2 (t) ) dt + JK{t)dW2(t) , 

( 10.2 .49) 
( 10.2 .50) 

where JLI 2: 0, JL2 2: 0, Au > 0, A22 > 0, AI2 :::; 0, and A2 1 :::; 0. The system 
of ordinary differential equations ( 10.2 .56)-( 10.2 .58) determines the functions 
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C1 (T - t) , C2 (T - t) , and A (T- t) in ( 10.5. 1 ) .  The canonical two-factor mixed 
model is 

dY1 (t) = (JL - A1Y1 (t) ) dt + JYITt} dW1 (t) , ( 10.2.59) 
dY2 (t) = -A2Y2 (t) dt + a21 JYITt} dW1 (t) + Ja + ,BY1 (t) dW2 (t) , ( 10.2 .60) 

where JL 2: 0, A1 > 0, A2 > 0, a 2: 0, and ,B 2: 0. The functions C1 (T - t) , 
C2 (T- t) ,  and A (T - t) in ( 10.5 . 1 )  are determined by the system of differential 
equations ( 10.7.4)-( 10.7.6) . When the model coefficients depend on time, the 
differential equations in all three cases are modified by replacing the constant 
coefficients by time-varying coefficients and replacing CI in these equations 
(which is the derivative of ci with respect to T = T - t) by -gt Ci (t, T) and 
making the similar replacement for A' . 

The Heath-Jarrow-Morton (HJM) model evolves the whole yield curve 
forward in time rather than a finite set of factors. The yield curve is an 
infinite-dimensional object . Note, however, that the HJM model is driven by 
finitely many Brownian motions (in fact, by one Brownian motion in Section 
10.3 but by multiple Brownian motions in Exercise 10.9) . As a result , the 
HJM model is "finite-dimensional" in the sense that not every possible yield 
curve can be obtained from the model. 

The yield curve in the HJM model is characterized by forward rates. The 
forward rate f(t, T) is the instantaneous interest rate that can be locked in 
at time t for borrowing at a later time T. The HJM model begins under 
the actual probability measure IP' and derives a condition on the drift a(t, T) 
and diffusion a(t, T) of f(t, T) that guarantees the existence of a risk-neutral 
measure JP> and hence guarantees the absence of arbitrage. This condition is 
that there must exist a market price of risk process B(t) that does not depend 
on T and that satisfies 

a(t, T) = a(t, T) [a* (t, T) + B (t)] , 0 ::; t ::;  T; ( 10 .3 .16) 

see Theorem 10.3. 1 .  Although this condition was developed within the HJM 
model, one would not encounter in practice an arbitrage-free term-structure 
model driven by a single Brownian motion and not satisfying this condition. 
For term-structure models driven by multiple Brownian motions, the analo
gous condition appears in Exercise 10.9(i) . 

In terms of the Brownian motion W(t) under the risk-neutral measure, 
bond prices in the HJM model satisfy 

dB(t, T) = R(t)B(t, T) dt - a* (t, T)B(t, T) dW(t) , 

where a* (t, T) = Jt a(t, v) dv; see Theorem 10.3.2. A calibration procedure 
for the HJM model is provided in Subsection 10.3.6. 

In contrast to the continuously compounding forward rate f(t, T) , which 
is the basis of the HJM model , forward LIBOR L(t, T) is the simple interest 
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rate that can be locked in at time t for borrowing at a later time T over the 
interval [T, T + 8] . Here 8 is a positive constant, and although not indicated 
by the notation, L(t, T) depends on the choice of this constant. 

Section 10.4 introduces a model for forward LIBOR. One can build this 
model so that forward LIBOR L(t, T) is log-normal under the forward measure 
pT+O , and this permits a mathematically rigorous derivation of the Black 
caplet formula. This formula is similar to the Black-Scholes-Merton formula 
for equities but used in fixed income markets in which the essence of the 
market is that the interest rate is random, in contrast to the Black-Scholes
Merton assumption. 

10.6 Notes 

The Vasicek model appears in [154] and the Cox-Ingersoll-Ross model in [41] . 
Hull and White generalized the Vasicek model in [88] . The general concept 
of multifactor affine-yield models is developed in Duffie and Kan [57] , [58] . 
The reduction of affine-yield models to canonical versions is due to Dai and 
Singleton [44] . A sampling of other articles related to affine-yield models in
cludes Ait-Sahalia [1 ] , Balduzzi, Das, Foresi, and Sundaram [7] , Chen [29] , 
Chen and Scott [30] , [31] , [32] , Collin-Dufresne and Goldstein [38] , [39] , Duf
fee [55] , and Piazzesi [132] . Maghsoodi [ 116] provides a detailed study of the 
one-dimensional CIR equation when the parameters are time-varying. 

Although affine-yield models have simple bond price formulas, the prices 
for fixed income derivatives are more complicated. However, numerical so
lution of partial differential equations can be avoided by Fourier transform 
analysis ; see, Duffie, Pan, and Singleton [59] . 

Some other common short rate models are those of Black, Derman, and 
Toy [15] , Black and Karasinski [16] , and Longstaff and Schwartz [1 1 1] .  An 
empirical comparison of various short rate models is provided by Chan et al. 
[28] . 

Ho and Lee [85] developed a discrete-time model for the evolution of the 
yield curve. The continuous-time limit of the Ho-Lee model is a constant
diffusion forward rate. In particular, the interest rate behaves like that in a 
Vasicek model and can become negative. 

An arbitrage-free framework for the evolution of the yield curve in contin
uous time was developed by Heath, Jarrow, and Morton [83] . Related papers 
are [81] and [82] . The HJM framework presented in this chapter is general, 
but it can be specialized to obtain a Markov implementation; see Brace and 
Musiela [20] , Cheyette [34] , and Hunt, Kennedy, and Pelsser [90] . Filipovic [66] 
examines the issue of making the yield curves generated by the HJM model 
consistent with the scheme used to generate the initial yield curve. Jara [96] 
considers an HJM-type model but for interest rate futures rather than forward 
rates . The advantage is that the drift term causing the explosion discussed in 
Subsection 10.4. 1 does not appear in such a model . 
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The switch from continuously compounding forward rates to simple for
ward rates in order to remove the explosion problem described in Section 
10.4. 1 was proposed by Sandmann and Sondermann [146] , [147] .  The use of 
a log-normal simple interest rate to price caps and floors was worked out by 
Miltersen, Sandmann, and Sondermann [125] . This idea was embedded in a 
full forward LIBOR term-structure model by Brace, G�tarek, and Musiela 
[19] .  This was the first full term-structure model consistent with the heuristic 
formula provided by Black [13] in 1976 and in common use since then. 

Recently, a variation on forward LIBOR models has been developed for 
swaps markets; see Jamshidian [95] and the three books cited below. Term
structure models with jumps have been studied by Bjork, Kabanov, and Rung
galdier [12] ,  Das [46] , Das and Foresi [47] , Glasserman and Kou [73] ,  Glasser
man and Merener [74] , and Shirakawa [149] . 

Three recent books by authors with practical experience in term-structure 
modeling are Pelsser [131] ,  Brigo and Mercurio [21] ,  and Rebonato [137] . 
Pelsser's text [131] is succinct but comprehensive, Brigo and Mercurio's text 
[21] contains considerably more detail, and Rebonato's book [137] is devoted 
to forward LIBOR models . 

10.7 Exercises 

Exercise 10.1 (Statistics in the two-factor Vasicek model) . Accord
ing to Example 4.7.3 , Y1 (t) and Y2 (t) in ( 10.2.43)-( 10.2.46) are Gaussian 
processes. 
(i) Show that 

that when .A1 =f. .A2 , then 

EY2 (t) = .A 
.A2\ (e->.1 t - e->.2t )Y1 (0) + e->.2 tY2 (0) , 1 - 2 

We can write 

when .A1 =f. .A2 , 

( 10 .7 .1 ) 

( 10.7.2) 

( 10.7.3) 

Y2 (t) - IEY2 (t) = .A 
.A21.A (e->.1 th (t) - e->.2th (t)) - e->.2tla (t) , 1 - 2 
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where the Ito integrals 

h (t) = lot 
e.A1 u dW1 (u) , l2 (t) = lot 

e.A2u dW1 (u) , 

J3 (t) = lot 
e.A2u dW2 (u) ,  l4 (t) = lot 

ue.A • u dW1 (u) ,  

all have expectation zero under the risk-neutral measure JP. Consequently, we 
can determine the variances of Y1 ( t) and Y2 ( t) and the covariance of Y1 ( t) 
and Y2 (t) under the risk-neutral measure from the variances and covariances 
of Ij (t) and h(t) . For example, if .A1 = .A2 , then 

Var (Y1 (t) } 
= e-2.A• tiih? (t) , 
Var (Y2 (t) ) 
= .A�l t2e-2.At tfEJ? (t) + .A�� e-2-A t tfEJl (t) + e-2.A t tfEJ5 (t) 

-2.A�1 te -2.A 1 tfE [ 11 ( t)/4 ( t) ) - 2.A21 te-2.A1 tfE [ h ( t)/3 ( t) ) 

+2.A21 e-2.A • tfE (J4 (t)h (t)) , 
Cov (Y1 (t) , Y2 (t) } 
= -.A21 te-2.A • tfEI? (t) + A21 e-2.A1 tfE [h (t)J4 (t)) + e-2.A• tfE [h (t)J3 (t)) , 

where the variances and covariance above are under the risk-neutral measure 
JP. 
(ii) Compute the five terms 

The five other terms, which you are not being asked to compute, are 

IEJ� (t) = 2�2 (e2.A2 t - 1) , 

1E (J2 (t)J3 (t) ) = 0, 
t 1 

JE [J2 (t)J4 (t) ) = e(.A t +.A2 )t + ( 1 - e(.A1 +.A2 )t ) , .A1 + .A2 (.A1 + .A2)2 

JEJ5 (t) = ;
2 
(e2.A2t - 1} ,  

1E (J3 (t)J4 (t) ) = 0. 

(iii) Some derivative securities involve time spread (i .e. , they depend on the 
interest rate at two different times) . In such cases, we are interested in 
the joint statistics of the factor processes at different times. These are 
still jointly normal and depend on the statistics of the Ito integrals Ii at 
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different times. Compute E [I1 (8 )h (t)] , where 0 � 8 < t. (Hint : Fix 8 2:: 0 
and define 

J1 (t) = lot 
e"1 un{u=:;s } dW1 (u) , 

where n{ u=:;s} is the function of u that is 1 if u � 8 and 0 if u > 8. Note 
that J1 (t) = h (8) when t 2:: 8 . ) 

Exercise 10.2 (Ordinary differential equations for the mixed affine
yield model) .  In the mixed model of Subsection 10.2.3, as in the two-factor 
Vasicek model and the two-factor Cox-Ingersoll-Ross model, zero-coupon bond 
prices have the affine-yield form 

f(t , Y� > y2) = e-y�Ct (T-t) -y2C2 (T-t) -A(T-t) , 

where C1 (0) = C2 (0) = A(O) = 0. 
(i) Find the partial differential equation satisfied by f(t , YI ,  Y2 ) · 
(ii) Show that C1 , C2 , and A satisfy the system of ordinary differential equa

tions 

( 10. 7.4) 
( 10.7.5) 
( 10.7.6) 

Exercise 10.3 (Calibration of the two-factor Vasicek model) .  Con
sider the canonical two-factor Vasicek model ( 10.2.4) ,  ( 10.2.5) ,  but replace the 
interest rate equation ( 10.2 .6) by 

( 10.7.7) 
where 81 and 82 are constant but 80 (t) is a nonrandom function of time. 
Assume that for each T there is a zero-coupon bond maturing at time T. The 
price of this bond at time t E [0 , T] is 

B(t, T) = JE [ e- Jt R(u)du l .r(t)] . 

Because the pair of processes (Y1 (t) , Y2 (t) ) is Markov, there must exist some 
function f(t , T, yl , Y2) such that B(t, T) = J (t , T, Y1 (t) , Y2 (t) ) . (We indicate 
the dependence of f on the maturity T because, unlike in Subsection 10.2 . 1 , 
here we shall consider more than one value of T. ) 
(i) The function f(t , T, Yl ,  Y2 ) is of the affine-yield form 

( 10.7.8) 
Holding T fixed, derive a system of ordinary differential equations for 
ftCI (t , T) , ftC2 (t , T) , and ftA(t, T) . 
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(ii) Using the terminal conditions Ct (T, T) = C2 (T, T) = 0, solve the equa
tions in (i) for Ct (t, T) and C2(t, T) . (As in Subsection 10.2. 1 ,  the func
tions Ct and c2 depend on t and T only through the difference T = T - t; 
however, the function A discussed in part (iii) below depends on t and T 
separately. ) 

(iii) Using the terminal condition A(T, T) = 0, write a formula for A(t, T) as 
an integral involving Ct (u, T) , C2(u, T) , and oo (u) . You do not need to 
evaluate this integral. 

(iv) Assume that the model parameters At > 0 A2 > 0, A2t , Ot , and 82 and the 
initial conditions Yt (0) and Y2 (0) are given. We wish to choose a function 
o0 so that the zero-coupon bond prices given by the model match the 
bond prices given by the market at the initial time zero. In other words, 
we want to choose a function o(T) , T 2:: 0, so that 

f (O, T, Yt (O) , Y2 (0)) = B(O, T) ,  T 2:: 0. 

In this part of the exercise, we regard both t and T as variables and use 
the notation gt to indicate the derivative with respect to t when T is held 
fixed and the notation 8� to indicate the derivative with respect to T 
when t is held fixed. Give a formula for oo (T) in terms of tfr log B(O, T) 
and the model parameters. (Hint: Compute 8�A(O, T) in two ways, using 
( 10.7.8) and also using the formula obtained in (iii) . Because Ci (t, T) 
depends only on t and T through r = T - t, there are functions Ci (r) 
such that Ci (r) = Ci (T - t) = Ci (t, T) , i = 1, 2. Then 

where ' denotes differentiation with respect to r. This shows that 

a fact that you will need. ) 
Exercise 10.4. Hull and White [89] propose the two-factor model 

dU(t) = -AtU(t) dt + at dB2 (t) , 
dR(t) = [O(t) + U(t) - A2R(t)] dt + a2 dBt (t) , 

(10. 7.9) 

( 10.7. 10) 
( 10.7. 1 1 )  

where At , A2 , at , and a2 are positive constants, O(t) i s  a nonrandom function, 
and Bt (t) and B2 (t) are correlated Brownian motions with dBt (t) dB2 (t) = 

p dt for some p E ( -1 ,  1 ) . In this exercise, we discuss how to reduce this to the 
two-factor Vasicek model of Subsection 10.2 . 1 ,  except that , instead of ( 10.2.6) , 
the interest rate is given by ( 10.7.7) , in which o0 (t) is a nonrandom function 
of time. 
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) [U(t) ] K = [ .X1 0 ] , E = [a1 O J  X(t = R(t) ' -1 .X2 0 a2 

8(t) = [ o�t) ] , B(t) = [ �:�:� l , 
so that (10.7. 10) and (10.7. 1 1 ) can be written in vector notation as 

dX(t) = 8(t) dt - KX(t) dt + EdB(t) . ( 10.7. 12) 
Now set 

Show that 
dX(t) = -KX(t) dt + EdB(t) . ( 10.7. 13) 

(ii) With 

c = [ � 0
1 l ' 

a1 J1 - p2 a2J1 - p2 

define Y(t) = CX(t) , W(t) = CEB(t) . Show that the components of 
W1 (t) and W2(t) are independent Brownian motions and 

dY(t) = -AY(t) + dW(t) , ( 10.7.14) 
where 

�, . ] · 
Equation (10.7. 14) is the vector form of the canonical two-factor Vasicek 
equations (10.2.4) and ( 10.2.5) . 

(iii) Obtain a formula for R(t) of the form ( 10.7.7) . What are Oo (t) ,  81 , and 
82? 

Exercise 10.5 (Correlation between long rate and short rate in the 
one-factor Vasicek model) . The one-factor Vasicek model is the one-factor 
Hull-White model of Example 6.5 . 1 with constant parameters, 

dR(t) = (a - bR(t) ) dt + a dW(t) , ( 10.7. 15) 
where a, b, and a are positive constants and W(t) is a one-dimensional Brow
nian motion. In this model, the price at time t E [0, T] of the zero-coupon 
bond maturing at time T is 
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B(t, T) = e-C(t ,T)R(t) -A(t ,T) , 

where C(t , T) and A(t, T) are given by (6 .5 . 10) and (6 .5 . 1 1 ) :  

C(t, T) = 1T 
e- I: bdv ds = � (1 - e-b(T-t) ) , 

A(t, T) = 1T ( aC(s , T) - �a2C2 (s, T)) ds 
= 2ab - a2 

(T _ t) a2 - ab (1 _ -b(T-t) ) _ !!!.._ (1 _ -2b(T-t) ) 
2b2 + b3 e 4b3 e · 

In the spirit of the discussion of the short rate and the long rate in Sub
section 10.2 . 1 , we fix a positive relative maturity 7' and define the long rate 
L(t) at time t by ( 10.2.30) : 

1 L(t) = - = log B(t, t + 7) . T 

Show that changes in L(t) and R(t) are perfectly correlated (i.e. , for any 
0 � t1 < t2 , the correlation coefficient between L(t2) -L(ti ) and R(t2) -R(t1 ) 
is one) . This characteristic of one-factor models caused the development of 
models with more than one factor. 

Exercise 10.6 (Degenerate two-factor Vasicek model) .  In the discus
sion of short rates and long rates in the two-factor Vasicek model of Subsection 
10.2 . 1 ,  we made the assumptions that 82 =/:- 0 and (At - A2)8t + A2t82 =/:- 0 
(see Lemma 10.2.2) . In this exercise, we show that if either of these conditions 
is violated, the two-factor Vasicek model reduces to a one-factor model, for 
which long rates and short rates are perfectly correlated (see Exercise 10.5) .  
(i) Show that if 82 = 0 (and 8o > 0, 8t > 0) , then the short rate R(t) given 

by the system of equations (10 .2.4)-( 10.2.6) satisfies the one-dimensional 
stochastic differential equation 

dR(t) = (a - bR(t) ) dt + dWt (t) . ( 10.7. 16) 

Define a and b in terms of the parameters in ( 10.2 .4)-( 10.2.6) . 
(ii) Show that if (At - A2)8t + A2t82 = 0 (and 8o > 0, 8? + 8� =/:- 0) , then the 

short rate R(t) given by the system of equations ( 10.2 .4)-(10.2.6) satisfies 
the one-dimensional stochastic differential equation 

dR(t) = (a - bR(t) ) dt + a dB (t) . ( 10.7. 17) 

Define a and b in terms of the parameters in ( 10.2.4)-( 10.2.6) and define 
the Brownian motion B ( t) in terms of the independent Brownian motions 
Wt (t) and W2(t) in ( 10.2.4) and ( 10.2 .5) . 
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Exercise 10.7 (Forward measure in the two-factor Vasicek model) . 
Fix a maturity T > 0. In the two-factor Vasicek model of Subsection 10.2. 1 ,  
consider the T-forward measure jii>T of Definition 9.4. 1 :  

jii>T (A) = B(�
, T) i D(T) dllD for all A E F. 

(i) Show that the two-dimensional jp>T_Brownian motions W{(t) , W!(t) of 
(9.2.5) are 

WT (t) = lo
t
Ct (T - u) du + Wj (t) , j = 1 , 2 ,  ( 10.7. 18) 

where Ct (r) and C2(r) are given by ( 10.2.26)-( 10.2 .28) . 
(ii) Consider a call option on a bond maturing at time T > T. The call expires 

at time T and has strike price K. Show that at time zero the risk-neutral 
price of this option is 

B(O, T)fET [ ( e-CdT-T)Y• (T)-C2 (T-T)Y2 (T)-A(T-T) _ K) +] . ( 10.7. 19) 

(iii) Show that ,  under the T-forward measure Jiiir , the term 
X =  -Ct (T - T)Yt (T) - C2 (T - T)Yt (T) - A(T - T) 

appearing in the exponent in ( 10.7.19) is normally distributed. 
(iv) It is a straightforward but lengthy computation, like the computations in 

Exercise 10. 1 , to determine the mean and variance of the term X. Let us 
call its variance a2 and its mean IL - �a2 , so that we can write X as 

X = u - �a2 - aZ ,.., 2 ' 

where Z is a standard normal random variable under Jiiir . Show that the 
call option price in ( 10.7.19) is 

B(O, T) (elL N(d+ ) - KN(d- ) ) , 
where 

d± = � (IL - log K ± �a2) . 
Exercise 10.8 (Reversal of order of integration in forward rates) .  
The forward rate formula ( 10.3.5) with v replacing T states that 

f(t, v) = f(O, v) + lo
t 

a (u, v) du + lo
t 
a(u, v) dW (u) . 

Therefore, 

- i
T f(t , v ) dv = - i

T
[f(o, v) +  1

t
a (u , v) du + 1

t
a (u , v) dW (u)] dv . 

( 10 .7.20) 
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(i) Define 

a(u, t, T) = 1T a(u, v) dv, u(u, t, T) = 1T a(u, v) dv. 

Show that if we reverse the order of integration in (10 .7.20) , we obtain 
the equation 

- 1T J(t, v) dv 

= - 1T f(O, v) dv - lot a(u, t, T) du - lot u(u, t, T) dW(u) . 

( 10.7 .21) 

(In one case, this is a reversal of the order of two Riemann integrals, a 
step that uses only the theory of ordinary calculus . In the other case, the 
order of a Riemann and an Ito integral are being reversed. This step is 
justified in the appendix of [83] . You may assume without proof that this 
step is legitimate.) 

(ii) Take the differential with respect to t in ( 10.7 .21) , remembering to get two 
terms from each of the integrals J; a(u, t, T) du and J; u(u, t, T) dW(u) 
because one must differentiate with respect to each of the two ts appearing 
in these integrals. 

(iii) Check that your formula in (ii) agrees with ( 10.3. 10) . 

Exercise 10.9 (Multifactor HJM model) . Suppose the Heath-Jarrow
Morton model is driven by a d-dimensional Brownian motion, so that a( t, T) 
is also a d-dimensional vector and the forward rate dynamics are given by 

d 
df(t, T) = a(t, T) dt + L ai (t , T) dWj (t) . 

j=l 

(i) Show that (10.3. 16) becomes 
d 

a(t, T) = L ai (t, T) [aj (t, T) + ei (t) ] . 
j=l 

(ii) Suppose there is an adapted, d-dimensional process 

e(t) = (e1 (t) , . . .  , ed(t) ) 

satisfying this equation for all 0 ::::; t ::::; T ::::; T. Show that if there are ma
turities T1 , . . .  , Td such that the d x d matrix (ai (t, Ti ) ) . .  is nonsingular, 

• ,J 
then e(t) is unique. 
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Exercise 10.10. (i) Use the ordinary differential equations (6.5.8) and (6 .5 .9) 
satisfied by the functions A(t, T) and C(t, T) in the one-factor Hull-White 
model to show that this model satisfies the HJM no-arbitrage condition 
( 10.3.27) . 

(ii) Use the ordinary differential equations (6 .5 .14) and (6.5. 15) satisfied by 
the functions A(t, T) and C(t, T) in the one-factor Cox-Ingersoll-Ross 
model to show that this model satisfies the HJM no-arbitrage condition 
( 10.3.27) . 

Exercise 10.11 .  Let o > 0 be given. Consider an interest rate swap paying a 
fixed interest rate K and receiving backset LIBOR L(Tj- 1 , Tj-1 ) on a princi
pal of 1 at each of the payment dates Tj = oj , j = 1 , 2, . . .  , n + 1 .  Show that 
the value of the swap is 

n+1 n+1 
oK .L: B(o, Tj ) - o L B(o, Tj )L(O, Tj- 1  ) .  

j= 1  j= 1 
( 10.7.22) 

Remark 1 0. 7. 1 .  The swap rote is defined to be the value of K that makes the 
initial value of the swap equal to zero. Thus, the swap rate is 

( 10.7.23) 

Exercise 10.12. In the proof of Theorem 10.4. 1 , we showed by an arbitrage 
argument that the value at time 0 of a payment of backset LIBOR L(T, T) 
at time T + o is B(O, T + o)L(O, T) . The risk-neutral price of this payment, 
computed at time zero, is 

Use the definitions 

lE [D(T + o)L(T, T)] . 

L(T T) = 1 - B(T, T + o) 
' oB(T, T + o) ' 

B(O, T + o) = lE [D(T + o)] , 
and the properties of conditional expectations to show that 

lE [D(T + o)L(T, T)] = B(O, T + o)L(O, T) . 
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1 1  

Introduction to Jump Processes 

1 1 . 1  Introduction 

This chapter studies jump-diffusion processes. The "diffusion" part of the 
nomenclature refers to the fact that these processes can have a Brownian 
motion component or, more generally, an integral with respect to Brownian 
motion. In addition, the paths of these processes may have jumps. We consider 
in this chapter the special case when there are only finitely many jumps in 
each finite time interval. 

One can also construct processes in which there are infinitely many jumps 
in a finite time interval, although for such processes it is necessarily the case 
that , for each positive threshold, only finitely many jumps can have a size 
exceeding the threshold in any finite time interval . The number exceeding the 
threshold can depend on the threshold and become arbitrarily large as the 
threshold approaches zero. Such processes are not considered here, although 
the theory provided here gives some idea of how such processes can be ana
lyzed. 

The fundamental pure jump process is the Poisson process, and this is 
presented in Section 1 1 .2 . All jumps of a Poisson process are of size one. A 
compound Poisson process is like a Poisson process, except that the jumps are 
of random size. Compound Poisson processes are the subject of Section 1 1 .3 . 

In Section 11 .4, we define a jump process to be the sum of a nonrandom 
initial condition, an Ito integral with respect to a Brownian motion dW(t) , a 
Riemann integral with respect to dt, and a pure jump process. A pure jump 
process begins at zero, has finitely many jumps in each finite time interval, 
and is constant between jumps. Section 1 1 .4 defines stochastic integrals with 
respect to jump processes. These stochastic integrals are themselves jump 
processes. Section 1 1 .4 also examines the quadratic variation of jump processes 
and their stochastic integrals. 

In Section 11 .5 , we present the stochastic calculus for jump processes. The 
key result is the extension of the ItO-Doeblin formula to cover these processes. 
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In Section 1 1 .6, we take up the matter of changing measures for Poisson 
processes and for compound Poisson processes. We conclude with a discussion 
of how to simultaneously change the measure for a Brownian motion and a 
compound Poisson process. The effect of this change is to adjust the drift of 
the Brownian motion and to adjust the intensity (average rate of jump arrival) 
and the distribution of the jump sizes for the compound Poisson process. 

In Section 1 1 .7, we apply this theory to the problem of pricing and partially 
hedging a European call in a jump-diffusion model. 

1 1 . 2  Poisson Process 

In the way that Brownian motion is the basic building block for continuous
path processes, the Poisson process serves as the starting point for jump pro
cesses. In this section, we construct the Poisson process and develop its basic 
properties. 

11 .2.1 Exponential Random Variables 

Let T be a random variable with density 

f(t) = { Ae->.t , t � 0, 
0, t < 0, ( 1 1 .2 . 1 ) 

where A is a positive constant. We say that T has the exponential distribution 
or simply that T is an exponential mndom variable. 

The expected value of T can be computed by an integration by parts: 

lET =  J.00 tf(t) dt = A roo te-,\t dt = -te-,\t l t
=oo + roo e-,\t dt o Jo t=O Jo 

l t=oo 
= 0 - ± e->.t = t · t=O 

For the cumulative distribution function, we have 

F(t) = IP'{r $ t} = Ae->.u du = -e->.u - = 1 - e->.t , 
1t 

�u-t 
o u=O 

and hence 
IP'{r > t} = e->-t , t � 0. 

t � 0, 

( 1 1 .2 .2) 
Suppose we are waiting for an event, such as default of a bond, and we 

know that the distribution of the time of this event is exponential with mean t 
(i .e . ,  it has the density ( 1 1 . 2 . 1 ) ) . Suppose we have already waited s time units, 
and we are interested in the probability that we will have to wait an additional 
t time units (conditioned on knowing that the event has not occurred during 
the time interval [0, s] ) .  This probability is 
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Till{ I } _ IP{ 7 > t + s and 7 > s} 
c 7 > t + s 7 > s - IP{7 > s} 

IP{ 7 > t + s} e-.A(t+s) 
= e-.At 

IP{7 > s} e-.As ( 1 1 .2 .3) 

In other words, after waiting s time units, the probability that we will have 
to wait an additional t time units is the same as the probability of having 
to wait t time units when we were starting at time 0. The fact that we have 
already waited s time units does not change the distribution of the remaining 
time. This property for the exponential distribution is called memorylessness. 

11 .2.2 Construction of a Poisson Process 

To construct a Poisson process, we begin with a sequence 71 ,  72 , • . •  of inde
pendent exponential random variables, all with the same mean t . We will 
build a model in which an event , which we call a "jump," occurs from time to 
time. The first jump occurs at time 71 ,  the second occurs 72 time units after 
the first, the third occurs 73 time units after the second, etc. The 7k random 
variables are called the interarrival times. The arrival times are 

( 1 1 .2.4) 

(i .e . ,  8n is the time of the nth jump) . The Poisson process N(t) counts the 
number of jumps that occur at or before time t . More precisely, 

N(t) = 

o if o ::; t < 8� ,  
1 if 81 ::; t < 82 , 

Note that at the jump times N (t) is defined so that it is right-continuous (i .e . ,  
N (t) = lims.j.t N(s ) ) .  We denote by :F(t) the a-algebra of information acquired 
by observing N(s ) for 0 :S s :S t. 

Because the expected time between jumps is ± ,  the jumps are arriving 
at an average rate of A per unit time. We say the Poisson process N(t) has 
intensity A. Figure 1 1 .2 . 1  shows one path of a Poisson process. 

1 1 .2.3 Distribution of Poisson Process Increments 

In order to determine the distribution of the increments of a Poisson process, 
we must first determine the distribution of the jump times 81 ' 82 , 0 0 0 0 
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• 0 

Fig. 11 .2.1.  One path of a Poisson process. 

• 

t 

Lemma 11.2.1.  For n ;::=: 1 ,  the random variable Sn defined by {1 1 . 2.4} has 
the gamma density 

(As)n- 1 
9n (s) = (n _ 1) ! Ae-

"8 , s ;::=: 0. ( 1 1 .2 .5) 

PROOF: We prove ( 1 1 .2 .5) by induction on n. For n = 1 ,  we have that 81 = 71 
is exponential, and ( 1 1 .2 .5) becomes the exponential density 

91 (s) = Ae-"8 , s ;::=: 0. 
(Recall that 0! is defined to be 1 . )  Having thus established the base case, let 
us assume that ( 1 1 .2 .5) holds for some value of n and prove it for n + 1 .  In 
other words, we assume Sn has density 9n (s) given in ( 1 1 .2 .5) and we want to 
compute the density of Sn+1 = Sn + rn+l · Since Sn and Tn+l are independent, 
the density of Sn+1 can be computed by the convolution 

9n (v)f(s - v) dv = Ae-.Xv · Ae-.X(s-v) dv 1s 1s (Av)n-1 
o o (n - 1) !  

An+1 e-,\s 1s n-l d = (n - 1 ) !  o 
v s = 

(As)n -.Xs = -1-Ae = 9n+1 (s) . 
n. 

\ n+1 e-.Xs /\ n l v=s n! v v=O 

This completes the induction step and proves the lemma. D 
Lemma 11 .2.2. The Poisson process N(t) with intensity A has the distribu
tion 

lP{ N(t) = k} = (A::\-.xt , k = 0, 1 ,  . . . . (1 1 .2.6) 
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PROOF: For k ;:::: 1 , we have N(t) ;:::: k if and only if there are at least k jumps 
by time t (i.e . ,  if and only if sk , the time of the kth jump, is less than or equal 
to t) . Therefore, 

Similarly, 

We integrate this last expression by parts to obtain 

(A )k s-t 1t (A )k- 1 
IP'{N(t) > k + 1 } = - -8-e->.s � - + 8 Ae->.8 ds - k! s=O o (k - 1 ) !  

= - (�t e->.t + IP'{N(t) ;:::: k} .  

This implies that for k ;:::: 1 , 

IP'{N(t) = k} = IP'{N(t) 2:: k} - IP'{N(t) ;:::: k + 1} = (�t e->.t . 
For k = 0, we have from ( 1 1 .2 .2) 

IP'{N(t) = 0} = IP'{S1 > t} = IP'{T1 > t} = e->.t , 
which is ( 1 1 .2.6) with k = 0. 0 

Suppose we observe the Poisson process up to time s and then want to 
know the distribution of N(t + s) - N(s ) ,  conditioned on knowing what has 
happened up to and including time s. It turns out that the information about 
what has happened up to and including time s is irrelevant. This is a conse
quence of the memorylessness of exponential random variables (see ( 1 1 .2 .3) ) .  
Because N(t+s) -N(s) is the number of jumps in  the time interval (s , t+ s] , in 
order to compute the distribution of N(t + s) - N(s) , we are interested in the 
time of the next jump after s. At time s, we know the time since the last jump, 
but the time between s and the next jump does not depend on this . Indeed, 
the time between s and the first jump after s has an exponential distribution 
with mean ! , independent of everything that has happened up to time s. The 
time between that jump and the one after it is also exponentially distributed 
with mean ! , independent of everything that has happened up to time s .  
The same applies for all subsequent jumps. Consequently, N(t + s) - N(s) is 
independent of :F(s) . Furthermore, the distribution of N(t + s) - N(s) is the 
same as the distribution of N(t) . In both cases, one is simply counting the 
number of jumps that occur in a time interval of length t, and the jumps are 
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independent and exponentially distributed with mean t · When a process has 
the property that the distribution of the increment depends only on the dif
ference between the two time points, the increments are said to be stationary. 
Both the Poisson process and Brownian motion have stationary independent 
increments. 

Theorem 1 1 .2.3. Let N(t) be a Poisson process with intensity .A > 0, and 
let 0 = to < h < · · · < tn be given. Then the increments 

N(ti ) - N(to ) ,  N(t2 ) - N(ti ) ,  . . .  , N(tn ) - N(tn-d 

are stationary and independent, and 

k = 0, 1 ,  . . . .  
( 1 1 .2 . 7) 

OUTLINE OF PROOF: Let :F(t) be the a-algebra of information acquired by 
observing N(s) for 0 :::; s :::; t . As we just discussed, N(tn) - N(tn-d is inde
pendent of :F(tn-d and has the same distribution as N(tn - tn-d ,  which by 
Lemma 1 1 .2 .2 is the distribution given by ( 1 1 .2 .7) with j = n - 1. Since 
the other increments N(h )  - N(to ) , . . .  , N(tn-d - N(tn-2 ) are :F(tn-d
measurable, these increments are independent of N(tn) - N(tn- 1 ) . We now 
repeat the argument for the next-to-last increment N(tn-d - N(tn-2 ) , then 
the increment before that, etc. 0 

1 1 .2.4 Mean and Variance of Poisson Increments 

Let 0 :::; s < t be given. According to Theorem 11 .2 .3 , the Poisson increment 
N(t) - N(s) has distribution 

IP'{N(t) - N(s) = k} = _A
k (t

k
� s)

k 
e->.(t-s) , k = 0, 1 ,  . . . . ( 1 1 .2 .8) 

Recall the exponential power series , which we shall use in the three different 
forms given below: 

x � xk � xk-1  � xk-2 
e = L.J k! = L.J (k - 1) ! 

= L.J ...,-(k---2-c--:-) ! " k=O k=1 k=2 
We note first of all from this that 

00 00 _Ak (  )k 
L IP'{N(t) - N(s) = k} = e->.(t-s) L t

k
� s = e->.(t-s) . e>.(t-s) = 1 , 

k=O k=O 
as we would expect. We next compute the expected increment 
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00 )..k (t )k lE [N(t) - N(8)] = L k k� 
8 e->.(t-s) 

k=O 
oo )..k- 1 (t 8)k- 1  

= .>.(t - 8)e->.(t-s) L -
k=1 (k - 1) !  

= .>.(t - 8) . e->.(t-s) . e>.(t-s) 
= .>.(t - 8) .  ( 1 1 .2 .9) 

This is consistent with our observation at the end of Subsection 1 1 .2 .2 that 
jumps are arriving at an average rate of ).. per unit time. Therefore, the average 
number of jumps between times 8 and t is lE [N(t) - N(8)] = .>.(t - 8) .  

Finally, we compute the second moment of the increment 
00 )..k (t )k 

lE [(N(t) - N(8)) 2] = L k2 k� 
8 e->.(t-s) 

k=O 

This implies 

= e->.(t-s) �(k - 1 + 1 ) )..k (t - 8)k 
L...J (k - 1 ) !  k=1 

= ->.(t-s) � )..k (t - 8)k + ->.(t-s) � )..k (t - 8)k e L...J (k - 2) ! e L...J (k - 1) !  k=2 k=1 

= )..2 (t - 8)2e->.(t-s) f )..k-2 (t - 8)k-2 

k=2 (k - 2) ! 
00 )..k-1 (t )k- 1  

+.>.(t - 8)e->.(t-s) L - 8  
k=1 (k - 1 ) !  

= )..2 (t - 8)2 + .>.(t - 8) . 

Var (N(t) - N(8)] = lE ( (N(t) - N(8)} 2] - (lE (N(t) - N(8)] } 2 

= .>.2 (t - 8)2 + .>.(t - 8) - .>.2 (t - 8)2 

= .>.(t - 8) ; ( 1 1 .2 . 10) 

the variance is the same as the mean. 

11 .2.5 Martingale Property 

Theorem 1 1 .2.4. Let N(t) be a Poisson process with intensity .>. . We define 
the compensated Poisson process (see Figure 11 . 2. 2} 

M(t) = N(t) - .>.t. 

Then M(t) is a martingale. 
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PROOF:  Let 0 :::; s < t be given. Because N(t) - N(s) is independent of :F(s) 
and has expected value .X(t - s) ,  we have 

lE [M(t) IF(s)] = lE [M(t) - M(s) i:F(s)] + lE [M(s) i:F(s)] 
= lE [N(t) - N(s) - .X(t - s) i:F(s)] + M(s) 
= lE [N(t) - N(s)] - .X(t - s) + M(s) 
= M(s) . D 

M(t) 

t 

Fig. 1 1 .2 . 2 .  One path of a compensated Poisson process. 

1 1 . 3  Compound Poisson Process 

When a Poisson process or a compensated Poisson process jumps, it jumps 
up one unit. For models of financial markets, we need to allow the jump size 
to be random. We introduce random jump sizes in this section. 

11 .3 .1  Construction of a Compound Poisson Process 

Let N(t) be a Poisson process with intensity .X, and let Y1 , Y2 , . . .  be a se
quence of identically distributed random variables with mean (3 = lEYi . We 
assume the random variables Y1 , Y2 , . . .  are independent of one another and 
also independent of the Poisson process N ( t) . We define the compound Poisson 
process 

N(t) 
Q(t) = L Yi, t 2: o. 

i=l 
( 1 1 .3. 1 )  

The jumps in Q(t) occur at the same times as the jumps in N(t) , but whereas 
the jumps in N(t) are always of size 1 ,  the jumps in Q(t) are of random size. 
The first jump is of size Y1 , the second of size Y2 , etc. Figure 1 1 .3. 1 shows one 
path of a compound Poisson process. 
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• 

••�---o 
A 

¥ 

··�----------------0 
Fig. 1 1 .3 . 1 .  One path of a compound Poisson process. 

Like the simple Poisson process N(t) , the increments of the compound 
Poisson process Q(t) are independent. In particular, for 0 � s < t, 

N(s) 
Q(s) = L Yi, 

i=l 

which sums up the first N(s) jumps, and 

N(t) 
Q(t) - Q(s) = L Yi, 

i=N(s)+l 

which sums up jumps N(s)+l to N(t) , are independent. Moreover, Q(t) -Q(s) 
has the same distribution as Q(t - s) because N(t) - N(s) has the same 
distribution as N(t - s) . 

The mean of the compound Poisson process is 

00 k 
IEQ(t) = LlE [LYi iN(t) = k] JPl{N(t) = k} 

k=O i=l 

= � f3k (..\t)k -At = {3 \  -At � (..\t)k- 1 
L...t k! e Ate L...t (k _ l ) ! k=O k=l 

= {3..\t. 

On average, there are ..\t jumps in the time interval [0, t] , the average jump 
size is /3, and the number of jumps is independent of the size of the jumps. 
Hence, IEQ(t) is the product {3..\t. 
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Theorem 11 .3 .1 .  Let Q(t) be the compound Poisson process defined above. 
Then the compensated compound Poisson process 

Q(t) - (3>.t 

is a martingale. 
PROOF: Let 0 :::; s < t be given. Because the increment Q(t) - Q(s) is inde
pendent of F(s) and has mean (3>.(t - s) ,  we have 

lE [Q(t) - (3>.t iF(s)] = lE [Q(t) - Q(s) IF(s)] + Q(s) - (3>.t 
= (3>.(t - s) + Q(s) - (3>.t 
= Q(s) - (3>.s. [ 

Just like a Poisson process, a compound Poisson process has stationary 
independent increments. We give the precise statement below. 
Theorem 11 .3.2. Let Q(t) be a compound Poisson process and let 0 = to < 
h < · · · < tn be given. The increments 

are independent and stationary. In particular, the distribution of Q(tj )  -
Q(tj- t )  is the same as the distribution of Q(tj - t1-d · 

1 1 .3.2 Moment-Generating Function 

In Theorem 1 1 .3 .2 , we did not write an explicit formula for the distribution 
of Q(ti - tj- l ) because the formula for the density or probability mass func
tion of this random variable is quite complicated. However, the formula for its 
moment-generating function is simple. For this reason, we use moment gen
erating functions rather than densities or probability mass functions in much 
of what follows. 

Let Q(t) be the compound Poisson process defined by ( 1 1 .3 . 1 ) .  Denote the 
moment-generating function of the random variable Yi by 

cpy (u) = lEeuY, _  

This does not depend on the index i because Yl l Y2 , . . .  all have the same dis
tribution. The moment generating function for the compound Poisson process 
Q(t) is 

'PQ(t) (u) = lEeuQ(t) 

N(t) 
= lE exp {u L Yi } 

i= l  
00 k 

= JP>{N(t) = 0} + L lE exp { u LYi iN(t) = k }JP>{N(t) = k} 
k=l i= l  
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00 k 
= IP'{N(t) = 0} + L IE exp { u L Yi }IP'{N(t) = k} 

k=l i=l 
00 (.At)k = e->.t + "'""" lEeuY•JEeuY2 . .  · lEeuYk --e->.t L...t k! k=l 

- ->.t ->.t � (cpy (u).At) k 
- e + e L...t k! k=l 

- ->.t � (cpy (u).At) k - e L...t k! k=O 
= exp {.At ( cpy ( u) - 1) } . ( 1 1 .3 .2) 

If the random variables Yi are not really random but rather always take 
the constant value y, then the compound Poisson process Q(t) is actually 
yN(t) and cpy (u) = euY . It follows that y times a Poisson process has the 
moment-generating function 

cpyN(t) (u) = lEeuyN(t) = exp{At(euy - 1 ) } . ( 1 1 .3.3) 

When y = 1, we have the Poisson process, whose moment-generating function 
is thus 

cpN(t) (u) = IEeuN(t) = exp{.At(eu - 1 ) } . ( 1 1 .3.4) 
Finally, consider the case when Yi takes one of finitely many possible non

zero values Y1 , Y2 , . . .  , YM , with p(ym) = IP'{Yi = Ym} so that p(ym) > 0 for 
every m and 'E�=1 p(ym) = 1 .  Then cpy (u) = 'E�=1 p(ym)euy, _  It follows 
from ( 1 1 .3 .2) that 

M 
cpQ(t) (u) = exp {.At ( L p(ym)euy, - 1) } 

m=l 
M 

= exp {.At L p(ym) (euy, - 1} } 
m=l 

= exp{.Ap(y1 )t(euy1 - 1 ) }  exp{Ap(y2 )t(euy2 - 1 ) }  · · · 
• • • exp{Ap(yM )t(eUYM - 1) } . ( 1 1 .3 .5) 

This last expression is the product of the moment generating-functions for M 
scaled Poisson processes, the mth process having intensity .Ap(ym) and jump 
size Ym (see ( 1 1 .3.3) ) . This observation leads to the following theorem. 

Theorem 1 1 .3.3 (Decomposition of a compound Poisson process) .  
Let Y1 , y2 , . . .  , YM be a finite set of nonzero numbers, and let p(y1 ) , p(y2) ,  . . .  , 
P(YM ) be positive numbers that sum to 1 .  Let .A > 0 be given, and let 
N1 (t) , N2 (t) , . . .  , N M (t) be independent Poisson processes, each Nm (t) hav
ing intensity .Ap(ym) . Define 
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M 
Q(t) = L YmNm(t) , t ;::: 0. 

m=l 
(1 1 .3.6) 

Then Q( t) is a compound Poisson process. In particular, if Y 1 is the size of 
the first jump of Q(t) , Y 2 is the size of the second jump, etc. , and 

M 
N(t) = L Nm(t) ,  t ;::: 0, 

m=l 

is the total number of jumps on the time interval (0, t] , then N(t) is a Poisson 
process with intensity .A, the mndom variables Y 1 , Y 2, . . . are independent with 
lP{Yi = Ym} = P(Ym)  for m =  1 , . . .  , M, the mndom variables Yb . . .  , Y M 
are independent of N(t) , and 

N(t) 
Q(t) = L Yi , t ;::: 0. 

i=O 

OUTLINE OF PROOF: According to ( 1 1 .3 .3) , for each m, the characteristic 
function of Ym N m ( t) is 

'Py,N, (t) (u) = exp{.Ap(ym)t(euy, - 1 ) } .  

With Q(t) defined by (1 1 .3.6) , we use the fact that N1 (t) ,  N2 (t) , . . .  , N M (t) 
are independent of one another to write 

M 
'PQ(t) (u) = lE exp { u L YmNm(t) } 

m=l 
= JEeuy,N, (t)JEeuy2N2 (t) . . .  JEeUYMNM (t) 
= 'Py,N. (t) ( u)cpy2N2 (t) ( u) · · · 'PyMN M (t) ( u) 
= exp{.Ap(yr )t(euy, - 1) } exp{Ap(y2 )t(euy2 - 1) }  . . .  

• • • exp{Ap(yM)t(eUYM - 1 ) } ,  

which is the right-hand side o f  ( 1 1 .3.5) . It follows that the random variable 
Q(t) of ( 1 1 .3.6) has the same distribution as the random variable Q(t) ap
pearing on the left-hand side of ( 1 1 .3.5) . With a bit more work, one can show 
that the distribution of the whole path of Q defined by ( 1 1 .3.6) agrees with 
the distribution of the whole path of the process Q appearing on the left-hand 
side of ( 1 1 .3.5) . 

Recall that the process Q appearing on the left-hand side of ( 1 1 .3.5) is the 
compound Poisson process defined by (1 1 .3. 1 ) .  For this process N(t) , the total 
number of jumps by time t is Poisson with intensity .A, and the sizes of the 
jumps, Y1 , Y2 , • . •  , are identically distributed random variables , independent 
of one another and independent of N(t) , and with lP{Yi = Ym}  = p(ym) for 
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m = 1, . . .  , M. Because the processes Q and Q have the same distribution, 
these statements must also be true for the total number of jumps and the sizes 
of the jumps of the process Q of ( 1 1 .3 .6) ,  which is what the theorem asserts. 
0 

The substance of Theorem 1 1 .3.3 is that there are two equivalent ways of 
regarding a compound Poisson process that has only finitely many possible 
jump sizes. It can be thought of as a single Poisson process in which the 
size-one jumps are replaced by jumps of random size. Alternatively, it can be 
regarded as a sum of independent Poisson processes in each of which the size
one jumps are replaced by jumps of a fixed size. We restate Theorem 1 1 .3 .3 
in a way designed to make this more clear. 

Corollary 1 1 .3.4. Let Y1 , . . .  , YM be a finite set of nonzero numbers, and 
let p(y1 ) ,  • . •  , p(yM) be positive numbers that sum to 1 .  Let Y1 , Y2 , . . .  be a 
sequence of independent, identically distributed random variables with IP'{Yi = 
Ym} = p(ym) ,  m = 1 ,  . . .  , M. Let N(t) be a Poisson process and define the 
compound Poisson process 

N(t) 
Q(t) = L }i .  i=l 

For m =  1 , . . .  , M, let Nm (t) denote the number of jumps in Q of size Ym up 
to and including time t .  Then 

M M 
N(t) = L Nm(t) and Q(t) = L YmNm(t) . 

m=l m=l 

The processes N1 , . . .  , N M defined this way are independent Poisson processes, 
and each Nm has intensity .>..p(ym) · 

1 1 . 4  Jump Processes and Their Integrals 

In this section, we introduce the stochastic integral when the integrator is a 
process with jumps, and we develop properties of this integral. We shall have 
a Brownian motion and Poisson and compound Poisson processes. There will 
always be a single filtratoin associated with all of them, in the sense of the 
following definition. 

Definition 11 .4.1 .  Let (!I, F, IP') be a probability space, and let F(t) , t 2:: 0, 
be a filtration on this space. We say that a Brownian motion W is a Brownian 
motion relative to this filtration if W(t) is F(t) -measurable for every t and 
for every u > t the increment W(u) - W(t) is independent of F(t) . Similarly, 
we say that a Poisson process N is a Poisson process relative to this filtration 
if N(t) is F(t) -measurable for every t and for every u > t the increment 
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N(u) - N(t) is independent of J="(t) . Finally, we say that a compound Poisson 
process Q is a compound Poisson process relaative to this filtration if Q(t) is 
J="(t) -measumble for every t and for every u > t the increment Q(u) - Q(t) is 
independent of J="(t) . 

11 .4.1 Jump Processes 

We wish to define the stochastic integral 

lot !P(s) dX (s) , 

where the integrator X can have jumps. Let ( n, J=", P) be a probability space 
on which is given a filtration J="(t) , t � 0. All processes will be adapted to 
this filtration. Furthermore, the integrators we consider in this section will be 
right-continuous and of the form 

X(t) = X(O) + I(t) + R(t) + J(t) . ( 1 1 .4. 1 ) 

In ( 1 1 .4. 1 ) ,  X(O) is a nonrandom initial condition. The process 

I(t) = lot F(s) dW(s) { 1 1 .4.2) 

is an Ito integml of an adapted process F(s) with respect to a Brownian 
motion relative to the filtration. We shall call I(t) the ItO integml part of X. 
The process R(t) in ( 1 1 .4. 1) i s  a Riemann integml 1 

R(t) = 1t e(s) ds ( 1 1 .4.3) 

for some adapted process e(t) . We shall call R(t) the Riemann integml part 
of X. The continuous part of X(t) is defined to be 

xc(t) = X(O) + I(t) + R(t) = X(O) + 1t F(s) dW(s) + lot e(s) ds . 

The quadratic variation of this process is 

an equation that we write in differential form as 
1 One usually takes this to be a Lebesgue integral with respect to dt, but for all the 

cases we consider, the Riemann integral is defined and agrees with the Lebesgue 
integral. 
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Finally, in ( 1 1 .4. 1 ) ,  J(t) is an adapted, right-continuous pure jump process 
with J(O) = 0. By right-continuous, we mean that J(t) = lims.j.t J(s) for all 
t ;::: 0. The left-continuous version of such a process will be denoted J(t-) . In 
other words, if J has a jump at time t, then J(t) is the value of J immediately 
after the jump, and J(t-) is its value immediately before the jump. We assume 
that J does not jump at time zero, has only finitely many jumps on each finite 
time interval (0, T] , and is constant between jumps. The constancy between 
jumps is what justifies calling J(t) a pure jump process. A Poisson process 
and a compound Poisson process have this property. A compensated Poisson 
process does not because it decreases between jumps. We shall call J(t) the 
pure jump part of X. 

Definition 11 .4.2. A process X(t) of the form {1 1 .4 . 1}, with Ito integral part 
I(t) , Riemann integral part R(t) , and pure jump part J(t) as described above, 
will be called a jump process . The continuous part of this process is xc(t) = 
X(O) + I(t) + R(t) . 

A jump process in this book is not the most general possible because 
we permit only finitely many jumps in finite time. For many applications, 
these processes are sufficient. Furthermore, the stochastic calculus for these 
processes gives a good indication of how the stochastic calculus works for the 
more general case. 

A jump process X(t) is right-continuous and adapted. Because both I(t) 
and R(t) are continuous, the left-continuous version of X(t) is 

X(t-) = X(O) + I(t) + R(t) + J(t-) .  

The jump size of X at time t is denoted 

LlX(t) = X(t) - X(t-) .  

If X is continuous at t , then LlX(t) = 0 .  If X has a jump at time t ,  then 
LlX(t) is the size of this jump, which is also LlJ(t) = J(t) - J(t-) , the size 
of the jump in J. Whenever X(O-) appears in the formulas below, we mean 
it to be X(O) . In particular, LlX(O) = 0; there is no jump at time zero. 

Definition 1 1 .4.3. Let X(t) be a jump process of the form {1 1 .4 . 1}-{1 1 . 4 .3} 
and let q';( s) be an adapted process. The stochastic integral of q; with respect 
to X is defined to be 

1
t 
q'j(s) dX(s) = 1

t 
q'j(s)F(s) dW(s) + 1

t 
q'j(s)8(s) ds + L q'j(s)LlJ(s) .  

0 0 0 O<s:<::: t 
( 1 1 .4.4) 

In differential notation, 
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where 

tP(t)dX(t) = tl>(t) dl(t) + tl>(t) dR(t) + tl>(t) dJ(t) 
= tf>(t) dXc(t) + tf>(t) dJ(t ) ,  

tl>(t) dl(t) = tl>(t)F(t) dW(t) , tl>(t) dR(t) = tl>(t)8(t) dt , 
tl>(t) dXc (t) = tl>(t)F(t) dW(t) + tl>(t)8(t) dt. 

Example 1 1 .4 .4 .  Let X(t) = M(t) = N(t) ->..t , where N(t) is a Poisson process 
with intensity >.. so that M(t) is the compensated Poisson process of Theorem 
1 1 .2.4. In the terminology of Definition 1 1 .4.2, I(t) = 0, xc (t) = R(t) = ->..t , 
and J(t) = N(t) . Let tl>(s) = LlN(s) (i.e . ,  tl>(s) is 1 if N has a jump at time 
s, and tf>( s) is zero otherwise) .  For s E (0, t] , tf>( s) is zero except for finitely 
many values of s, and thus 

However, 

Therefore, 

1t tl>(s) dN(s) = L (.6.N(s) ) 2 = N(t) . 
0 O<s�t 

lot tl>(s) dM(s) = ->.lot tl>(s) ds +lot tl>(s) dN(s) = N(t) . 

For Brownian motion W(t) , we defined the stochastic integral 

I(t) = lot F(s) dW(s) 

( 1 1 .4.5) 
0 

in a way that caused I(t) to be a martingale. To define the stochastic integral, 
we approximated the integrand F(s) by simple integrands Fn (s) , wrote down 
a formula for 

ln (t) = lot Fn (s) dW(s) , 

and verified that , for each n, In (t) is a martingale. We defined I(t) as the limit 
of In (t) as n -+ oo and, because it is the limit of martingales, I(t) also is a 
martingale. The only conditions we needed on F(s) for this construction were 
that it be adapted and that it satisfy the technical condition lE J; F2 ( s) ds < 
oo for every t > 0. 

This construction makes sense for finance because we ultimately replace 
F(s) by a position in an asset and replace W(s) by the price of that asset. 
If the asset price is a martingale (i.e . ,  it is pure volatility with no underlying 
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trend) , then the gain we make from investing in the asset should also be a 
martingale. The stochastic integral is this gain. 

In the context of processes that can jump, we still want the stochastic 
integral with respect to a martingale to be a martingale. However, we see 
in Example 11 .4.4 that this is not always the case. The integrator M(t) in 
that example is a martingale (see Theorem 11 .2 .4) , but the integral N(t) in 
( 1 1 .4.5) is not because it goes up but cannot go down. 

An agent who invests in the compensated Poisson process M ( t) by choos
ing his position according to the formula 4>(s) = <1N(s) has created an arbi
trage. To do this, he is holding a zero position at all times except the jump 
times of N(s) , which are also the jump times of M(s) , at which times he holds 
a position one. Because the jumps in M(s) are always up and our investor 
holds a long position at exactly the jump times, he will reap the upside gain 
from all these jumps and have no possibility of loss. 

In reality, the portfolio process 4>(s) = <1N(s) cannot be implemented 
because investors must take positions before jumps occur. No one without 
insider information can arrange consistently to take a position exactly at the 
jump times. However, 4>( s) depends only on the path of the underlying process 
M up to and including at time s and does not depend on the future of the 
path. That is the definition of adapted we used when constructing stochastic 
integrals with respect to Brownian motion. Here we see that it is not enough 
to require the integrand to be adapted. A mathematically convenient way 
of formulating the extra condition is to insist that our integrands be left
continuous. That rules out 4'( s) = <1N ( s ) .  In the time interval between jumps, 
this process is zero, and a left-continuous process that is zero between jumps 
must also be zero at the jump times. 

We give the following theorem without proof. 
Theorem 1 1 .4.5. Assume that the jump process X(s) of {1 1 .4 . 1}-{1 1 . 4 .3} is 
a martingale, the integrand 4>(s) is left-continuous and adapted, and 

lE 1t F2(s)4>2 (s) ds < 00 for all t 2:: 0. 

Then the stochastic integral J� 4>(s) dX(s) is also a martingale. 
The mathematical literature on integration with respect to jump processes 

gives a slightly more general version of Theorem 1 1 .4.5 in which the integrand 
is required only to be predictable. Roughly speaking, such processes are those 
that can be gotten as the limit of left-continuous processes. We shall not need 
this more general concept. 

Note that although we require the integrand 4>( s) to be left-continuous in 
Theorem 1 1 .4.5, the integrator X(t) is always taken to be right-continuous, 
and so the integral J� 4>( s) dX ( s) will be right-continuous in the upper limit of 
integration t. The integral jumps whenever X jumps and 4> is simultaneously 
not zero. The value of the integral at time t includes the jump at time t if 
there is a jump; see ( l l .4.4) . 
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Example 1 1 . 4 . 6. Let N(t) be a Poisson process with intensity A, let M(t) = 
N(t) - At be the compensated Poisson process, and let 

be 1 up to and including the time of the first jump and zero thereafter. Note 
that cJ> is left-continuous. We have 

t cJ>(s) dM(s) = { -At, 0 � t < St , }0 1 - ASt , t ;:::: St 
= ll[s1 ,oo) (t) - A(t 1\ St ) .  ( 1 1 .4.6) 

The notation t 1\ S1 in ( 1 1 .4.6) denotes the minimum of t and S1 . See Figure 
1 1 .4. 1 .  

1 

t 

Fig. 11 .4. 1 .  Hrs1 ,ooJ (t) - A(t A SI ) .  

We verify the martingale property for the process llrs. ,oo) (t) - A(t 1\ St )  by 
direct computation. For 0 � s < t , we have 

If S1 � s, then at time s we know the value of S1 and the conditional ex
pectations above give us the random variables being estimated. In particular, 
the right-hand side of ( 1 1 .4.7) is 1 - ASt = llrs. ,oo) (s) - A(s 1\ St ) ,  and the 
martingale property is satisfied. On the other hand, if S1 > s, then 

IP'{ St � t iF(s) }  = 1 - IP'{ St > t iSt > s} = 1 - e->.(t-s) , ( 1 1 .4 .8) 
where we have used the fact that S1 is exponentially distributed and used the 
memorylessness ( 1 1 .2 .3) of exponential random variables. In fact , the memo
rylessness says that, conditioned on S1 > s , the density of S1 is 

a a - 8u IP'{St > uiSt > s} = - au e
->.(u-s ) = Ae->.<u-s ) , u > s . 

It follows that , when S1 > s , 
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AlE [t A S1 IF(s)] = AlE [t A S1 I S1 > s] 

= A2100 
(t A u)e->.(u-s) du 

= A21t 
ue->.(u-s)du + A21oo 

te->.(u-s)du 

= -Aue->.<u-s) l u
=t + A 1

t 
e->.(u-s>du - Ate->.<u-s) l u

=oo 

u=s 8 u=t 

= As - Ate->.(t-s) - e->.(u-s) 1 ::: + Ate->.(t-s) 
= As - e->.(t-s) + 1 .  ( 1 1 .4.9) 

Subtracting ( 1 1 .4.9) from ( 1 1 .4.8) , we obtain in the case 81 > s that 

This completes the verification of the martingale property for the stochastic 
integral in ( 1 1 .4.6) . 

Note that if we had taken the integrand in (1 1 .4.6) to be H[o,st ) (t) , which is 
right-continuous rather than left-continuous at sl '  then we would have gotten 

(1 1 .4 .10) 

According to (1 1 .4.9) with s = 0, 

lE [ - A(t A SI )] = e->.t - 1 , 

which is strictly decreasing in t. Consequently, the integral ( 1 1 .4 .10) obtained 
from the right-continuous integrand n[o,st ) (t) is not a martingale. 0 

1 1 .4.2 Quadratic Variation 

In order to write down the It6-Doeblin formula for processes with jumps, we 
need to discuss quadratic variation. Let X(t) be a jump process. To compute 
the quadratic variation of X on [0, T] , we choose 0 = to < h < t2 < · · · < 
tn = T, denote the set of these times by II = {to , h , . . .  , tn } ,  denote the 
length of the longest subinterval by I III I I = maxj (tj+l - tj ) ,  and define 

n- 1 
Qrr (X) = L (X(tj+I ) - X(tj )t 

j=O 

The quadratic variation of X on [0, T] is defined to be 

[X, X] (T) = lim Qrr(X) , 
I IIT I I--+0 
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where of course as I I  Ji l l  -+ 0 the number of points in li must approach infinity. 
In general, [X, X] (T) can be random (i.e. , can depend on the path of X) .  

However, in the case of Brownian motion, we know that [W, W] (T) = T does 
not depend on the path. In the case of an Ito integral I(T) = J0

T r(s)dW(s) 
with respect to Brownian motion, [J, I] (T) = J: T2 (s)ds can depend on the 
path because r( s) can depend on the path. 

We will also need the concept of cross variation. Let XI (t) and X2 (t) be 
jump processes. We define 

n- I 
Cn (XI , X2) = L (XI (tj+ l ) - XI (ti )) (X2 (ti+ 1 ) - X2 (ti ) ) 

j=O 

and 

Theorem 11 .4.7. Let XI (t) = XI (O) + h (t) + RI (t) + JI (t) be a jump pro
cess, where II (t) = f� n (s) dW(s) ,  RI (t) = f� BI (s) ds, and JI (t) is a right
continuous pure jump process. Then Xl(t) = XI (0) + h (t) + RI (t) and 

[XI > XI ) (T) = [Xf, Xf) (T) + [Jl >  JI ] (T) = 1T 
rf (s) ds + L (LlJI (s)) 2 . 

0 0<s:$T 
( 1 1 .4. 1 1 )  

Let X2 (t) = X2 (0) + l2 (t) + R2 (t) + J2 (t) be another jump process, where 
h (t) = f� T2 (s) dW(s) ,  R2 (t) = f� 82 (s) ds , and J2 (t) is a right-continuous 
pure jump process. Then Xi(t) = X2 (0) + l2 (t) + R2 (t) ,  and 

[XI , X2) (T) = [Xf , Xil (T) + [JI , J2] (T) 

= 1T 
n (s)r2 (s) ds + L LlJI (s)Llh(s) . ( 1 1 .4. 12) 

0 O<s:$T 

PROOF: We only need to prove ( 1 1 .4 .12) since ( 1 1 .4. 1 1 )  is the special case of 
( 1 1 .4. 12) in which x2 = XI . We have 

n- I 
Cn (XI , X2 ) = L (XI (tjH ) - XI (ti ) ) (X2 (ti+ 1 ) - X2 (ti )) 

j=O 
n-I 

= L (Xf(tj+ l ) - xc (tj ) + JI (tj+I ) - JI (tj )) 
j=O 

X (XHtj+l ) - Xi{tj ) + h(tj+l ) - h(tj ) ) 
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= E (Xf (tj+l ) - Xf(tj )) (Xi(tj+l ) - Xi(tj ) )  
j=O 

n- 1  
+ E (Xf(tj+I ) - Xf(tj ) ) (J2 (tj+l ) - J2 (tj ) ) 

j=O 
n- 1  

+ E (J1 (tj+ 1 ) - J1 (tj )) (Xi(tj+l ) - Xi (tj )) 
j=O 
n-1 

+ E (J1 (ti+d - J1 (tj )) (J2 (tj+1 ) - h (tj )) . ( 1 1 .4 .13) 
j=O 

We know from the theory of continuous processes that 
n- 1  

lim L (Xf(ti+d - Xf(tj )) (Xi {tj+l ) - Xi (tj )) = [XL Xi] (T) 
I III I I-+0 j=O 

= 1T 
n (s)H (s) ds. 

We shall show that the second and third terms appearing on the right
hand side of ( 1 1 .4 .13) have limit zero as l lll l l  -+ 0, and the fourth term has 
limit 

[J1 ,  J2] (T) = L L1J1 (s)L1J2 (s) . 
O<s�T 

We consider the second term on the right-hand side of ( 1 1 .4 .13) : 

n- 1  
E (Xf(tj+l ) - Xf (tj )) (J2 (tj+l ) - J2 (tj )) 
j=O 

n- 1  
::; �ax I Xf (tj+l ) - Xf (tj ) l · L i h (tj+l ) - J2 (tj ) l O�J�n- 1  . 

0 J= 
::; �ax I Xf (tj+l ) - Xf (tj ) l · L IL1J2 (s) l . O<J<n- 1  - - O<s�T 

As l lll l l  -+ 0, the factor maxo�j�n- 1  IXf (tj+l ) - Xf (tj ) l has limit zero, 
whereas Eo<s<T IL1J2 (s) l is a finite number not depending on ll. Hence, the 
second term on the right-hand side of (1 1 .4. 13) has limit zero as l lll l l  -+ 0. 
Similarly, the third term on the right-hand side of ( 1 1 .4 .13) has limit zero. 

Let us fix an arbitrary w E fl, which fixes the paths of these processes , and 
choose the time points in ll so close together that there is at most one jump of 
J1 in each interval (ti , ti+l ] , at most one jump of J2 in each interval (tj , ti+1 ] , 
and if J1 and J2 have a jump in the same interval, then these jumps are 
simultaneous. Let A1 denote the set of indices j for which (tj ,  t3+ 1 ] contains a 
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jump of J1 , and let A2 denote the set of indices j for which (tj , ti+I l  contains 
a jump of J2 . The fourth term on the right-hand side of ( 1 1 .4 .13) is 

n- 1 
L (Jl (tj+l ) - Jl (tj ) ) (h(tj+I ) - h(tj ) ) 
j=O 

L (Jl (tj+l ) - Jl (tj ) ) (h (tj+l ) - h (tj )) 
jEA, nA2 

= L LlJ1 (s)Llh(s) .  
O<s�t 

This completes the proof. 0 
Remark 11 . 4 .8. In differential notation, equation ( 1 1 .4 .12) of Theorem 1 1 .4.7 
says that if 

then 

In particular, 
dXf (t) dJ2 (t) = dX2 (t) dJ1 (t) = 0; 

the cross variation between a continuous process and a pure jump process is 
zero. It follows that the cross variation between a Brownian motion and a 
Poisson process is zero. 

More generally, the cross variation between two processes is zero if one of 
them is continuous and the other has no Ito integral part . In order to get a 
nonzero cross variation, both processes must have a dW term or the processes 
must have simultaneous jumps. This means that the cross variation between 
a Brownian motion and a compensated Poisson process is also zero. We state 
this last fact as a corollary. 0 
Corollary 11 .4.9. Let W(t) be a Brownian motion and M(t) = N(t) - )..t be 
a compensated Poisson process relative to the same filtration :F(t) {Definition 
11 . 4 . 1}. Then 

[W, M] (t) = 0, t 2:: 0. 
PROOF: In Theorem 1 1 .4.7, take h (t) = W(t) , R1 (t) = J1 (t) = 0 and take 
/2 (t) = 0, R2 (t) = ->-.t, and h(t) = N(t) . 0 

We shall see in Corollary 1 1 .5 .3 that the equation [W, M] (t) = 0 implies 
that W and M are independent , and hence W and N are independent . A 
Brownian motion and a Poisson process relative to the same filtration must 
be independent. 
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Corollary 11 .4.10. For i = 1 ,  2, let Xi (t) be an adapted, right-continuous 
jump process. In other words, Xi (t) = Xi (O) + Ii (t) + Ri (t) + Ji (t) , where 
Ii (t) = J; ri (s) dW(s) , �(t) = J; Bi (s) ds, and Ji (t) is a pure jump process. 
Let Xi (O) be a constant, let <Pi (s) be an adapted process, and set 

By definition, 

where 

't (t) = J; <Pi (s)ri (s) dW(s) , R; (t) = J; <Pi (s)Bi (s) ds , 

};_ (t) = Eo<s�t <Pi (s)LlJi (s) .  

Note that Xi (t) is a jump process with continuous part Xi(t) = Xi (O) +'i(t) + 
R; (t) and pure jump part };_ (t) . We have 

[x1 , x2) (t) 
= [XL X2) (t) + [J;. , J2) (t) 

= t <P1 (s)<P2 (s)n (s)r2 (s) ds + L <P1 (s)<P2 (s)LlJ1 (s)LlJ2 (s) Jo O<s�t 
= 1t <P1 (s)<P2 (s) d [X1 , X2] (s) .  

Remark 1 1 .4 . 1 1 . Corollary l l .4 .10 may be rewritten using differential nota
tion. The corollary says that if 

then 

1 1 . 5  Stochastic Calculus for Jump Processes 

11 .5 .1  ItO-Doeblin Formula for One Jump Process 

For a continuous-path process , the ItO-Doeblin formula is the following. Let 

( 1 1 .5 . 1 )  

where r(s) and B(s) are adapted processes. In differential notation, we write 
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Let f(x) be a function whose first and second derivatives are defined and 
continuous. Then 

df (Xc(s)) = f' (Xc (s)) dXc(s) + �f" (Xc(s) ) dXc (s) dXc (s) 

= f' (Xc (s))r(s) dW(s) + f' (Xc (s))8(s) ds 
1 +2 !" (xc( s) )r2 (s) ds . ( 1 1 .5 .2) 

We write this in integral form as 

f (Xc (t)) = f (Xc (O)) + 1t 
f' (Xc (s))r(s) dW(s) + 1t 

f' (Xc (s))8(s) ds 

+� t f" (Xc (s))r2 (s) ds . 2 lo 
We now add a right-continuous pure jump term J into ( 1 1 .5 . 1 ) ,  setting 

X(t) = X(O) + I(t) + R(t) + J(t) , 

where I(t) = J� r(s) dW(s) and R(t) = J� 8(s) ds. As usual, we denote by 
xc(t) = X(O) + I(t) + R(t) the continuous part of X(t) . Between jumps of J, 
the analogue of ( 1 1 .5 .2) holds: 

df (X(s)) = !' (X(s)) dX(s) + �!" (X(s)) dX(s) dX(s) 

= !' (X (s))r(s) dW(s) + !' (X(s) )e(s) ds 
1 +2!" (X(s))r2 (s) ds 

= f' (X(s)) dXc (s) + �f" (X(s)) dXc (s) dXc (s) . ( 1 1 .5.3) 

When there is a jump in X from X(s-) to X(s) , there is typically also a 
jump in f (X) from f (X ( s-)} to f (X ( s)} . When we integrate both sides of 
( 1 1 .5.3) from 0 to t , we must add in all the jumps that occur between these 
two times. This leads to the following theorem. 
Theorem 11 .5 .1  (ItO-Doeblin formula for one jump process) .  Let 
X(t) be a jump process and f(x) a function for which f' (x) and f" (x) are 
defined and continuous. Then 

f (X(t)) = f (X(O)) + 1t 
f' (X(s)) dXc (s) + � 1t 

f" (X(s)) dXc (s) dXc (s) 

+ L [f (X (s)) - f (X(s-)) ] . ( 1 1 .5.4) 
O<s::;t 
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PROOF: Fix w E  J!, which fixes the path of X, and let 0 < r1 < T2 < · · · < 
Tn- 1  < t be the jump times in [0, t) of this path of the process X. We set 
To = 0, which is not a jump time, and Tn = t , which may or may not be a 
jump time. Whenever u < v are both in the same interval (Tj , Tj+I ) , there 
is no jump between times u and v, and the ltO-Doeblin formula ( 1 1 .5.3) for 
continuous processes applies. We thus have 

Letting u ..j.. Tj and v t Tj+I and using the right-continuity of X, we conclude 
that 

f (X(Tj+I -)) - f (X(rj )) 

= 1ri+t J' (X (s)) dXc (s) + � 1Ti+t 
J" (X(s)) dXc (s) dXc(s) .  

3 3 

(1 1 .5 .5) 

(Note here that 

but this is not the case if we replace dXc(s) by dX(s) in this equation. If 
we made this replacement , the jump in X at time Tj+I would appear on the 
right-hand side of the equation but not on the left-hand side. It is for this 
reason that we integrate with respect to dXc(s) in ( 1 1 .5 .5) . )  We now add the 
jump in /(X) at time Tj+I into (1 1 .5 .5) , obtaining thereby 

f (X(Tj+1 )) - f (X(rj )) 

= 1ri+t J' (X(s)) dXc (s) + � 1ti+ t 
f" (X(s)) dXc(s) dXc (s) 

3 3 

+ f (X(Tj+I ) ) - f (X(Tj+I -)) . 

Summing over j = 0, . . .  , n - 1 ,  we obtain 

f (X(t)) - f (X(O)) 
n- 1  

= L [f (X (Tj+1 )) - f (X(Tj )) ] 
j=O 

n- 1 
+ L [f (X(TJ+d) - f (X(Tj+I -)) ] , 

j=O 
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which is ( 1 1 .5.4) . Note in this connection that if there is no jump at Tn = t, 
then the last term in the sum on the right-hand side, f (X(rn)) - f (X(Tn-)) , 
is zero. 0 

It is not always possible to rewrite ( 1 1 .5.4) in differential form because it 
is not always possible to find a differential form for the sum of jumps. We 
provide one case in which this can be done in the next example. 
Example 1 1 .  5. 2 (Geometric Poisson process). Consider the geometric Poisson 
process 

S(t) = S(O) exp {N(t) log( a + 1 ) - >..at } = S(O)e-.Xut (a + 1 )N (t ) , ( 1 1 .5 .6) 

where a > -1 is a constant. If a > 0, this process jumps up and moves down 
between jumps; if -1 < a < 0, it jumps down and moves up between jumps. 
We show that the process is a martingale. 

We may write S(t) = S(O)f (X (t) ) , where f(x) = ex and 
X(t) = N(t) log( a + 1) - >..at 

has continuous part xc(t) = ->..at and pure jump part J(t) = N(t) log( a+ 1 ) .  
According to the It6-Doeblin formula for jump processes, 

S(t) = f (X(t)) 

= f (X(O)) - >..a 1t !' (X(u)) du + L [f (X(u)) - f (X(u- ) } ] 0 0<u$t 
= S(O) - >..a 1t S(u) du + L [S(u) - S(u-)] . 0 O<u�t 

(1 1 .5 .7) 

If there is a jump at time u, then S(u) = (a + 1 )S(u- ) .  Therefore, 

S(u) - S(u-) = aS(u-) (1 1 .5.8) 
whenever there is a jump at time u, and of course S(u) - S(u-) = 0 if there 
is no jump at time u. In either case, we have 

S(u) - S(u-) = aS(u-)LlN(u) .  
This observation permits us to rewrite the sum on the right-hand side of 
( 1 1 .5 . 7) as 

L [S(u) - S(u-)] = L aS(u-)LlN(u) = a 1t S(u-) dN(u) .  
O<u�t O<u�t 0 

It does not matter whether we write the Riemann integral on the right
hand side of ( 1 1 .5. 7) as J; S( u) du or as J; S( u-) du. The integrands in these 
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two integrals differ at only finitely many times, and when we integrate with 
respect to du, these differences do not matter. Therefore, we may rewrite 
( 1 1 .5 . 7) as 

S(t) = S(O) - ..\u 1t S(u-) du + u 1t S(u-) dN(u) 

= S(O) + u  1t S(u-) dM(u) , 

where M is the compensated Poisson process M(u) = N(u) - ..\u, which is a 
martingale. Because the integrand S( u-) is left-continuous, Theorem 1 1 .4.5 
guarantees that S(t) is a martingale. 

In this case, the ltO-Doeblin formula ( 1 1 .5 .7) has a differential form, 
namely, 

dS(t) = uS(t-) dM(t) = -..\uS(t) dt + uS(t-) dN(t) . ( 1 1 .5.9) 

We were able to obtain this differential form because in ( 1 1 .5.8) we were able 
to write the jump in /(X) (i.e. , the jump in S) at time u in terms of f (X (u-)) 
(i .e. , in terms of S(u-) ) . 0 
Corollary 11 .5.3. Let W(t) be a Brownian motion and let N(t) be a Pois
son process with intensity ..\ > 0, both defined on the same probability space 
(!2, :F, IP') and relative to the same filtration :F(t) ,  t ;::: 0. Then the processes 
W ( t) and N ( t) are independent. 

KEY STEP IN PROOF: Let u1 and u2 be fixed real numbers and define 

Y(t) = exp { u1 W(t) + u2N(t) - �u�t - ..\ (eu2 - 1) t } · 

We use the ltO-Doeblin formula to show that Y is a martingale. 
To do this , we define 

1 X(s) = u1 W(s) + u2N(s) - 2u�s - ..\ (eu2 - 1) s 

and f(x) = ex , so that Y(s) = f (X (s)) . The process X (s) has Ito integral 
part I(s) = u1 W(s) ,  Riemann integral part R(s) = - !u�s - ..\ (eu2 - l) s ,  and 
pure jump part J(s) = u2N(s ) .  In particular, 

1 dXc (s) = u1 dW(s) - 2u� ds - ..\ (eu2 - 1) ds , dXc (s) dXc (s) = u� ds . 

We next observe that if Y has a jump at time s , then 

Therefore, 
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Y(s) - Y(s-) = (eu2 - 1)Y(s- )LlN(s) .  
According to the ItO-Doeblin formula for jump processes , 

Y(t) = J (X (t) ) 
= f (X(O)) + lot 

f' (X (s )) dXc (s) + �lot J" (X (s )) dXc (s) dXc (s) 
+ L [J (X (s)) - f (X (s- )) ]  
0<s:5t 

t 1 t t = 1 + u1 J0 Y(s) dW(s) - 2ur }0 Y(s) ds - >.(eu2 - 1) }0 Y(s) ds 

+�uifnt Y(s) ds + L [Y(s) - Y(s-) ] 0 0<s:5t 
= 1 + u1 lot Y(s) dW(s) - >.(eu2 - 1) lot Y(s-) ds 

+ (eu2 - 1) lot Y(s-) dN (s) 

= 1 + u1 lot Y(s) dW(s) + (eu2 - 1) lot Y(s-) dM(s) , ( 1 1 .5 . 10) 

where M(s) = N(s) - >.s is a compensated Poisson process. Here we have 
used the fact that because Y has only finitely many jumps, J; Y ( s) ds = 
J; Y(s-) ds . The Ito integral J; Y(s) dW(s) in the last line of ( 1 1 .5 . 10) is a 
martingale, and the integral of the left-continuous process Y(s-) with respect 
to the martingale M (s) is also. Therefore, Y is a martingale. 

Because Y(O) = 1 and Y is a martingale, we have IEY (t) = 1 for all t. In 
other words, 

IE exp { u1 W(t) + u2N(t) - �uit - >. (eu2 - 1) t} = 1 for all t 2:: 0. 

We have obtained the joint moment-generating function formula 

This is the product of the moment-generating function IEeu' W(t) = exp { �urt} 
for W (t ) (see Exercise 1 .6(i)) and the moment-generating function 1Eeu2N(t) = 
exp { )..t ( eu2 - 1) }  for N ( t) (see ( 1 1 .3.4) ) .  Since the joint moment-generating 
function factors into the product of moment-generating functions, the random 
variables W (t ) and N(t) are independent. 

The corollary asserts more than the independence between N ( t) and W ( t) 
for fixed t , saying that the processes N and W are independent (i.e. , anything 
depending only on the path of W is independent of anything depending only 
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on the path of N). For example, the corollary asserts that maxo<s<t W(s) 
is independent of J; N ( s) ds . The first step in the proof of this st;te�ent is 
the one just given, which shows that the random variables W(t) and N(t) are 
independent of each fixed t. The next step, which we omit , is to show that for 
any finite set of times 0 :::; t1 < t2 < · · · < tn , the vector of random variables 
(W(h ) ,  W(t2 ) ,  . • .  , W(tn) )  is independent of the vector of random variables 
(N(h ) ,  N(h) ,  . . .  , N(tn ) ) .  The assertion of the corollary follows from this . 0 

11.5 .2 ItO-Doeblin Formula for Multiple Jump Processes 

There is a multidimensional version of the ItO-Doeblin formula for jump pro
cesses. We give the two-dimensional version. The formula for higher dimen
sions follows the same pattern. 
Theorem 11 .5.4 (Two-dimensional ItO-Doeblin formula for processes 
with jumps) . Let X1 (t) and X2 (t) be jump processes, and let f(t , X1 , x2) be 
a function whose first and second partial derivatives appearing in the following 
formula are defined and are continuous. Then 

f (t , X1 (t) , X2 (t) ) 

= f (O, X1 (0) , X2 (0) ) + lo
t 
ft (s, X1 (s) , X2 (s) ) ds 

+ lo
t 
fx, (s ,  X1 (s) , X2 (s) ) dXf (s) + lo

t 
fx2 (s ,  X1 (s) , X2 (s) ) dX2 (s) 

+� lo
t 
fx, ,x, (s ,  X1 (s) , X2 (s) ) dXf (s) dXf (s) 

+ lo
t 
fx, ,x2 (s , Xl (s) , X2 (s) ) dXf (s) dX2 (s) 

+� lo
t 
fx2 ,x2 (s ,  X1 (s ) ,  X2 (s) ) dX2 (s) dX2 (s) 

+ L [f (s , X1 (s) , X2 (s) ) - f (s , X1 (s- ) , X2 (s-)) ] . 
0<s$t 

Corollary 11.5 .5 (Ito's product rule for jump processes) .  Let X1 (t) 
and X2 (t) be jump processes. Then 

X1 (t)X2 (t) = X1 (0)X2 (0) + lo
t 
X2(s) dXf (s) + lo

t 
X1 (s) dX2 (s) 

+ (Xf , X2] (t) + L [X1 (s)X2 (s) - X1 (s-)X2 (s-)] 

= X1 (0)X2 (0) + lo
t 
X2(s-) dX1 (s) + lo

t 
X1 (s-) dX2 (s) 

+ [X1 , X2] (t) . ( 1 1 .5. 1 1 )  
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The two-dimensional It6-Doeblin formula implies 

X1 (t)X2 (t) = X1 (0)X2 (0) + 1t X2 (s) dXf (s) + 1t X1 (s) dX� (s) 

+1t 1 dXf(s) dX� (s) + L [x1 (s)X2 (s) - XI (s-)X2 (s-)] . 0 O<s::;t 
(1 1 .5. 12) 

The notation J� 1 dXf (s) dX� (s) in (1 1 .5. 12) means [Xf , X2] (t) (see Remark 
1 1 .4.8) .  This establishes the first equality in ( 1 1 .5. 1 1 ) .  

To obtain the second equality, we denote by J1 (t) = X1 (t) - Xf (t) and 
h(t) = X2(t) - X2(t) the pure jump parts of X1 (t) and X2 (t) , respectively, 
and begin with the last line of ( 1 1 .5 . 1 1 ) ,  using ( 1 1 .4. 12) to compute 

X1 (0)X2 (0) + 1t X2 (s-) dX1 (s) + 1t X1 (s- ) dX2 (s) + [X1 , X2] (t) 

= X1 (0)X2 (0) + 1t X2 (s-) dXf (s) + 1t X2 (s-) dJ1 (s) 

+ 1t X1 (s-) dX2 (s) + 1t XI (s-) dh(s) 
+ [Xf , X�) (t) + L LlJ1 (s)LlJ2 (s) 

= X1 (0)X2 (0) + 1t X2 (s) dXf (s) + 1t X1 (s) dX� (s) + [Xf , X�] (t) 
+ L [X2 (s-)LlX1 (s) + X1 (s-)LlX2 (s) + LlX1 (s)LlX2 (s)] . 
0<s$t 

(1 1 .5 . 13) 
We have also used the fact that the jumps in Xi (t) are the same as the jumps 
in Ji (t) . It remains to show that this last sum is the same as the sum 

L [X1 (s)X2 (s) - X1 (s-)X2 (s-)] 
O<s::;t 

in the second line of ( 1 1 .5. 1 1 ) . We expand the typical term in the sum in the 
second line of ( 1 1 .5. 1 1 ) : 
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X1 (s)X2 (s) - X1 (s-)X2 (s-) 
= (X1 (s-) + LlX1 (s)) (X2 (s-) + LlX2(s)) - X1 (s-)X2 (s-) 
= X1 (s-)X2 (s-) + X1 (s-)LlX2 (s) + LlX1 (s)X2 (s-) + LlX1 (s)LlX2 (s) 

-X1 (s-)X2 (s-) 
= X1 (s-)LlX2 (s) + LlX1 (s)X2 (s-) + LlX1 (s)LlX2 (s) . 

This is the typical term in the sum appearing at the end of ( 1 1 .5 . 13) . 0 

For stochastic calculus without jumps, Girsanov's Theorem tells us how 
to change the measure using the Radon-Nikodym derivative process 

Z(t) = exp { - 1
t 
F(s) dW(s) - � 1

t 
F2 (s) ds } · 

This process satisfies the stochastic differential equation 
dZ(t) = -F(t)Z(t) dW(t) = Z(t) dXc(t) ,  

where xc(t) = - I� r(s) dW (s) and [xc , xc] (t) = I� F2 (s) ds. We may 
rewrite Z(t) as 

( 1 1 .5. 14) 

In stochastic calculus for processes with jumps, the analogous stochastic 
differential equation is 

dZx (t) = zX (t-) dX(t) , ( 1 1 .5 . 15) 
where the integrator X is now allowed to have jumps. The solution to ( 1 1 .5 .15) 
is like ( 1 1 .5 . 14) , except now, whenever there is a jump in X, ( 1 1 .5 . 15) says 
there is a jump in zx of size 

Therefore, 

zX (s) = zX (s-) + LlZX (s) = zX (s-) (1 + LlX(s)) . 

The following corollary presents the result . 
Corollary 11.5.6. Let X(t) be a jump process. The Doleans-Dade exponen
tial of X is defined to be the process 

zx (t) = exp {xc(t) - � [xc , xc] (t) } II (1 + LlX(s)) . 
O<s�t 

This process is the solution to the stochastic differential equation {1 1 . 5. 1 5} 
with initial condition zx (0) = 1 ,  which in integral form is 

( 1 1 .5 . 16) 
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PROOF: We may write X(t) as X(t) = Xc(t) + J(t) ,  where 

xc(t) = 1
t 
r(s) dW(s) + 1

t 
8(s) ds ( 1 1 .5 . 17) 

is the continuous part of X and J(t) is the pure jump part . We define 

Y(t) = exp {1
t 
r(s) dW(s) + 1

t 
8(s) ds - � 1

t 
T2 (s) ds } 

= exp { xc(t) - � [xc , xc] (t) } . ( 1 1 .5 . 18) 

From the It6-Doeblin formula for continuous processes, we know that 

dY(t) = Y(t) dXc (t) = Y(t-) dXc (t) . ( 1 1 .5 . 19) 

We next define K(t) = 1 for t between 0 and the time of the first jump of 
X, and we set 

K(t) = IJ (1 + LlX(s)) ( 1 1 .5 .20) 

for t greater than or equal to the first jump time of X. The process K(t) is a 
pure jump process, and zx (t) = Y(t)K(t) . If X has a jump at time t, then 
K(t) = K(t-) (1  + LlX(t)) . Therefore, 

LlK(t) = K(t) - K(t- ) = K(t-)LlX(t) . (1 1 .5 .21 ) 
Because Y(t) is continuous and K(t) is a pure jump process , [Y, K] (t) = 0. 

We now use Ito's product rule for jump processes to obtain 

zx (t) = Y(t)K(t) 

= Y(O) + 1
t 
K(s-) dY(s) + 1

t 
Y(s-) dK(s) 

= 1 + 1
t 
Y(s- )K(s-) dXc (s) + L Y(s- )K(s-)LlX(s) 

0 0<s$t 

= 1 + 1
t 
Y(s-)K(s-) dX(s) 

= 1 + 1
t 

zX (s-) dX(s) . (1 1 .5.22) 
This is ( 1 1 .5 . 16) .  0 

1 1 . 6  Change of Measure 

Just as we can use Girsanov's Theorem to change the measure so that a 
Brownian motion with drift becomes a Brownian motion without drift, we 
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can change the measure for Poisson processes and compound Poisson pro
cesses. For a Poisson process, the change of measure affects the intensity. For 
a compound Poisson process, the change of measure can affect both the in
tensity and the distribution of the jump sizes . We treat these two situations 
in the next two subsections, and in the third subsection we also include a 
Brownian motion component in the process under consideration. 

11 .6. 1  Change of Measure for a Poisson Process 

Let N(t) be a Poisson process on a probability space (!I, :F, IP') relative to a 
filtration :F(t) , t ?: 0. We denote the intensity of N(t) by A, a positive constant 
(i.e. , JEN(t) = At) . The compensated Poisson process M(t) = N(t) - At is a 
martingale under lP' (Theorem 1 1 .2 .4) . Let .X be a positive number. We define 

( 1 1 .6 . 1 )  

We fix a time T >  0 and will use Z(T) to change to a new measure JPl under 
which N(t) , 0 � t � T, has intensity .X rather than A. It is clear that Z(T) > 0 
almost surely. In order to use Z(T) to change the measure, we also need to 
verify that lEZ ( T) = 1 .  
Lemma 11.6. 1 .  The process Z(t) of {1 1 . 6. 1} satisfies 

X - A  dZ(t) = -A-Z(t-) dM(t) . ( 1 1 .6.2) 

In particular, Z(t) is a martingale under lP' and JEZ(t) = 1 for all t . 

PROOF: Define X(t) = >.�.A M(t), which is a martingale with continuous part 
xc(t) = (A - .X)t and pure jump part J(t) = >.�.A N(t) . Then [Xc , xc] (t) = 0, 
and if there is a jump at time t, then L\X(t) = >.�.A , so 

.X 1 + L\X(t) = � -
Therefore, the process in ( 1 1 .6 . 1 ) may be written as 

Z(t) = exp {Xc(t) - � [Xc , xc] (t) } IT (1 + L\X(s) ) . 
O<s::;t 

We see from this formula that Z(t) is the Doleans-Dade exponential zx (t) of 
Corollary 1 1 .5 .6 . In particular, 

Z(t) = 1 + lo
t 
Z(s-) dX(s) . 
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Since X is a martingale and Z(s-)  is left-continuous, Z (t) is a martingale. 
Because Z(t) is a martingale and Z(O) = 1 , we know that JEZ(t) = 1 for all 
t � 0. 0 

We may now fix a positive time T and use Z(T) to change the measure. 
We define 

P(A) = i Z(T) dlP for all A E F. (1 1 .6 .3) 

Theorem 11.6.2 (Change of Poisson intensity) . Under the probability 
measure P, the process N(t) , 0 :::; t :::; T, is Poisson with intensity .X .  
KEY STEP I N  PROOF: We compute the moment-generating function of N(t) 
under P. For 0 :::; t :::; T, we can change the iE expectation of euN(t) to the lE 
expectation by using Z(t) as the Radon-Nikodym derivative rather than Z(T) 
(see Lemma 5.2 .1 ) .  Using the formula for Z(t) and the moment-generating 
function formula ( 1 1 .3.4) ,  we obtain 

lE [euN(t) Z(t)] = e<A-5.)t lE [euN(t) (�) N(t)l 
= e<A-5.)t lE [exp { ( u + log �) N(t) }] 
= e<A-5.)t exp { )..t ( eu+log(5./ A) - 1) } 
= exp { .Xt(eu - 1) } ,  

which is the moment generating function for a Poisson process with intensity 
.X (see again ( 1 1 .3 .4) ) .  0 
Example 1 1 . 6. 3. Consider a stock modeled as a geometric Poisson process 

S(t) = S(O) exp {at + N(t) log( a + 1 ) - .>.at} = S(O)e <a-Au)t (a + 1 )N(t) , 

where a > -1 , a =f. 0, and N(t) is a Poisson process with intensity ).. under 
the actual probability measure IP'. We saw in Example 1 1 .5 .2 that e-ats(t) is 
a martingale under IP', and hence S(t) has mean rate of return a. Indeed, in 
place of (1 1 .5.9) , we now have 

dS(t) = aS(t) dt + aS(t-) dM(t) , ( 1 1 .6.4) 
where M(t) is the compensated Poisson process M(t) = N(t) - .>.t. We would 
like to change to a probability measure P under which 

dS(t) = rS(t) dt + aS(t-)  dM(t) , ( 1 1 .6.5 ) 
where r is the interest rate, N(t) is a Poisson process with intensity .X under 
P, and M(t) = N(t) - .Xt is a compensated Poisson process under P. Then, 
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under IP', the geometric Poisson process would have mean rate of return equal 
to the interest rate, and iP would be the risk-neutral measure. 

To accomplish this, we note that the "dt" term in ( 1 1 .6.4) is 

(a - Aa)S(t) dt 

(recall that dM(t) = dN(t) - A dt) and the "dt" term in ( 1 1 .6.5) is 

(r - 5.a)S(t) dt. 

( 1 1 .6 .6) 

( 1 1 .6 .7) 

(Here again we are using the fact that S(t-) dt and S(t) dt have the same 
integrals, and we can thus use them interchangeably. ) We set ( 1 1 .6.6) and 
( 1 1 .6 .7) equal and solve for 

- a - r  A = A - -- . 
CT 

We then change to the risk-neutral measure by formula ( 1 1 .6.3) with Z(T) 
defined by ( 1 1 .6 . 1 ) . 

to 
To make the change of measure, we must have >. > 0, which is equivalent 

a - r  A > --. 
CT 

( 1 1 .6.8) 
If condition ( 1 1 .6.8) does not hold, then there is no risk-neutral measure and 
hence there must be an arbitrage. Indeed, if a >  0 and ( 1 1 .6.8) fails , then 

and borrowing at the interest rate r to invest in the stock is an arbitrage. 
If -1 < a < 0, the inequalities are reversed and the arbitrage consists of 
shorting the stock to invest in the money market account . D 

11.6.2 Change of Measure for a Compound Poisson Process 

Let N(t) be a Poisson process with intensity A, and let Y1 , Y2 , . . . be a se
quence of identically distributed random variables defined on a probability 
space (!l, F, IP') .  We assume the random variables Y1 , Y2 , . . .  are independent 
of one another and also independent of the Poisson process N(t) . We define 
the compound Poisson process 

N(t) 
Q(t) = L }i .  (1 1 .6.9) 

i= l 
Note for future reference that if N jumps at time t, then Q jumps at time t 
and 

LlQ(t) = YN(t) · ( 1 1 .6 . 10) 
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Our goal is to change the measure so that the intensity of N(t) and the 
distribution of the jump sizes Y1 , Y2 , . . .  both change. We first consider the 
case when the jump-size random variables have a discrete distribution (i.e. , 
each Yi takes one of finitely many possible nonzero values Y1 , Y2 , . . .  , YM ) .  Let 
p(ym) denote the probability that a jump is of size Ym =  

P(Ym) = IP'{Yi = Ym} , m = 1 , . . .  , M. 

This does not depend on i since Y1 , Y2 , . . . are identicall� distributed. We 
assume that p(ym) > 0 for every m and, of course, that Lm=l P(Ym) = 1 .  

Let Nm(t) denote the number of jumps in Q(t) of size Ym up to and 
including time t ,  so that 

M M 
N(t) = L Nm(t) and Q(t) = L YmNm(t) . 

m=l m=l 
According to Corollary 1 1 .3.4, N1 , . • •  , N M are independent Poisson processes 
and each Nm has intensity Am = Ap(ym) ·  

Let 5.1 , . . .  , >.M be given positive numbers, and set 

( 1 1 .6 . 1 1 )  

Lemma 11.6.4. The process Z(t )  of {1 1 . 6. 1 1} is a martingale. In particular, 
IEZ(t) = 1 for all t .  

PROOF: From Lemma 1 1 .6. 1 , we have 

( 1 1 .6 . 12) 

where 
Mm(t) = Nm(t) - Am dt. 

Because the integrand in ( 1 1 .6 .12) is left-continuous and the compensated 
Poisson process is a martingale, the process Zm is a martingale (Theorem 
1 1 .4.5) .  

For m =/:- n ,  the Poisson processes Nm and Nn have no simultaneous jumps, 
and hence [Zm , Zn] = 0. Ito's product rule (Corollary 1 1 . 5.5) implies that 

d(Z1 (t)Z2 (t) ) = Z2 (t-)  dZ1 (t) + Z1 (t-) dZ2 (t) . ( 1 1 .6 . 13) 

Because both Z1 and Z2 are martingales and the integrands in ( 1 1 .6. 13) are 
left-continuous, the process Z1Z2 is a martingale. Because Z1Z2 has no jumps 
simultaneous with the jumps of Z3 , Ito's product rule further implies 
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Once again, the integrators are martingales and the integrands are left
continuous. Therefore, Z1Z2Z3 is a martingale. Continuing this process, we 
eventually conclude that Z(t) = Z1 (t)Z2 (t) · · · Zm(t) is a martingale. 0 

Fix T > 0. Because Z(T) > 0 almost surely and JEZ(T) = 1 ,  we can use 
Z(T) to change the measure, defining 

P(A) = L Z(T) dP for all Z E F. 

Theorem 11 .6.5 (Change of compound Poisson intensity and jump 
distribution for finitely many jump sizes) . Under P, Q(t) is a compound 
Poisson process with intensity >. = E!:=l >.m , and Yi ,  Y2 , . . .  are independent, 
identically distributed random variables with 

( 1 1 .6 . 14) 
KEY STEP IN PROOF: We use the independence of N1 , . . .  , N M under lP' to 
compute the moment-generating function of Q(t) under P. For 0 � t � T, 
Lemma 5.2 . 1 and the moment-generating function formula ( 1 1 .3 .4) imply 

lE [ euQ(t) ] = lE [ euQ(t) Z(t)] 
� E [exp { U %;, YmNm(t) } · il, e(Am-,m )< ( �) Nm(<)l 
11 exp{(Am - ).m)t} · lE [exp { ( UYm + log �=) Nm(t) }] 
M 
II exp{ (Am - ).m)t} exp { Amt ( eUYm+log(5.,; .X, ) - 1) } 
m=l 
M 

= II exp { (Am - >-m)t + >.mteUYm - Amt} 
m=l 
M 

= II exp {>.mt (eUYm - 1) } 
m=l 
M 

= II exp { >.tp(ym )eUYm - >.mt} 
m=l 

According to ( 1 1 .3 . 5) , this is the moment-generating function for a compound 
Poisson process with intensity >. and jump-size distribution ( 1 1 .6 . 14) . 0 
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The Radon-Nikodym derivative process Z(t) of ( 1 1 .6 . 1 1 )  may be written 
as 

Z (t) = exp L (Am - );m)t · II Ap(ym) = e <>.-5.)t II Ap(Yi) . 
{ M } M ( - _ ) Nm(t) N(t) - _ 

m=l m=l Ap(ym) i=l Ap(Yi) 

This suggests that if Y1 , Y2 , . . .  are not discrete but instead have a common 
density f(y) , then we could change the measure so that Q(t) has intensity ); and Y1 , Y2 , . . .  have a different density J(y) by using the Radon-Nikodym 
derivative process 

N(t) - -
Z (t) = e <>.-5.)t II A/(Yi) . 

i=l Af(Yi) ( 1 1 .6. 15) 

This is in fact the case, although the proof, given below, is harder than the 
one just given for the case of a discrete jump-size distribution. 

To avoid division by zero in ( 1 1 .6 .15) ,  we assume that J(y) = 0 whenever 
f(y) = 0. This means that if a certain set of jump sizes has probability zero 
under IP', then it will also have probability zero under lP considered in Theorem 
1 1 .6 .7 below. 
Lemma 11.6.6. The process Z (t) of {1 1 . 6. 1 5} is a martingale. In particular, 
JEZ (t) = 1 for all t 2:: 0 .  

PROOF: We define the pure jump process 

N(t) );j(}i) 
J(t) = }] Af(Yi) . ( 1 1 .6 . 16) 

At the jump times of Q, which are also the jump times of N and J, we have 
(recall ( 1 1 .6 . 10) )  

J(t) = J(t- ) );i(yN(t) ) = J(t- ) );i(LlQ(t) ) 
Af (YN(t) ) Af (LlQ(t) ) ' 

and hence 

LlJ(t) = J(t) - J(t- ) = [ );i(LlQ(t)) - 1] J(t- ) 
Af (LlQ (t) ) 

at the jump times of Q. 
We define the compound Poisson process 

for which 

N(t) - -
H(t) = L AJ(Yi) 

i=l Af (Yi) 

( 1 1 .6 . 17) 

( 1 1 .6. 18) 
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Because 

>.J(LlQ(t) ) LlH(t) = 
>.f (LlQ(t) )

. 

[).J(Yi) l ). leo J(y) ). leo - ). IE >.J(Yi) = :X - oo  J(y) J(y) dy = :X - oo 
J(y) dy = :X ' 

( 1 1 .6 . 19) 

the compensated compound Poisson process H(t) - >.t is a martingale (The
orem 1 1 .3. 1 with {3 = � ) . We may rewrite ( 1 1 .6. 17) as 

LlJ(t) = J(t- )LlH(t) - J(t- )LlN(t) , ( 1 1 .6 .20) 

and because all these terms are zero if there is no jump at t , this equation 
holds at all times t, not just at the jump times of Q. Because J, H, and N 
are all pure jump processes, we may also write ( 1 1 .6.20) as 

dJ(t) = J(t-) dH(t) - J(t-)  dN(t) . 

Because J(t) is a pure jump process and e<>.-5.)t is continuous, the cross 
variation between these two processes is zero. Therefore, Ito's product rule 
for jump processes (Corollary 1 1 .5 .5) implies that Z(t) = e<>.-5.)t J(t) may be 
written as 

Z(t) = Z(O) + 1t 
J(s-) (>. - 5.)e<>.-5.)s ds + 1t 

e<>.-5.)s dJ(s) 

= 1 + 1t 
e<>.-5.)s J(s- ) (>. - 5.) ds + 1t 

e<>.-5.)s J(s-) dH(s) 

- lot 
e<>.-5.)s J(s-) dN(s) 

= 1 + 1t 
e<>.-5.)s J(s-) d(H(s) - :Xs) - 1t 

e<>.-5.)sJ(s-) d(N(s) - >.s) 

= 1 + 1t 
Z(s- ) d(H(s) - :Xs) - lot 

Z(s-) d(N(s) - >.s) . ( 1 1 .6 .21) 

Theorem 1 1 .4 .5 implies that Z(t) is a martingale. Since Z(t) is a martingale 
and Z(O) = 1 , we have IEZ(t) = 1 for all t . 0 

For future reference, we rewrite ( 1 1 .6 .21) in the differential form 

dZ(t) = Z(t- ) d (H(t) - 5.t) - Z(t-) d (N(t) - >.t) . 

This equation implies 

LlZ(t) = Z(t- )LlH(t) - Z(t- )LlN(t) . ( 1 1 .6.22) 
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Fix a positive T and define 

P(A) = i Z(T) diP' for all A E :F. ( 1 1 .6.23) 

Theorem 11 .6.7 (Change of compound Poisson intensity and jump 
distribution for a continuum of jump sizes) . Under the probability 
measure P, the process Q(t) , 0 ::;  t � T, of {1 1 . 6. 9} is a compound Poisson 
process with intensity 5.. Furthermore, the jumps in Q(t) are independent and 
identically distributed with density J(y) . 

KEY STEP IN PROOF: We need to show that , under P, the process Q(t) 
has the moment-generating function corresponding to a compound Poisson 
process with intensity 5. and jump density J(y) .  In other words, we must 
show that (see ( 1 1 .3 .2)) 

fEeuQ(t) = exp {>.t (cPy (u) - 1) } , ( 1 1 .6.24) 

where 
( 1 1 .6.25) 

We define 
X(t) = exp { uQ(t) - 5.t (cPy (u) - 1) }  

and show that X(t)Z(t) is a martingale under IP'. At jump times of Q, 

X(t) = X(t-)eu<lQ(t) , 

and hence 

LlX(t) = X(t) - X(t-) = X(t-) (eu<lQ(t) - 1) . 

We introduce the compound Poisson process 

Because 

N(t) - -
V(t) = "' euY; Af(�) 

{,;: >.f(�) . 

lE [ uY; j.J<�) l = � �oo uy f(y) J( ) d = � - ( ) e AJ(�) >. -oo e f(y) y y >.cpy u ' 

( 1 1 .6.26) 

the compensated compound Poisson process V(t) - 5.tcPy (u) is a martingale 
(see Theorem 1 1 .3 . 1  with {3 = �cPy (u) ) . At jump times of Q, 

LlV(t) = eu<lQ(t) 5.i(LlQ(t) ) = eu<lQ(t) LlH(t) >.f (LlQ(t) ) ' ( 1 1 .6 .27) 
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where H(t) , defined by ( 1 1 .6 . 18) ,  satisfies ( 1 1 .6. 19) at jump times of Q. 
Because X(t) and Z(t) have no Ito integral components, ( 1 1 .6 .26) ,  ( 1 1 .6 .22) ,  

and ( 1 1 .6 .27) imply 

[X, Z] (t) = L LlX(s)LlZ(s) 

= L X(s-)Z(s- ) (eu<lQ(s) - 1 )LlH (s) 
0<s$t 

- L X(s-)Z(s- ) (eu<lQ(s) - 1)LlN(s) 

L X(s-)Z(s- )LlV(s) - L X(s-)Z(s- )LlH(s) 
O<s$t 0<s$t 

- L X(s-)Z(s- ) (eu<lQ(s) - 1 ) . ( 1 1 .6 .28) 
0<s$t 

We have omitted LlN(s) in the last term because it is always either 1 or 0, 
and when it is zero, eu<lQ(s) - 1 is also zero. In other words, 

(eu<lQ(s) - 1)LlN(s) = (eu<lQ(s) - 1) . 
We use Ito's product rule for jump processes to write 

X(t)Z(t) = 1 + 1t 
X(s- ) dZ(s) + 1t 

Z(s-) dX(s) + [X, Z] (t) . 

We show that the right-hand side is a martingale under JP. The integral 
J� X(s-) dZ(s) is a martingale because the integrand is left-continuous and Z 
is a martingale. We examine the two other terms, using ( 1 1 .6 .26) and ( 1 1 .6 .28) : 1t 

Z(s- ) dX(s) + [X, Z] (t) 

= 1t
Z(s- ) dXc(s) + L Z(s-)LlX(s) + [X, Zj (t) 0 0<s$t 

= -5.(cP'y (u) - 1 ) 1t 
X(s- )Z(s-)ds +  L X (s- )Z (s- ) (eu<lQ(s) - 1) 

0 O<s$t 
+ L X(s- )Z(s- )LlV(s) - L X(s-)Z(s-)LlH(s) 
0<s$t 0<s$t 

- L X(s-)Z(s- ) (eu<lQ(s) - 1) 
0<s$t 

= 1t X(s- )Z(s- ) d(V(s) - 5.scP'y (u) ds) - lot 
X(s-)Z(s-) d(H(s) - 5.s) . 

This is a martingale because the processes V(t) - 5.tcpy (u) and H(t) - >.t are 
martingales and the integrands are left-continuous. 
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We can now prove ( 1 1 .6 .24) . Using Lemma 5.2 . 1 , we may write 

E [euQ(t ) ) = IE [euQ(t ) Z(t)] . ( 1 1 .6.29) 

But the martingale X(t)Z(t) has constant expectation 1 , which implies 

1 = IE [X(t)Z(t)) 
= exp { - 5.t (cP'y (u) - 1) }  · IE [euQ(t) Z(t)] . 

Combining ( 1 1 .6 .29) and ( 1 1 .6.30) , we obtain ( 1 1 .6 .24) . 

( 11 .6.30) 

D 

1 1 .6.3 Change of Measure for a Compound Poisson Process and a 
Brownian Motion 

Suppose now that we have a probability space (!l, F, JP) on which is defined 
a Brownian motion W(t) . Suppose that on this same probability space there 
is defined a compound Poisson process 

N(t) 
Q(t) = I: Yi 

i=l 
as in ( 1 1 .3 . 1 ) with intensity A and jumps having density function f(y) . We 
assume there is a single filtration F(t) , t 2: 0, for both the Brownian motion 
and the compound Poisson process. In this case, the Brownian motion and 
compound Poisson process must be independent . (See Corollary 1 1 .4.9 for the 
case of a Brownian motion and a Poisson process. The case of a Brownian 
motion and a compound Poisson process is Exercise 1 1 .6 . )  

Let 5. be a positive number, let J(y) be another density function with 
the property that J(y) = 0 whenever f(y) = 0, and let 6l(t) be an adapted 
process. We define 

Z1 (t) = exp { -1t 
6l(u) dW(u) - � 1t 

6l2 (u) du} , 

N(t) - -
z (t) = e <.X-X)t IT AJ(Yi) 
2 

i= l Af(Yi) ' 
Z(t) = Z1 (t)Z2 (t) . 

( 1 1 .6 .31) 

( 1 1 .6 .32) 

( 1 1 .6 .33) 

Lemma 11 .6.8. The process Z(t) of {1 1 . 6. 33} is a martingale. In particular, 
IEZ(t) = 1 for all t 2: 0. 

PROOF: We know from stochastic calculus for continuous processes that Z1 (t) 
is a martingale and from Lemma 1 1 .6.6 that Z2 (t) is a martingale. Since Z1 (t) 
is continuous and Z2 (t) has no Ito integral part , [Z1 , Z2] (t ) = 0. Ito's product 
rule for jump processes thus implies 
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and both integrals are martingales because of Theorem 1 1 .4 .5 . This implies 
that Z(t) is a martingale, and because Z(O) = 1 , we have JEZ(t) = 1 for all 
t ;::: 0. D 

Fix a positive T and define JP(A) = JA Z(T) diP for all A E F. We have the 
following. 
Theorem 11 .6.9. Under the probability measure JP, the process 

W(t) = W(t) + lo
t 
8(s) ds 

is a Brownian motion, Q(t) is a compound Poisson process with intensity >. 
and independent, identically distributed jump sizes having density J(y) , and 
the processes W(t) and Q(t) are independent. 

The key step in the proof of Theorem 1 1 .6 .9 is to show t�at W(t) and Q(t) 
have the correct joint moment-generating function under IP'. In other words, 
we must show 

( 1 1 .6 .35) 

where cpy (u2 ) is given by ( 1 1 .6.25) . Since du�t is the moment-generating 
function for a normal random variable with mean zero and variance t , 
exp {At ( cpy ( u2 ) - 1) } is the moment-generating function for a compound 
Poisson process with intensity >. and jump density J(y) ,  and since the joint 
moment-generating function factors into the product of these two moment
generating functionsl. we would then know that W(t) and Q(t) have the right 
distributions under lP' and are independent. 

If the process 8(t) is independent of the process Q(t) , then zl is indepen
dent of Q and we can obtain ( 1 1 .6 .35) from the following independence-based 
computation: 

E [eu•W(t )+u2Q(t) ] = lE [eu .W(t)zl (t) . eu2Q(t) z2 (t)] 

= 1E [eu1W(tlz1 (t)] · 1E [eu2Q(tlz2 (t)] . 

Girsanov's Theorem from stochastic calculus for continuous processes implies 

and ( 1 1 .6 .30) implies 

lE [ eu2Q(t ) Z2 (t)] = exp { 5.t (cpy ( u2 ) - 1 ) } .  
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Equation ( 1 1 .6.35) follows. 
The surprising fact is that ( 1 1 .6 .35) and hence the conclusion of Theorem 

1 1 .6.9 hold even if 8(t) is allowed to depend on Q(t) . Indeed, we could have 
8(t) equal to Q(t) . We give the proof of this fact. 

PROOF OF ( 1 1 .6 .35 ) :  We define 

X1 (t) = exp { u1 W(t) - �u�t } .  
X2(t) = exp { u2Q(t) - 5.t (�y (u2 ) - 1) } ,  

and show below that X1 (t)Z1 (t) , X2 (t)Z2 (t) , and X1 (t)Z1 (t)X2 (t)Z2 (t) are 
martingales under IP'. 

The ItO-Doeblin formula for continuous processes implies ( � 1 ) 1 dX1 (t) = X1 (t) u1 dW(t) - 2u� dt + 2u�X1 (t) dt 
= u1X1 (t) dW(t) 
= u1X1 (t) dW(t) + u18(t)X1 (t) dt . 

The ItO-Doeblin formula also implies 

dZ1 (t) = -8(t)Z1 (t) dW(t) .  

Ito's product rule yields 

d(XI (t)ZI (t) ) = Xl (t) dZI (t) + Zl (t) dXI (t) + dXI (t) dZI (t) 
= -8(t)X1 (t)Z1 (t) dW(t) + u1X1 (t)Z1 (t) dW(t) 

+u18(t)X1 (t)Z1 (t) dt - u18(t)X1 (t)Z1 (t) dt 
= (u1 - 8(t))X1 (t)Z1 (t) dW(t) .  

Because its differential has no dt term, X1 (t)Z1 (t) is a martingale. 
We showed in the proof of Theorem 1 1 .6 .7 that X2 (t)Z2 (t) is a martingale. 
Finally, because X1 (t)Z1 (t) is continuous and X2 (t)Z2 (t) has no Ito inte

gral part , [X1Z1 .  X2Z2] (t) = 0. Therefore, Ito's product rule implies 

X1 (t)Z1 (t)X2 (t)Z2 (t) = 1 + lo
t 
X1 (s-)Z1 (s- ) d(X2 (s)Z2 (s)) 

+lo
t 
X2 (s-)Z2 (s-) d(X1 (s)ZI (s)) , 

and Theorem 1 1 .4.5 implies that X1 (t)Z1 (t)X2 (t)Z2 (t) is a martingale. It 
follows that 

this gives us ( 1 1 .6 .35) . 0 
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Suppose a compound Poisson process Q( t) has jumps Y1 , Y2 ,  . . .  that take 
only finitely many nonzero values Y1 , Y2 ,  . . .  , YM , with P(Ym) = IP'{Yi = Ym} 
so that p(ym) > 0 and L:�=l Pm = 1 .  Let 5. be a positive constant and let 
p(yi ) ,  . . .  ,p(yM ) be positive numbers that sum to 1 .  In place of ( 1 1 .6.32) ,  we 
now define 

N(t) - _ 
Z2 (t) = e<A-X)t IT Ap(Yi) 

i=l Ap(Yi) 
and then define Z(t) by ( 1 1 .6.33) . Lemma 1 1 .6.8 still applies and permits us 
to define the probability measure iP' by the formula P(A) = fA Z(T) diP' for all 
Z E F. A straightforward modification of the proof of Theorem 1 1 .6.9 gives 
the following result . 

Theorem 11 .6.10. Under the probability measure iP', the process 

W(t) = W(t) + 1t 
6l(s) ds 

is a Brownian motion, Q(t) is a compound Poisson process with intensity >. 
and independent, identically distributed jump sizes satisfying P{Yi = Ym} = 
p(ym) for all i and m = 1 , . . . , M, and the processes W(t) and Q(t) are 
independent. 

1 1 . 7  Pricing a European Call in a Jump Model 

In this section, we consider the problem of pricing a European call when the 
underlying asset is a jump process. We work out the details for two cases: 
( 1 ) the underlying asset is driven by a single Poisson process, and (2) the 
underlying asset is driven by a Brownian motion and a compound Poisson 
process. The market is complete in the first case and incomplete in the second. 
We discuss the nature of the incompleteness in the second case. 

11 .7.1  Asset Driven by a Poisson Process 

We return to Example 1 1 .6.3, in which the underlying asset price is given by 

S(t) = S(O) exp {at +  N(t) log( a + 1) - -\at} 
= S(O)e<a-M)t (a + 1 )N(t) ' 

for which the differential is 

dS(t) = aS(t) dt + aS(t-) dM(t) . 

( 1 1 .7. 1 ) 

In this model, N(t) is a Poisson process with intensity ,\ > 0 on a probability 
space (fl, :F, IP') , and M(t) = N(t) - At is the compensated Poisson process. 
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We fix a positive time T and wish to price a European call whose payoff at 
time T is 

V(T) = (S(T) - K) + . 
We saw in Example 1 1 .6.3 that we must assume A > <>-;;r in order to rule 

out arbitrage. Under this assumption, 
- a - r  A = A - --a 

is positive, and there is a risk-neutral measure given by 

P(A) = L Z(T) dlP' for all A E F, 

where Z(t) = e<.X->.)t ( �) N(t) . This risk-neutral measure is in fact unique; see 
Remark 1 1 .7.2 below. 

Under the risk-neutral measure, the compensated Poisson process M(t) = 
N(t) - Xt is a martingale, and 

dS(t) = rS(t) dt + aS(t-) dM(t) ( 1 1 . 7.2) 
or, equivalently, 

d(e-rt S(t)) = ae-rt S(t-) dM(t) . 
The discounted asset price is a martingale under P. In terms of X, we may 
rewrite the second line in ( 1 1 .7. 1 ) as 

S(t) = S(O)e(r->.u)t (a + 1 )N(t) . 
For 0 � t � T, let V(t) denote the risk-neutral price of a European 

call paying V(T) = (S(T) - K) + at time T. The discounted call price is a 
martingale under the risk-neutral measure. In other words, the call price V(t) 
satisfies 

We have 

S(T) = S(O)e(r->.u)t (a + 1)N(t) . e<r->.u) (T- t) (a + 1 )N(T)-N(t) 
= S(t) . e<r->.u) (T-t) (a + 1)N(T)-N(t) . 

It follows that 

V(t) = E [e-r(T-t) (S(T) - Kt iF(t)] 
= iE [e-r(T-t) ( S(t)e (r->.u) (T-t) (a + 1 )N(T) -N(t ) _ K) + 'F(t)] . 
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The random variable S(t) is .F(t)-measurable, whereas 

e<r-5.u) (T-t) (a + 1)N(T)-N(t) 
is independent of F(t) . According to the Independence Lemma, Lemma 2.3.4, 

V(t) = c (t , S(t) ) , 
where 

c(t , x) = jE [ e-r(T-t) ( xe<r-5.u) (T-t) (a + 1)N(T)-N(t) _ K) +] 
= f: e-r(T-t) ( xe<r->.u) (T- t) (a + 1)i _ K) + Xi (T·� t)i e->.(T-t) 

i=O J . 

= f: ( xe->.u(T-t) (a + 1)i - K e-r(T-t) ) + Xi (T·� t)i e-5.(T-t) . 
i=O J . 

( 1 1 .7.3) 

From this formula, the risk-neutral price of the call c(t , x) can be computed. 
The j = 0 term in ( 1 1 .7.3) is 

(xe->.u(T-t) _ K e-r(T-t) ) + e->.(T-t) . 
When t = T, this term is (x - K)+ , and it is the only nonzero term in the 
sum in ( 1 1 .7.3) when t = T. Therefore, the function c satisfies the terminal 
condition 

c(T, x) = (x - K)+ for all x ;:::: 0. ( 1 1 . 7.4) 
We next derive the "partial differential equation" that c( t ,  x) must satisfy. 

The usual iterated conditioning argument shows that 

is a martingale under JP. Therefore, we compute d (e-rtc(t , S(t) ) ) and set the 
"dt" term equal to zero. The stochastic differential equation ( 1 1 . 7.2) may be 
rewritten as 

dS(t) = (r - Xa)S(t) dt + aS(t-) dN(t) , 
which shows that the continuous part of the stock price satisfies 

dSc (t) = (r - Xa)S(t) dt . 

On the other hand, if the stock price jumps at time t, then 

LlS(t) = S(t) - S(t-) = aS(t- ) ,  S(t) = (a + 1)S(t-) .  

The ItO-Doeblin formula implies 

( 1 1 .7 .5) 
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e-rtc(t , S(t) ) 
= c(O, S(O) ) + 1t e-ru [ - rc(u, S(u) ) du + Ct (u, S(u) ) du 

+cx (u, S(u) ) dSc(u)] 
+ L e-ru [c(u, S(u) ) - c(u, S(u-) )] 
0<u$t 

= c(O, S(O) ) + 1t e-ru [ - rc(u, S(u) ) + Ct (u, S(u) ) 
+(r - >:a)S(u)cx (u, S(u) )] du 

+ 1t e-ru [c(u, (a + 1)S(u-) ) - c(u, S(u-) )] dN(u) 

= c(O, S(O) ) + 1t e-ru [ - rc(u, S(u) ) + Ct (u, S(u) ) 
+(r - >:a)S(u)cx (u, S(u) )] du 

+ 1t e-ru [c(u, (a + 1)S(u-) ) - c(u, S(u-) )] >:  du 

+ 1t e-ru [c(u, (a + 1)S(u-) ) - c(u, S(u-) )] dM(u) .  

However, the integral 

1t e-ru [c(u, (a + 1)S(u-) ) - c(u, S(u-) )] ); du 
is the same as the integral 

1t e-ru [c(u, (a + 1)S(u) ) - c(u, S(u) )] );  du. 

We have shown that 

e-rtc(t , S(t) ) 
= c(O, S(O)) 

+ 1t e-ru [ - rc(u, S(u) ) + Ct (u, S(u) ) + (r - >:a)S(u)cx (u, S(u) ) 
+>: (c(u, (a + 1)S(u) ) - c(u, S(u) ) ) ] du 

+ 1t e-ru [c(u, (a + 1)S(u-) ) - c(u, S(u- ) )] dM(u) .  ( 1 1 .7.6) 

The last integral is a martingale because the integrator M(u) is a martin
gale and the integrand is left-continuous. Because left-hand side of ( 1 1 .7.6) , 
e-rtc(t , S(t) ) ,  is also a martingale we can then solve for 
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c(O, S(O)) + lot 
e-ru [ - rc(u, S(u) )  + Ct (u, S(u) )  + (r - �u)S(u)cx (u, S(u) )  

+� (c(u, (u + 1)S(u) ) - c(u, S(u) ) ) ] du 

and see that it is the difference of two martingales and hence is itself a mar
tingale. This can only happen if the integrand is zero: 

-rc(t, S(t) ) + Ct (t, S(t) )  + (r - �u)S(t)cx (t , S(t)) 
+� (c(t , (u + 1)S(t) ) - c(t, S(t) ) ) = 0. ( 1 1 . 7.7) 

The way we have in the past argued for ( 1 1 .7 .7) using ( 1 1 .7.6) (see the dis
cussion preceding Theorem 6.4.3) is by first taking the differential in ( 1 1 .7.6) 
to obtain 

d(e-rtc(t, S(t) ) ) 
= e-rt [ - rc(t , S(t) )  + Ct (t, S(t) ) + (r - �u)S(t)cx (t , S(t)) 

+� (c(t, (u + 1)S(t)) - c(t, S(t) ) ) ]  dt 
+e-rt [c(t , (u + 1)S(t-) )  - c(t, S(t- ) )) dM(t) 

and then setting the dt term equal to zero. This still works, provided we make 
sure the non-dt term has a martingale integrator, and if this integrator has 
jumps, then the integrand for this martingale is left-continuous. In particular, 
we also have 

d(e-rtc(t, S(t) ) )  
= e-rt [ - rc(t, S(t)) + ct (t, S(t) ) + (r - �u)S(t)cx (t , S(t) )] dt 

+e-rt [c(t, (u + 1)S(t-) ) - c(t, S(t-) )) dN(t) , ( 1 1 .7.8) 

but setting the "dt" term 

e-rt [ - rc(t, S(t)) + Ct (t , S(t)) + (r - �u)S(t)cx (t , S(t) )] dt 

in this expression equal to zero gives an incorrect result because the non-dt 
term has integrator dN(t) and N(t) is not a martingale. 

We conclude by replacing the stock price process S(t) in ( 1 1 .7 .7) by a 
dummy variable x. This gives the equation 

-rc(t, x) + ct (t, x) + (r- �u)xcx (t , x) + � (c(t , (u+ 1)x) - c(t, x)) = 0, ( 1 1 . 7.9) 

which must hold for 0 � t < T and x ;:::: 0. This is sometimes called a 
differential-difference equation because it involves c at two different values 
of the stock price, namely x and (u + 1 )x. The function c(t, x) defined by 
( 1 1 .7.3) satisfies this equation because, by its construction, e-rtc(t, S(t) ) is a 
martingale under JP>. 
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Returning to ( 1 1 .7.6) and using equation ( 1 1 .7.9) , we see that for 0 :::; t :::; 
T, 

e-rtc(t, S(t) ) 

= c(O, S(O) ) + lot 
e-ru [c(u, (a + 1)S(u-) )  - c(u, S(u-) )] dM(u) . ( 1 1 . 7. 10) 

In particular, 

e-rT (S(T) - K) + 

= e-rTc(T, S(T) ) 

= c(O, S(O)) + loT 
e-ru [c(u, (a + 1 )S(u-) )  - c(u, S(u-) )] dM(u) . ( 1 1 .7. 1 1 )  

We use this observation to  construct the hedge for a short position in  the call. 
Suppose we sell the call at time zero in exchange for initial capital X(O) = 

c(O, S(O) ) .  We want to invest in the stock and money market account so that 
X(t) = c(t, S(t) ) for all t or, equivalently, 

e-rtx(t) = e-rtc(t, S(t)) for all t E [O , T] . 

To accomplish this , we match differentials. From ( 1 1 .7. 10) , we see that the 
differential of e-rtc(t, S(t)) is 

d(e-rtc(t, S(t)) ) = e-rt [c(t, (a + 1)S(t- )) - c(t, S(t-) )] dM(t) . ( 1 1 .7 .12) 

The differential of the value X(t) of a portfolio that at each time t holds r(t) 
shares of stock (we use r(t) rather than L\(t) to denote the number of shares 
of stock held in the hedging portfolio to avoid confusion with the use of L\ as 
the size of the jump in a process) is 

Therefore, 

dX(t) = r(t-)  dS(t) + r [X(t) - r(t)S(t)] dt . 

d ( e-rt X (t) ) = e-rt [-r X(t) dt + dX(t)] 
= e-rt [r(t-)  dS(t) - rr(t)S(t) dt] 
= e-rtar(t-)S(t-) dM(t) , ( 1 1 .7 .13) 

where we have used (1 1 .7 .2) in the last step. We are interested in determining 
the value of r(t-) ,  the position held just before any jump that may occur at 
time t . Comparing (1 1 .7 .12) and ( 1 1 .7 .13) , we conclude that we should take 

r(t-) = c(t, (a +  l )S(t-) )  - c(t, S(t-) )  . aS(t-) 
(1 1 .7. 14) 
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This is the hedging position we should hold at all times, whether they are 
jump times or not . More specifically, if we define 

r( ) = c(t, (a + 1)S(t) ) - c(t , S(t) ) c II [O T] t aS(t) tor a t E , , 

then ( 1 1 . 7. 14) will also hold and integration of ( 1 1 .7 .13) yields 

e-rt X(t) 

( 1 1 .7 .15) 

= X(O) + 1t 
e-ru [c(u, (a + 1)S(u-) )  - c(u, S(u-) )] dM(u) . ( 1 1 .7 . 16) 

Comparison of ( 1 1 .7 . 10) with ( 1 1 .7. 16) shows that X (t) = c(t, S(t)) for all t . 
In particular, ( 1 1 .7. 1 1 )  shows that X(T) = (S(T) - Kt; the short position 
in the European call has been hedged. 

Remark 1 1 .  7. 1 {Sanity check). To convince ourselves that the hedge ( 1 1 .7 . 15) 
really works, we consider separately the cases when the stock jumps at time 
t and when the stock does not jump at time t. In the event of a jump, the 
change in the option price is c(t , (a + 1)S(t- )) - c(t , S(t-) ) .  The change in 
the hedging portfolio value is 

r(t- ) (S(t) - S(t- )} = r(t-)aS(t-)  = c(t , (a + 1)S(t- )) - c(t, S(t- ) ) ,  

which agrees with the change in the option price. 
On the other hand, if the stock price does not jump at time t, then the 

stock price follows equation (11 .7.5) without the dN(t) term at time t : 

dS(t) = (r - 5;a)S(t) dt . 

At this time, ( 1 1 .7.8) shows that the discounted option price has the differen
tial 

d (e-rtc(t, S(t) ) } 
= e-rt [ - rc(t, S(t)) + Ct (t , S(t) ) + (r - 5;a)S(t)cx (t , S(t))] dt 
= -e-rt); [c(t , (a + 1)S(t) ) - c(t, S(t) )] dt , 

where we have used the differential-difference equation ( 1 1 .7.9) to obtain the 
second equality. The differential of the discounted portfolio value at this time 
is (from ( 1 1 .7 . 13) without the dN(t) term implicit in dM (t) ) 

d(e-rt X(t)} = e-rtar(t)S(t) ( _); dt) 
= -e-rt.>; [c(t , (a + 1 )S(t) ) - c(t, S(t))] dt . 

Once again, the discounted portfolio value tracks the discounted option price. 
0 
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Remark 1 1 . 7. 2  (Completeness). In this subsection, we have constructed the 
price and hedge for a European call on a stock driven by a single Poisson 
process. It is clear from the analysis that this same argument would work 
for an arbitrary European derivative security with payoff h(S(T) )  at time T 
written on a stock modeled this way. One could simply replace the call payoff 
by the function h in equation ( 1 1 .7.3) . The differential-difference equation 
(1 1 .7.9) would still apply, although now with terminal condition c(T, x) = h(x) 
replacing ( 1 1 .7 .4) ,  and the hedging formula ( 1 1 .7 . 15) would still be correct. 

The model is complete and the risk-neutral measure is unique if and only 
if every derivative security can be hedged (Second Fundamental Theorem of 
Asset Pricing, Theorem 5.4.9) . "Every" derivative security means also those 
derivative securities that are path-dependent . We have not considered path
dependent derivative securities in this subsection, but one can show that they 
also can be hedged, and thus the model is complete. 

1 1 .7.2 Asset Driven by a Brownian Motion and a Compound 
Poisson Process 

Let ( n, .1", IP') be a probability space on which is defined a Brownian motion 
W(t) ,  0 � t � T, and M independent Poisson processes N1 (t) , . . .  , N M (t) , 
0 � t � T. Let F(t) ,  0 � t � T, be the filtration generated by the Brownian 
motion and the M Poisson processes. 

Let Am > 0 be the intensity of the mth Poisson process and let -1 < Y1 < 
· · · < YM be nonzero numbers. Set 

M M 
N(t) = L Nm(t) , Q(t) = L YmNm(t) . 

m=l m=l 

Then N is a Poisson process with intensity A = L!:=l Am and Q is a com
pound Poisson process. Let Yi denote the size of the ith jump of Q. Then 
the Yi random variables take values in the set {y1 , . . . , YM } ,  and Q(t) can be 
written as 

N(t) 
Q(t) = 2::: }'i .  

i=l 
Define 

( Am P Ym) = T "  
The random variables Y1 , Y2 , . . . are independent and identically distributed, 
with IP'{Yi = Ym} = p(ym) · These assertions all follow from Theorem 1 1 .3 .3. 

Set M 1 M 
f3 = lE}'i = L YmP(Ym) = � L AmYm · 

m=l m=l 
According to Theorem 1 1 .3. 1 , 

( 1 1 .7 . 17) 
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M 
Q(t) - {3>..t = Q(t) - t L: AmYm 

m=l 

is a martingale. 
In this subsection, the stock price will be modeled by the stochastic dif

ferential equation 

dS(t) = o:S(t) dt + aS(t) dW(t) + S(t- )d (Q(t) - {3>..t) 
= (a: - {3>..)S(t) dt + aS(t) dW(t) + S(t- )  dQ(t) . ( 1 1 .7. 18) 

Under the original probability measure IP', the mean rate of return on the stock 
is a:. The assumption that Yi > - 1 for i =  1 ,  . . .  , M guarantees that although 
the stock price can jump down, it cannot jump from a positive to a negative 
value or to zero. We begin with a positive initial stock price S(O) , and the 
stock price is positive at all subsequent times; see ( 1 1 .7 . 19) below. If S(O) = 0, 
then S(t) = 0 for all t . 

Theorem 11 .7.3. The solution to {1 1 .  7. 18} is 

1 N(t) 
S(t) = S(O) exp { aW(t) + (a: - (3>.. - 2a2) t} II (Yi + 1 ) .  

i=l 
( 1 1 .7 . 19) 

PROOF: We show that S(t) defined by the right-hand side of ( 1 1 .7 . 19) satis
fies the stochastic differential equation ( 1 1 .7 .18) .  Toward this end, define the 
continuous stochastic process 

and the pure jump process 

N(t) 
J(t) = II (Yi + 1 ) .  

i=l 

Then S(t) = X(t)J(t) . We show that S(t) = X(t)J(t) is a solution to the 
stochastic differential equation ( 1 1 .7. 18) . 

The ltO-Doeblin formula for a continuous process says that 

dX(t) = (a: - (3>..)X(t) dt + aX(t) dW(t) . ( 1 1 .7.20) 
At the time of the ith jump, J(t) = J(t- ) (Yi + 1 ) and hence 

LlJ(t) = J(t) - J(t- )  = J(t- )Yi = J(t- )LlQ(t) . 

The equation LlJ(t) = J(t- )LlQ(t) also holds at nonjump times, with both 
sides equal to zero. Therefore, 
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dJ(t) = J(t- ) dQ(t) . ( 1 1 . 7.21) 

Ito's product rule for jump processes implies that 

S(t) = X(t)J(t) = S(O) + 1t 
X(s-) dJ(s) + 1t 

J(s) dX(s) + [X, J] (t) . 
( 1 1 .7.22) 

Since J is a pure jump process and X is continuous, [X, J] (t) = 0. Substituting 
( 1 1 . 7.20) and ( 1 1 .7 .21) into ( 1 1 . 7.22) , we obtain 

S(t) = X(t)J(t) 

= S(O) + 1t 
X(s-)J(s-) dQ(s) + (a - (JA) 1t 

J(s)X(s) ds 

+u 1t 
J(s)X(s) dW(s) ,  

which in differential form is 

dS(t) = d(X(t)J(t)) 
= X(t-)J(t-) dQ(t) + (a - (JA)J(t)X(t) dt + uJ(t)X(t) dW(t) 
= S(t-) dQ(t) + (a - (JA)S(t) dt + uS(t) dW(t) . 

This is ( 1 1 .7 .18) . 0 

We now undertake to construct a risk-neutral measure. Let () be a constant - - 2 and let A1 , . . .  , AM be positive constants. Define 

Zo (t) = exp { - OW(t) - �()2t } ,  
Z (t) _ (Am -Xm )t Am - 1 M 

( - ) Nm(t) 
m - e  Am 

, m - , . . .  , ' 
M 

Z (t) = Zo (t) IT Zm(t) , 
m=l 

P(A) = i Z(T) diP for all A E F. 

The following asserti<!.ns follow f�m Theorem 1 1 .6 . 10 and Corollary 1 1 .3.4. 
Independence under lP' between W and each of the Poisson processes Nm, 
asserted � (iii) below, follows from Corollary 1 1 .5 .3 . Under the probability 
measure IP', 

2 One could create more risk-neutral measures than we consider here by letting () 
and >.1 , . . . , >.M be adapted stochastic processes. 
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( i )  the process 
W(t) = W(t) + Ot 

is a Brownian motion, _ 
(ii) each Nm is a Poisson process with intensity Am , and 
(iii) W and N1 ,  . . . , Nm are independent of one another. 
Define 

_( ) Am P Ym = ---=- · A 

( 1 1 .7.23) 

Under P, the process N(t) = 'L!:=l Nm(t) is Poisson with intensity X, the 
jump-size random variables Y1 ,  Y2 , . . .  are independent and identically dis
tributed with P{fi = Ym} = p(ym) ,  and Q(t) - {3Xt is a martingale, where 

The probability measure Jt is risk-neutral if and only if the mean E_ate 
of return of the stock under lP is the interest rate r. In other words, lP is 
risk-neutral if and only if 

dS(t) = (a - (3A)S(t) dt + aS(t) dW(t) + S(t- ) dQ(t) 
= rS(t) dt + aS(t) dW(t) + S(t-)d(Q(t) - {3At) . ( 1 1 . 7.24) 

This is equivalent to the equation 

a - (3A = r + a(} - {3X, ( 1 1 . 7.25) 

which is the market price of risk equation for this model. Recalling the defini
tions of (3 and {3, we may rewrite the market price of risk equation ( 1 1 .7.25) 
as 

a - r = aO + (3A - {3X 
M 

= aO + L (Am - Am)Ym · 
m=l 

( 1 1 .  7 .26) 

Because there is one equation and M + 1 unknowns, 0, A1 , . . .  , AM ,  there are 
multiple risk-neutral measures. 

Extra stocks would help determine a unique risk-neutral measure. We il
lustrate this point by taking M = 2 in the following example. 

Example 1 1 .  1.4 (Three stocks and two Poisson processes) . With one Brownian 
motion W and two independent Poisson processes N1 and N2, define three 
compound Poisson processes 
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where Yi,m > -1 for i =  1 ,  2, 3 and m = 1 ,  2. Set 

f3i = � (-'1 Yi, 1 + A2Yi,2 ) , i = 1 ,  2, 3, 

where -\1 and -\2 are the intensities of N1 and N2, respectively, under the 
original measure IP'. For i =  1 ,  2, 3, we have a stock process modeled by 

In this model, there is a market price of risk equation analogous to ( 1 1 . 7.26) 
for each stock. The market price of risk equations are 

a1 - r = a10 + (-\1 - �dY1 , 1 + (-\2 - �2 )Y1 ,2 , 
a2 - r = a20 + (-\1 - �dY2, 1 + (-\2 - �2 )Y2,2 , 
a3 - r = a30 + (-\1 - �I )y3, 1 + (-\2 - X2 )Y3,2 · 

These are three equations in the three unknowns 0, XI > and .X2 • If they have 
a unique solution, then there is a unique risk-neutral measure. In that case, 
the market would be complete and free of arbitrage. 0 

We return to the discussion of the model with a single stock given by 
( 1 1 .7 .18) and ( 1 1 .7 .19) . Let us choose some 0 and .X1 , . . .  , .XM satisfying the 
market price of risk equations (1 1 . 7.26) . Then, in the notation of ( 1 1 . 7.24) , 
we have 

dS(t) = rS(t) + aS(t) dW(t) + S(t-)d(Q(t) - /3-Xt) 
= (r - [3-X) dt + aS(t) dW(t) + S(t- )dQ(t) . (1 1 .7.27) 

This is like equation (1 1 .7 .18) , and just as (1 1 .7 .19) is the solution to (1 1 .7 .18) , 
the solution to ( 1 1 .7.27) is 

1 N(t) 
S(t) = S(O) exp { aW(t) + (r - /3� - 2a2) t} IT (Yi + 1 ) .  

i= 1 
(1 1 .7.28) 

Indeed, it is a straightforward matter to use (1 1 .7.25) to verify that (1 1 . 7. 19 ) 
and (1 1 .7.28) are in fact the same equation. We have not changed the stock 
price process; we have changed only its distribution. 

We compute the risk-neutral price of a call on the stock with price process 
given by ( 1 1 . 7.28) . Because 0 does not appear explicitly in (1 1 . 7.28) , it will 
not appear in our pricing formula. However, 

M 
[3-X = L XmYm 

m=1 
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will appear in this formula, and we can choose the risk-neutral intensities 
:X1 , . . . , :XM to be any positive constants and subsequently choose () so that 
the market price of risk equation ( 1 1 .7.25) is satisfied. We assume for the 
remainder of this section that some choice has been made. Our pricing for
mula will depend on the choice. It is common to use these free parameters to 
calibrate the model to market data. 

For the next step, we need some notation. Define 

( 1 1 . 7.29) 

where 

and 
N(y) = _1_ 1

Y 
e- ! z2 dz 

J2rr oo 
is the cumulative standard normal distribution function. In other words, 
��:( T, x) is the standard Black-Scholes-Merton call price on a geometric Brow
nian motion with volatility u when the current stock price is x, the expiration 
date is T time units in the future, the interest rate is r, and the strike price is 
K. We have 

��:(r, x) = E [e-rr (x exp { - uJTY + (r - �u2) r} - K) +] , 
where Y is a standard normal random variable under P; see Subsection 5.2.5 . 

Theorem 1 1 .7.5. For 0 � t < T, the risk-neutml price of a call, 

V(t) = E [e-r(T-t) (S(T) - K)+ iF(t)] , 

is given by V(t) = c(t , S(t ) ) , where 

PROOF: Let t E [0 , T) be given and define T = T - t. From ( 1 1 . 7.28) ,  we see 
that 

N(T) 
S(T) = S(t) exp { u(W(T) - W(t) ) + (r - {3:X - �u2)r} IT (Yi + 1 ) . 

i=N{t)+ l 
(1 1 .  7.31 ) 

The term S(t) is F(t)-measurable, and the other term appearing on the right
hand side of (1 1 .7 .31 ) is independent of F(t) .  Therefore, the Independence 
Lemma, Lemma 2.3.4, implies that 
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V(t) = E [e-r'" (S(T) - Kt iF(t)] = c(t , S(t) ) , 

where 
c(t, x) 

� E [· -� (x exp { u(W(T) - W(t)) + (r - JiX - �u2) r} 
x rf 

(Yi + 1 )  - K) 
+

] 
i=N(t)+ l  

� iE [E [ . - �  (x exp {u(W(T) - W(t)) + (r - JiX - �u2) r} 
X Nir (Yi + 1 ) - K)

+ 

a ( rf 
(}i + 1)) ] ]  

i=N(t)+ l  i=N(t )+l 

� E [E [ . - �  (x•-"' exp { - uv'TY + (r - �u2) r} 

where 

X Nir (Yi + 1 ) - K) 
+ 

a ( Nir (Yi + 1 )) ] ]  ' 
i=N(t)+ l  i=N(t )+l 

Y =  
W(T) - W(t) 

.fi 
is a standard normal random variable under P, and where the conditioning 
a-algebra a (II���t )+l (Yi + 1 )) is the one generated by the random vari-

IIN(T) IIN(T) 0 ( IIN(T) ) able i=N(t)+ l  (Yi + 1 ) 0 Because i=N(t )+l (Yi + 1 )  1s a i=N(t )+l (Yi + 1 )  -

measurable and Y is independent of a ( Il���t )+l (Yi + 1)) , we may use the 
Independence Lemma, Lemma 203.4, again to obtain 

E [ . - � ( xe-PX exp { - uJTY + (r - �u2 ) r} 
N(T) 

) 
+ ( N(T) 

) ]  x II (Yi + 1) - K a II (Yi + 1 )  
i=N(t)+l i=N(t )+l 

( N(T) ) = K T, xe-{15.,- II (Yi + 1 )  0 
i=N(t) + l  
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It follows that ( N(T) ) 
c(t, x) = lE ��:  r, xe-if5.r IT (Yi + 1) . 

i=N(t)+ l  
( 1 1 . 7.32) 

To see that ( 1 1 .7.32) agrees with ( 1 1 . 7.30) ,  we note that conditioned on 
N(T) - N(t ) = j , the random variable fl���t)+ l (Yi + 1 )  has the same dis
tribution as nf= l (Yi + 1 ) .  Furthermore, 

- ).iri 
P{N(T) - N(t) = j } = e->.r -.-1 • J · 0 

Remark 1 1 .  7. 6 (Continuous jump distribution). Suppose the jump sizes Yi 
have a density f (y) rather than a probability mass function p(yt ) ,  . . .  , p(ym) ,  
and this density is strictly positive on a set B C ( -1 ,  oo ) and zero elsewhere. 
In this case, we replace ( 1 1 . 7  . 17) by the formula 

f3 = lEYi = r}O yf(y) dy. J_l 
For the risk-neutral measure, we can choose 6, >. > 0 and any density J(y) 
that is strictly positive on B and zero elsewhere so that the market price of 
risk equation (see ( 1 1 . 7.26) )  

a - r = u6 + /3A - /3>. 

is satisfied, where now 

/3 = EYi = foo yf(y) dy. J_l 
Under these conditions, Theorem 1 1 . 7.5 still holds. 0 

We return to the model with discrete jump sizes. The following theorem 
provides the differential-difference equation satisfied by the call price. 

Theorem 11 .7.7. The call price c(t , x) of {1 1 . 7. 30} satisfies the equation 

- - 1 2 2 -rc(t , x) + Ct (t , x) + (r - /3A)Xcx (t , x) + 2q X Cxx (t , x) 
M 

+X [ 2: P(Ym)c(t, (Ym + 1)x) - c(t , x)] = 0, 0 � t < T, x ;::: 0, ( 1 1 . 7.33) 
m=l 

and the terminal condition 

c(T, x) = (x - K)+ , x � 0. 
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PROOF: From ( 1 1 .7.27) ,  we see that the continuous part of the stock price 
satisfies dSc(t) = (r - /35..)S(t) dt + aS(t) dW(t) . Therefore, the ItO-Doeblin 
formula implies 
e-rt c(t, S(t) ) - c(O, S(O) )  

= 1t 
e-ru [ - rc(u, S(u) )  + Ct (u, S(u) )  + (r - /35..)S(u)cx (u, S(u) )  

+�a2S2 (u)cxx (u, S(u) )] du + 1t 
e-ruaS(u)cx (u, S(u) )  dW(u) 

+ L e-ru [c(u, S(u) ) - c(u, S(u-) )] . ( 1 1 . 7.34) 

We examine the last term in ( 1 1 . 7.34) . If u is a jump time of the mth 
Poisson process Nm, the stock price satisfies S(u) = (Ym + 1 )S(u-) . Therefore, 

L e-ru [c(u, S(u) ) - c(u, S(u-) )) 
0<u$t 

M 
= L L e-ru [c(u, (ym + 1)S(u-)) - c(u, S(u-) )] LlNm(u) 

m=l 0<u$t 
M t = l; 1 e-ru [c(u, (Ym + 1 )S(u-) )  - c(u, S(u-) )) d(Nm(u) - 5..mu) 

t M -
+ 1 e-ru [ L AJ c(u, (ym + 1)S(u) ) - c(u, S(u))] 5.. du 0 m=l 

= %; 1t 
e-ru [c(u, (Ym + 1 )S(u-) )  - c(u, S(u-) )) d(Nm(u) - 5..mu) 

t 
M 

+ Jn e-ru 5.. L [ii(Ym)c(u, (Ym + 1 )S(u) ) - c(u, S(u) )] } du. 0 m=l 
Substituting this into ( 1 1 . 7.34) and taking differentials, we obtain 
d( e-rtc(t, S(t) ) ) 
= e-rt { - rc(t , S(t)) + Ct (t, S(t) ) + (r - /35.. )S(t)cx (t ,  S(t)) 

1 2 2 +2a S (t)Cxx (t, S(t)) 
M 

+5.. L [P(Ym)c(t, (Ym + 1 )S(t ) ) - c(t, S(t ) )] } dt 
m=l 

+e-rtaS(t)cx (t , S(t) )  dW(t) 
M 

+ L e-rt [c(t , (Ym + 1)S(t- ) )  - c(t, S(t- ) )] d(Nm(t) - 5..mt) . ( 1 1 .7.35) 
m=l 
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The integrators N m ( t) - >..m t in the last term are martingales under JPl, and the 
integrands e-rt [c(t, (Ym + 1)S(t- )) - c(t , S(t- ) ) ] are left-continuous. There
fore, the integral of this term is a martingale. Likewise, the integral of the 
next-to-last term e-rtcx (t , S(t) ) dW(t) is a martingale. Since the discounted 
option price appearing on the left-hand side of ( 1 1 . 7.35) is also a martingale, 
the remaining term in ( 1 1 . 7.35) is a martingale as well. Because the remaining 
term is a dt term, it must be zero. Replacing the price process S(t) by the 
dummy variable x in the integrand of this term, we obtain ( 1 1 . 7.33) . 0 
Corollary 11.7.8. The call price c(t, x) of {1 1 .  7. 30} satisfies 

d (e-rtc(t, S(t) ) ) 
= e-rtaS(t )cx (t, S(t) ) dW(t) 

M 
+ L e-rt [c(t, (Ym + 1)S(t- ) ) - c(t , S(t-) )) d(Nm(t) - 5..mt) 
m=l 

= e-rtaS(t )cx (t , S(t) ) dW(t) 
+e-rt [c(t , S(t) ) - c(t , S(t- ))) dN(t) 

-e-rtj. [t/(Ym)c (t , (y + 1)S(t-) ) - c (t, S(t- ) ) ] dt. ( 1 1 . 7.36) 

PROOF: We use ( 1 1 . 7.33) to cancel the dt term in ( 1 1 . 7.35) and obtain the first 
equality in ( 1 1 . 7.36) . For the second equality, recall that N(t) = E:':=l Nm(t) , - M - - - -
A = Em=l Am , and Ap(ym) = Am · 0 
Remark 1 1 .  7. 9 (Continuous jump distribution). There are modifications of 
Theorem 1 1 . 7.7 and Corollary 1 1 . 7.8 for the case when the jump sizes Yi 
have a density J(y) under the risk-neutral measure JPl. In ( 1 1 . 7.33) , the term 

M oo -

Em=l p(ym)c(t, (Ym + 1)x) would be replaced by J_1 c(t , (y + 1)x)f(y) dy. In 
( 1 1 . 7.36) , we would use the second formula for d (e-rtc(t, S(t) ) ) ,  which is writ
ten in terms of the total number of jumps (i.e. , in terms of the Poisson process 
N(t) = E�=l Nm(t) ) rather than in terms of the individual Poisson processes 
Nm, and replace E:': p(ym)c (t, (Ym + 1)S(t-)) by J� c (t, y+ 1)S(t-) )J(y) dy 
0 

Finally, we think about hedging a short position in the European call 
whose discounted price satisfies ( 1 1 . 7.36) . Suppose we begin with a short call 
position and a hedging portfolio whose initial capital is X(O) = c(O, S(O) ) . We 
compare the differential of the discounted call price with the differential of 
the discounted value of the hedging portfolio. If F(t) shares of stock are held 
by the hedging portfolio at each time t, then 

dX(t) = F(t- ) dS(t) + r [X(t) - F(t)S(t)] dt 
and 
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d (e-rtx (t) ) = e-rt [ - rX(t) dt + dX(t)] 
= e-rt [r(t-) dS(t) - rF(t)S(t) dt] 
= e-rt [r(t)uS(t) dW(t) + F(t-)S(t-) d(Q(t) - �At)] 
= e-rt [r(t)uS(t) dW(t) 

M 
+F(t-)S(t-) L Ym (dNm(t) - ).m dt)] , ( 1 1 .7.37) 

m=l 

where we have used ( 1 1 . 7.27) . It is natural to try the "delta-hedging" strategy 

F(t) = cx (t, S(t)) . 

This equates the dW(t) terms in ( 1 1 .7.36) and ( 1 1 . 7.37) (i .e. , it provides a 
perfect hedge against the risk introduced by the Brownian motion) . 

However, the delta hedge leaves us with 

d [e-rtc(t, S(t)) - e-rt X(t)] 
M 

= L e-rt [c(t, (Ym + 1)S(t-) ) - c(t, S(t-) )  - YmS(t-)cx (t, S(t- ) )] 
m=l 

x (dNm(t) - Xm dt) . ( 1 1 .7.38) 

The function c(t, x) is strictly convex in x. This is a consequence of the strict 
convexity of the function ��:(r, x) of ( 1 1 . 7.29) and equation ( 1 1 .7.30) . From 
strict convexity, we have 

for all x1 2:: 0, x2 2:: 0 such that x1 =/= x2 . Therefore, 

c(t, (Ym + 1)S(t-) ) - c(t, S(t-) )  > YmS(t-)cx (t ,  S(t-) ) ,  ( 1 1 . 7.39) 

the strict inequality being a consequence of the assumption that each Ym is 
greater than -1 and different from 0. It follows from ( 1 1 . 7.39) and ( 1 1 .7.38) 
that between jumps 

d [e-rtc(t , S(t)) - e-rtx (t)] < 0. 

Between jumps, the hedging portfolio outperforms the option. However, at 
jump times, the option outperforms the hedging portfolio. 

Because both e-rtc(t , S(t)) and e-rt X(t) are martingales under fiii, so is 
their difference. Furthermore, at the initial time, the difference is c(O, S(O) ) 
X(O) = 0. Therefore, the expected value of the difference is always zero: 
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"On average," the delta-hedging formula hedges the option, where the average 
is computed under the risk-neutral measure we have chosen. This provides 
some justification for choosing Xm = Am ,  so that , at least as far as the jumps 
are concerned, the average under the risk-neutral measure we are using is also 
the average under the actual probability measure. 

Remark 1 1 .  7. 10  (Continuous jump distribution}. When the risk-neutral dis
tribution of the jumps Yi has density J(y) ,  ( 1 1 .7.38) becomes 

d [e-rtc(t , S(t) ) - e-rtx(t)] 
= e-rt [c(t, S(t) ) - c(t, S(t- ) )  - (S(t) - S(t- ) )cx (t , S(t- ) )] dN(t) 

-e-rt X 17 [c(t , (y + 1 )S(t- )) - c(t, S(t-) )  

-yS(t-)cx (t, S(t-)) ] f(y) dy dt . ( 1 1 . 7.40) 

Equation ( 1 1 . 7.40) can be interpreted just as ( 1 1 .7.38) was. Because 

c(t, (y + 1 )S(t- )) - c(t, S(t- )) - yS(t-)cx (t , S(t-) )  > 0 

for all y >  -1 ,  y =/:- 0, between jumps 

d [e-rtc(t, S(t)) - e-rt X(t)] < 0, 

the hedging portfolio outperforms the option. At jump times, the option out
performs the hedging portfolio because 

c(t, S(t) ) - c(t , S(t-) ) - (S(t) - S(t-) )cx (t, S(t- ) )  > 0. 

On "average," where the average is computed under the risk-neutral measure 
we have chosen, these two effects cancel one another. 

1 1 .8 Summary 

The fundamental pure jump process is the Poisson process. Like Brownian 
motion, the Poisson process is Markov, but unlike Brownian motion, it is not 
a martingale. The Possion process only jumps up, and between jumps it is 
constant. To obtain a martingale, one must subtract away the mean of the 
Poisson process to obtain a compensated Poisson process (Theorem 1 1 .2 .4) . 

All jumps of a Poisson process are of size one. A compound Poisson process 
is like a Poisson process, except that the jumps are of random size. Like the 
Poisson process, a compound Poisson process is Markov (Exercise 1 1 .  7) , and 
although it is generally not a martingale, one can obtain a martingale by 
subtracting away its mean (Theorem 1 1 .3 . 1 ) .  A compound Poisson process 
that has only finitely many, say M, possible jump sizes can be decomposed 
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into a sum of M independent scaled Poisson processes (Theorem 1 1 .3 .3 and 
Corollary 1 1 .3 .4) .  

A jump process has four components: an initial condition, an Ito integral, a 
Riemann integral, and a pure jump process. The sum of the first three consti
tute the continuous part of the jump process. Stochastic integrals and stochas
tic calculus for the continuous part of a jump process were treated in Chapter 
4. In this chapter, the pure jump part is a right-continuous process that has 
finitely many jumps in each finite time interval and is constant between jumps. 
Stochastic integrals with respect to such processes are straightforward. The 
quadratic variation of such a process over a time interval is the sum of the 
squares of the jumps within that time interval, and the quadratic variation 
of a (non pure) jump process is the quadratic variation of the continuous part 
plus the quadratic variation of the pure jump part . These observations lead 
to a version of the ItO-Doeblin formula for jump processes (Theorems 1 1 .5 . 1 
and 1 1 . 5.4) . One of the consequences of these theorems is that a Brownian 
motion and a Poisson process relative to the same filtration must be indepen
dent (Corollary 1 1 .5 .3) and that two Poisson processes are independent if and 
only if they have no simultaneous jumps (Exercises 1 1 .4 and 1 1 . 5) .  

If we integrate an adapted process with respect t o  a jump process that 
is a martingale, the resulting stochastic integral can fail to be a martingale. 
However, if the integrand is left-continuous, then the stochastic integral will 
be a martingale. 

For compound Poisson processes, one can change the measure in order to 
obtain an arbitrary positive intensity (average rate of jump arrival) and an 
arbitrary distribution of jump sizes, subject to the condition that every jump 
size that was impossible before the change of measure is still impossible after 
the change of measure. This provides a great deal of freedom when construct
ing risk-neutral measures. In particular, if there are M possible jump sizes , 
there are M - 1 degrees of freedom in the assignment of probabilities to these 
jump sizes (the probabilities must sum to one, and thus there are not M de
grees of freedom) . In order to have a complete market , there must be a money 
market account and as many nonredundant securities as there are sources of 
uncertainty. Each possible jump size counts as a source of uncertainty. If there 
is no Brownian motion and only one possible jump size, a single security in 
addition to the money market account will make the model complete (Section 
1 1 .7. 1 ) .  If there are two possible jump sizes and an additional source of un
certainty due to a Brownian motion, three securities in addition to the money 
market account are required (Example 1 1 . 7.4) . If there are infinitely many 
possible jump sizes, infinitely many securities would be required to make the 
model complete. 

As the discussion above suggests, jump-diffusion models are generally in
complete and there are typically multiple risk-neutral measures in such mod
els. The practice is to consider a parametrized class of such measures and then 
calibrate the model to market prices to determine values for the parameters. 
One can then apply the risk-neutral pricing formula to price derivative secu-
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rities, but this formula can no longer be justified by a hedging argument . It 
is instead an elaborate interpolation procedure by which prices of nontraded 
securities are computed based on prices of traded ones. One can use this for
mula to examine the effectiveness of various hedging techniques. This is done 
for the delta-hedging rule in Subsection 1 1 . 7.2 following Remark 1 1 . 7.9. 

1 1 .9 Notes 

A text on Poisson and compound Possion processes, but that does not include 
the ideas of change of measure, is Ross [141] . The easiest place to read about 
stochastic calculus for processes with jumps is Protter [133] . 

In Section 1 1 . 7, we consider a European call in two models, one in which 
the driving process for the underlying asset is a single Poisson process and 
the other in which the underlying asset is driven by a Brownian motion and 
multiple Poisson processes. In both these models, there are only finitely many 
jump sizes, but the analogous results for models with a continuous jump 
distribution are presented in Remarks 1 1 . 7.6, 1 1 . 7.9, and 1 1 .7. 10. Such a model 
was first treated by Merton [123] , who considered the case in which one plus 
the jump size has a log-normal distribution. Some of the more recent works 
on option pricing in models with jumps are Brockhaus et al. [23] , Elliott and 
Kopp [63] , Madan, Carr, and Chang [113] ,  Madan and Milne [1 14] , Madan and 
Seneta [ 115] ,  Mercurio and Runggaldier [120] , and Overhaus et al [130] . Term
structure models with jumps are treated by Bjork, Kabanov and Runggaldier 
[12] , Das [46] , Das and Foresi [47] , Glasserman and Kou [73] , and Glasserman 
and Merener [74] . 

1 1 . 10 Exercises 

Exercise 11 .1 .  Let M ( t) be the compensated Poisson process of Theorem 
1 1 .2.4. 
(i) Show that M2(t) is a submartingale. 
(ii) Show that M2(t) - >..t is a martingale. 

Exercise 11.2.  Suppose we have observed a Poisson process up to time s , 
have seen that N(s) = k, and are interested in the value of N(s + t) for small 
positive t . Show that 

IP'{ N(s + t) = k jN(s) = k}  = 1 - >..t + O(t2) ,  
IP'{N(s + t) = k + 1 IN(s) = k}  = >..t + O(t2) ,  
IP'{ N(s  + t) ;::: k + 2 IN(s) = k} = O(t2 ) ,  

where O(t2 )  is used to  denote terms involving t2 and higher powers of t. 
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Exercise 11 .3  (Geometric Poisson process) .  Let N(t) be a Poisson pro
cess with intensity A > 0, and let S(O) > 0 and a > -1 be given. Using 
Theorem 1 1 .2 .3 rather than the ItO-Doeblin formula for jump processes, show 
that 

S(t) = exp {N(t) log( a + 1 ) - .Xat} = (a + 1 )N(t) e->.ut 

is a martingale. 

Exercise 11 .4. Suppose N1 (t) and N2(t) are Poisson processes with inten
sities .X1 and .X2 , respectively, both defined on the same probability space 
(il, F, P) and relative to the same filtration F(t) , t 2: 0. Show that almost 
surely N1 (t) and N2(t) can have no simultaneous jump. (Hint: Define the 
compensated Poisson processes M1 (t) = N1 (t) - .X1 t  and M2(t) = N2(t) - .X2t, 
which like N1 and N2 are independent. Use Ito's product rule for jump pro
cesses to compute M1 (t)M2 (t) and take expectations. )  

Exercise 11.5.  Suppose N1 ( t ) and N2(t) are Poisson processes defined on the 
same probability space (il, F, IP') relative to the same filtration F(t) , t 2: 0. 
Assume that almost surely N1 (t) and N2(t) have no simultaneous jump. Show 
that , for each fixed t, the random variables N1 (t) and N2(t) are independent. 
(Hint : Adapt the proof of Corollary 11 .5.3. ) (In fact , the whole path of N1 
is independent of the whole path of N2, although you are not being asked to 
prove this stronger statement. )  

Exercise 11 .6. Let W(t) be a Brownian motion and let Q(t) be a compound 
Poisson process, both defined on the same probability space (il, F, IP') and 
relative to the same filtration F(t) , t 2: 0. Show that , for each t, the random 
variables W(t) and Q(t) are independent. (In fact , the whole path of W is 
independent of the whole path of Q, although you are not being asked to 
prove this stronger statement. )  

Exercise 11 .  7. Use Theorem 1 1 .3.2 to prove that a compound Poisson pro
cess is Markov. In other words, show that , whenever we are given two times 
0 � t � T and a function h(x) ,  there is another function g(t , x) such that 

lE [h(Q(T) ) iF(t) ] = g(t , Q(t)) . 



A 

Advanced Topics in Probability Theory 

This appendix to Chapter 1 examines more deeply some of the topics touched 
upon in that chapter. It is intended for readers who desire a fuller explanation. 
The material in this appendix is not used in the text. 

A . l  Countable Additivity 

It is tempting to believe that the finite-additivity condition ( 1 . 1 .5) can be 
used to obtain the countable-additivity condition ( 1 . 1 .2) . However, the right
hand side of ( 1 . 1 .5) is a finite sum, whereas the right-hand side of ( 1 . 1 .2) is 
an infinite sum. An infinite sum is not really a sum at all but rather a limit 
of finite sums: oo N 

� P(An ) = lim � P(An ) · L...J N -.oo L...J 
n=l n=l 

(A.Ll ) 

Because of this fact, there is no way to get condition ( 1 . 1 .2) from condition 
( 1 . 1 .5) , and so we build the stronger condition ( 1 . 1 .2) into the definition of 
probability space. 

In fact, condition ( 1 . 1 .2) is so strong that it is not possible to define P(A) 
for every subset A of an uncountably infinite sample space n so that ( 1 . 1 .2) 
holds. Because of this, we content ourselves with defining P(A) for every set 
A in a a-algebra :F that contains all the sets we will need for our analysis 
but omits some of the pathological sets that a determined mathematician can 
construct. 

There are two other consequences of ( 1 . 1 .2) that we often use implicitly, 
and these are provided by the next theorem. 

Theorem A.l .l .  Let (fl, :F, P) be a probability space and let A1 . A2 , A3 ,  • • •  
be a sequence of sets in :F. 
{i) If A1 c A2 c A3 c . . .  , then 
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(ii) If A1 :::> A2 :::> A3 :::> • • •  , then 

JP(nk=l Ak ) = lim JP(An ) · n-+oo 

PROOF: In the first case, we define 

where Ak+l \ Ak = Ak+l n A� . Then B1 . B2 , B3 , . . .  are disjoint sets, and 

k=l k=l k=l  k=l 

Condition ( 1 . 1 .2) used to justify the second equality below and ( 1 . 1 .5) used 
to justify the fourth imply 

k=l  

n 

lim ""' JP(Bk) 
n-+oo L..J k=l  

= lim lP(Uk=l Bk) = lim lP(An ) .  
n-+oo n-+oo 

This concludes the proof of (i) . 
Let us now assume A1 :::> A2 :::> A3 :::> • • • •  We define Ck = A� , so that 

C1 c C2 c C3 c . . .  and n�1Ak = (uk=lCk )c . Then ( 1 . 1 .6) and (i) imply 

JP(n�1Ak ) = 1 - 1P(U�1Ck ) = 1 - lim lP(Cn ) 
n-+oo 

= lim (1 - JP(Cn ) )  = lim lP(An ) · 
n-+oo n-+oo 

Thus we have (ii ) .  0 

Property (i) of Theorem A. 1 . 1  was used in ( 1 .2 .6) at the step 

lim lP{ -n :5 X :5 n} = lP{X E IR}.  
n-+oo 

Property (ii) of this theorem was used in ( 1 .2.4) . Property (ii) can also be 
used in the following example. 

Example A . 1 .2. We continue Example 1 . 1 .3 , the uniform measure on [0, 1] . 
Recall the u-algebra 8[0, 1] of Borel subsets of [0, 1] , obtained by beginning 
with the closed intervals and adding all other sets necessary in order to have a 
u-algebra. A complicated but instructive example of a set in 8[0, 1] is the Can
tor set, which we now construct. We also compute its probability, where the 
probability measure lP we use is the uniform measure, assigning a probability 
to each interval [a, b] c [0, 1] equal to its length b - a. 
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From the interval [0, 1] , remove the middle third (i.e. , the open interval 
( ! , i ) ) . The remaining set is 

which has two pieces, each with probability � .  and the whole set C1 has 
probability i · From each of the two pieces of C1 , remove the middle third 
(i.e. , remove the open intervals ( � ,  � )  and ( � ,  � ) ) .  The remaining set is 

which has four pieces, each with probability � '  and the whole set c2 has 
probability � .  See Figure A. l . l .  

0 

0 1 9 2 9 

- -

1 3 

1 3 

2 
3 

2 
3 

- -
7 9 

Fig. A . l . l .  Constructing the Cantor set. 

8 9 

- -

1 

1 

Continue this process so at stage k we have a set Ck that has 2k pieces, 
each with probability -@. ,  and the whole set Ck has probability ( i ) k . The 
Cantor set is defined to be C = n�1 Ck . From Theorem A. l . 1 (ii) , we see that 

IP(C) = lim IP(Ck ) = lim (-32) k = 0. k-too k-too 

Despite the fact that it has zero probability, the Cantor set has infinitely . t It t . l t . th . t 0 1 2 1 1 2 7 s 1 2 many pmn s. cer run y con ams e pom s , 3 • 3 • , 9 •  9 •  9 •  9 •  27 , 27 , · · · , 

which are the endpoints of the intervals appearing at the successive stages, 
because these are never removed. This is a countably infinite set of points. In 
fact, the Cantor set has uncountably many points. To see this, assume that all 
the points in the Cantor set can be listed in a sequence x1 , x2 ,  x3 , • . • •  Let K1 
denote the piece of C1 , either [ 0, �] or [ i , 1] , that does not contain x1 . Let 
K2 be a piece of Kt nc2 that does not contain X2 · For example, if Kt = [o, � ] 
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and x2 E [� , �] , we take K2 = [0 , � ] . If x2 =f. Kt ,  it does not matter whether 
we take K2 = [0, �] or K2 = [ � ,  � ] . Next let K3 be a piece of K2 n C3 that 
does not contain x3 . Continue this process. Then 

(A. 1 .2) 
and x1 ¢ K1 , x2 ¢ K2 , x3 ¢ K3 , . . . .  In particular, n�=1Kn does not contain 
any point in the sequence x1 , x2 , x3 , . . • •  But the intersection of a sequence 
of nonempty closed intervals that are "nested" as described by (A.1 .2) must 
contain something, and so there is a point y satisfying y E n�=l Kn · But 
n�=tKn c C, and so the point y is in the Cantor set but not on the list 
x1 , x2 , x3 , . . . .  This shows that the list cannot include every point in the Can
tor set . The set of all points in the Cantor set cannot be listed in a sequence, 
which means that the Cantor set is uncountably infinite. 0 

A.2 Generating u-algebras 

We often have some collection C of subsets of a sample space fl and want to put 
in all other sets necessary in order to have a a-algebra. We did this in Example 
1 . 1 .3 when we constructed the a-algebra 8[0, 1] and again in Example 1 . 1 .4 
when we constructed F 00 • In the former case, C was the collection of all closed 
intervals [a, b] C [0, 1] ; in the latter case, C was the collection of all subsets of 
fl00 that could be described in terms of finitely many coin tosses. 

In general, when we begin with a collection C of subsets of fl and put in 
all other sets necessary in order to have a a-algebra, the resulting a-algebra 
is called the a-algebra generated by C and is denoted by a( C) .  The description 
just given of a(C) is not mathematically precise because it is difficult to de
termine how and whether the process of "putting in all other sets necessary 
in order to have a a-algebra" terminates. We provide a precise mathematical 
definition at the end of this discussion. 

The precise definition of a(C) works from the outside in rather than the 
inside out. In particular, we define a(C) to be the "smallest" a-algebra con
taining all the sets in C in the following sense. Put in a(C) every set that is 
in every a-algebra that is "bigger" than C (i.e. , that contains all the sets in 
C) .  There is at least one a-algebra containing all the sets in C, the a-algebra 
of all subsets of fl. If this is the only a-algebra bigger than C, then we put 
every subset of fl into a(C) and we are done. If there are other a-algebras 
bigger than C, then we put into a(C) only those sets that are in every such 
a-algebra. We note the following items. 
(i) The empty set 0 is in a( C) because it is in every a-algebra bigger than C. 

(ii) If A E a(C) , then A is in every a-algebra bigger than C .  Therefore, N is 
in every such a-algebra, which implies that Ac is in a(C) .  

(iii) If A1 , A2 , A3 , • . .  i s  a sequence of sets in a( C) ,  then this sequence is in 
every a-algebra bigger than C, and so the union U�=l An is also in every 
such a-algebra. This shows that the union is in a(C) .  
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(iv) By definition, every set in C is in every a-algebra bigger than C and so is 
in a (C) . 

(v) Suppose g is a a-algebra bigger than C. By definition, every set in a(C) 
is also in g. 

Properties (i)-(iii) show that a (C) is a a-algebra. Property (iv) shows that 
a (C) contains all the sets in C. Property (v) shows that a(C) is the "smallest" 
a-algebra containing all the sets in C. 

Definition A.2. 1 Let C be a collection of subsets of a nonempty set il. The 
a-algebra generated by C, denoted a ( C) , is the collection of sets that belong to 
all a -algebras bigger than C (i. e. , all a -algebras containing all the sets in C). 

A.3 Random Variable with Neither Density nor 
Probability Mass Function 

Using the notation of Example 1 .2 .5 , let us define 

Y = � 2Yn . L...... 3n n=l 

If Y1 = 0, which happens with probability � , then 0 � Y � l ·  If Y1 = 1, which 
also happens with probability � , then � � Y � 1. If Y1 = 0 and Y2 = 0, which 
happens with probability :t ,  then 0 � Y � � ·  If Y1 = 0 and Y2 = 1 , which 
also happens with probability i , then � � Y � l ·  This pattern continues. 
Indeed, when we consider the first n tosses we see that the random variable 
Y takes values in the set Cn defined in Example A.1 .2, and hence Y can only 
take values in the Cantor set C = n�=l Cn . 

We first argue that Y cannot have a density. If it did, then the density f 
would have to be zero except on the set C. But C has zero Lebesgue measure, 
and so f is almost everywhere zero and J; f(x) dx = 0 (i.e. , the function f 
would not integrate to one, as is required of a density) . 

We next argue that Y cannot have a probability mass function. If it did, 
then for some number x E C we would have IP'(Y = x) > 0. But x has a 
unique base-three expansion 

� Xn X = L...... 3n ' n=l 

where each Xn is either 0, 1 ,  or 2 unless x is of the form 3':_ for some positive 
integers k and n. In the latter case, x has two base-three expansions. For 
example, � can be written as both 
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and 7 2 0 1 1 1 
9 = 3 + 9 + 27 + 81 + 243 + . . . .  

In either case, there are at most two choices of w E  fl00 for which Y(w) = x. 
In other words, the set { w E fl; Y ( w) = x} has either one or two elements. 
The probability of a set with one element is zero, and the probability of a set 
with two elements is 0 + 0 = 0. Hence IP'{Y = x} = 0. 

The cumulative distribution function F(x) = IP'{Y ::; x} satisfies (see Fig
ure A.3 .1 for a partial rendition of F(x) ) 

F(O) = 0, F(1) = 1 ,  
1 1 2 F(x) = - for - < x < - ,  4 9 - - 9 

1 1 2 F(x) = - for - < x < -8 27 - - 27 ' 
5 19 20 F(x) = - for - < x < -8 27 - - 27 ' 

1 1 2 F(x) = - for - < x < -2 3 - - 3 ' 
3 7 8 F(x) = - for - < x < -4 9 - - 9 ' 
3 7 8 F(x) = - for - < x < -8 27 - - 27 ' 
7 25 26 F(x) = - for - < x < -8 27 - - 27 ' 

and, because IP'{Y = x} = 0 for every x, F is continuous. Furthermore, 
F' (x) = 0 for every x E [0, 1] \ C, which is almost every x E [0, 1] . A non
constant continuous function whose derivative is almost everywhere zero is 
said to be singularly continuous. 

1 

3 
4 

1 2 

1 
4 

0 1 9 
2 
9 

F(x) = IP'{Y � x} 

1 3 
2 
3 7 9 

Fig. A . 3 . 1 .  A singularly continuous function. 

8 9 1 



B 

Existence of Conditional Expectations 

This appendix uses the Radon-Nikodym Theorem, Theorem 1 .6.7, to establish 
the existence of the conditional expectation of a random variable X with 
respect to a a-algebra Q. Here we treat the case when X is nonnegative and 
integrable. If X is only integrable, one can decompose it in the usual way as 
X = x+ - x - ,  the difference of nonnegative integrable random variables, 
and then apply Theorem B . 1  below to x+ and x- separately. If X is only 
nonnegative, one can write it as the limit of a nondecreasing sequence of 
nonnegative integrable random variables and use the Monotone Convergence 
Theorem, Theorem 1 .4 .5, to extend Theorem B . 1  below to cover this case. 

Theorem B.l .  Let (!l, F, IP) be a probability space, let Q be a sub-a-algebm of 
F, and let X be an integmble nonnegative mndom variable. Then there exists 
a g -measumble mndom variable Y such that 

i Y(w) d!P(w) = i X(w) d!P(w) for every A E Q. (B. 1 )  

In light of  Definition 2.3 . 1 ,  the random variable Y in  the theorem above 
is the conditional expectation lE[X IQ] . 

PROOF OF THEOREM B . 1 :  We define a probability measure by 
- [ X(w) + 1 IP(A) = J A lE[X + 1 ] d!P(w) for every A E F. 

Because the integrand JE[\�1] is strictly positive almost surely and has expec
tation 1 , IP and lP are equivalent probability measures (see Theorem 1 .6 . 1 and 
the comment following Definition 1 .6 .3) . 

The probabilities IP(A) and JP(A) are defined for every subset A of {l that is 
in F. We define two equivalent probability measures on the smaller a-algebra 
Q. The first is simply IP restricted to g (i.e . ,  we define Q(A) = IP(A) for every 
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A E Q, and we leave Q(A) undefined for A ¢  Q) . The second is P restricted to 
g (i.e. , we define Q(A) = P(A) for every A E Q, and we leave Q(A) undefined 
for A ¢ Q) . We now have two probability spaces, (il, Q, Q) and (il, Q, Q) , 
�hich differ only by their probability measures Q and ij. Moreover, Q and 
Q are equivalent . The Radon-Nikodym Theorem, Theorem 1 .6.7, implies the 
existence of a random variable Z such that 

Q(A) = L Z(w) dQ(w) for every A E Q. 

However, since we are now working on probability spaces with a-algebra Q, 
the random variable Z whose existence is guaranteed by the Radon-Nikodym 
Theorem will be Q-measurable rather than .1"-measurable. (Recall from Def
inition 1 .2 . 1  that every random variable is measurable with respect to the 
a-algebra in the space on which it is defined. )  

Since ij and Q agree with P and P on g, we may rewrite the formula above 
as 

P(A) = L Z(w) dlP(w) for every A E g 

or, equivalently, 

L ���)++1� dlP(w) = L Z(w) dlP(w) for every A E Q. 

Multiplication by JE[X + 1] 1eads to the equation 

L X(w) dlP(w) + L 1 dlP(w) = L JE[X + 1]Z(w) dlP(w) for every A E Q. 

We conclude that 

L X(w) dlP(w) = L (JE[X + 1]Z(w) - 1) dlP(w) for every A E g. 

Taking Y (w) = JE[X + 1]Z(w) - 1 ,  we have (B. 1 ) . Because Z is Q-measurable 
and JE[X + 1] is constant, Y is also Q-measurable. 0 



c 

Completion of the Proof of the Second 

Fundamental Theorem of Asset Pricing 

This appendix provides a lemma that is the last step in the proof of the Second 
FUndamental Theorem of Asset Pricing, Theorem 5.4.9 of Chapter 5. 

Lemma C.l Let A be an m x d-dimensional matrix, b an m-dimensional 
vector, and c a d-dimensional vector. If the equation 

Ax = b 
has a unique solution x0 , a d-dimensional vector, then the equation 

Atry = C 

(C.l ) 

(C.2) 
has at least one solution y0 , an m-dimensional vector. (Here, Atr denotes the 
tmnspose of the matrix A.) 

PROOF: We regard A as a mapping from JR.d to �R_m and define the kernel of 
A to be 

K(A) = {x E IR.d : Ax =  0} .  
If x0 solves (C.l ) and x E K(A) ,  then x0 + x also solves (C.l ) . Thus, the 
assumption of a unique solution to (C.l ) implies that K(A) contains only the 
d-dimensional zero vector. 

The rank of A is defined to be the number of linearly independent columns 
of A. Because K(A) contains only the d-dimensional zero vector, the rank 
must be d. Otherwise, we could find a linear combination of these columns 
that would be the m-dimensional zero vector, and the coefficients in this lin.:lar 
combination would give us a non-zero vector in K(A) . But any matrix and its 
transpose have the same rank, and so the rank of A tr is d as well. The rank 
of a matrix is also the dimension of its range space. The range space of Atr is 

R(Atr) = {z E IR.d : z = Atry for some y E IR.m} .  
Because the dimension of this space is d and it is a subspace of JR.d, it must in 
fact be equal to JR.d. In other words, for every z E JR.d, there is some y E IR.m 
such that z = Atry. Hence, (C.2) has a solution y0 E Rm. 0 
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